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Groups, conics and recurrence relations

A. F. BEARDON

1  Introduction
In this paper we explore some of the geometry that lies behind the real

linear, second order, constant coefficient, recurrence relation

xn + 2 = axn + 1 + bxn,  n = 0,  1, … , (1)
where  and  are real numbers. Readers will be familiar with the standard
method of solving this relation, and, to avoid trivial cases, we shall assume
that . The auxiliary equation  of (1) has two (possibly
complex) solutions

a b

ab ≠ 0 t2 = at + b

t1, t2 = 1
2 (a ± a2 + 4b) ,

and the most general solution of (1) is given by
(i)  when , and  and  are real and distinct;xn = Atn

1 + Btn
2 a2 + 4b > 0 t1 t2

(ii)  when , and ;xn = (1
2a)n (An + B) a2 + 4b = 0 t1 = t2 = 1

2a
(iii)  when , and .xn = Ctn + Ctn⎯

a2 + 4b < 0 t1 = t = t2
⎯

Apart from some numerical examples, many discussions of recurrence
relations end here. However, this is nowhere near the end of the story, and in
this article we argue that if we focus on the numerical solutions of (1) to the
exclusion of other ideas, then we miss a chance to show how recurrence
relations are connected to a wide range of interesting and important
mathematics. The beauty and power of mathematics lies in the connections
between its diverse branches, and recurrence relations give us an excellent
opportunity to illustrate this, and to suggest further investigations as we do
throughout this paper.

2  The underlying geometry
From a geometric perspective, the numerical solution of (1) is sterile,

for it is one-dimensional and devoid of any interesting geometry. So, to
involve geometry, we make the usual change to a first-order linear
recurrence relation for vectors: explicitly, we consider the sequence of
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points  in  that are given by(xn, xn + 1) �2

( ) = ( ) ( ) .
xn + 1

xn + 2

0 1
b a

xn

xn + 1

This change of perspective moves us from the numerical calculations based
on (1) to the idea of a dynamical system on  and, in particular, to a study
of the iterates of the linear map

�2

( ) → ( ) ( ) (2)
x
y

0 1
b a

x
y

which is achieved by applying standard ideas from matrix algebra. A
common view of the recurrence relation (1) is that it is a rule for
successively finding , then , and so on, from a given pair .
However, it is equally a rule for finding the ‘backward’ solution , then

, and so on, so the true solution of (1) is the doubly infinite sequence
 . This bi-directional view should be reflected in our

analysis, and it is because the matrix in (2) is non-singular. This, in turn,
suggests that group theory might be useful in this discussion.

x2 x3 (x0, x1)
x−1

x−2
… , x−1, x0, x1.…

A problem can sometimes be better understood by a change of variables
that reveals a connection with an apparently unrelated mathematical
structure. Such a change is often the first step in making progress, and in this
case we shall reveal a connection between recurrence relations, groups and
conics. Throughout, we shall assume that , and we leave a discussion of
the other cases for the interested reader to explore. We now let
and , where , and we find that (1) is equivalent to

b < 0
yn = xn / ( |b|)n

k = a/ |b| |b| > 0

yn + 2 + yn = kyn + 1, (3)
Now  is real and, replacing  by  if necessary, we see that we may
also suppose that . Since

k yn (−1)n yn
k > 0

a2 + 4b = (4 − k2) b,  b < 0,
we see that if (as before)  and  are the roots of the auxiliary equation of
(1), then

t1 t2

(i)  and  are real and distinct if, and only if, ;t1 t2 k > 2
(ii)  and  are real and coincident if, and only if, ;t1 t2 k = 2
(iii)  and  are distinct complex conjugates of each other if, and only if,

.
t1 t2
0 < k < 2

 In the light of our earlier comments, we rewrite (3) in the form

( ) = ( ) ( ) ,
yn + 1

yn + 2

0 1
−1 k

yn

yn + 1

and proceed to study the iterates of the map  given byΦ : �2 → �2

Φ : ( ) → ( ) ( ) = ( ) . (4)
x
y

0 1
−1 k

x
y

y
ky − x
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Now the matrix  of  can be written as a product of matrices, namelyF Φ

F = ( ) = ( ) ( ) ,0 1
−1 k

1 0
k −1

0 1
1 0

and so we let , where  and  are given byΦ = ψ2ψ1 ψ1 ψ2

ψ1 : ( ) → ( )( ) = ( ),  ψ2 ( ) → ( )( ) = ( ),
x
y

0 1
1 0

x
y

y
x

x
y

1 0
k −1

x
y

x
kx − y

respectively. Clearly  is the reflection across the line , but what is
the geometry of the map ? To understand this, let us consider the conic
given by

ψ1 y = x
ψ2 �K

�K = {(x, y) ∈ �2 : x2 − kxy + y2 = K} ,
where  is some positive number. We leave the reader to check that  is an
ellipse if , a pair of parallel lines if , and a hyperbola if

. We also leave the reader to check that if , say , is a point
on , then the points ,  and  are also on , as are ,

 and . It follows that each of these maps takes  onto itself.
Now  leaves the first coordinate unchanged so it follows (from geometry,
but the reader can also check this algebraically) that we can describe the
action of  as follows: Given a point  on , let  be the vertical line
through ; then  is the point (other than  unless  meets  at only
one point) where  meets the conic . To summarise: If  is a point on ,
then  is obtained by first reflecting  in the line  to obtain a point

, and then moving  vertically until it meets the other point of  that lies
above or below . We shall now put these ideas on hold, for what we have
just seen is already known in another context which we shall now explain.

K �K
0 < k < 2 k = 2

k > 2 P P = (x, y)
�K ψ1 (P) ψ2 (P) Φ (P) �K ψ−1

1 (P)
ψ−1

2 (P) Φ−1 (P) �K
ψ2

ψ2 P �K L
P ψ2 (P) P L �K

L �K P �K
Φ (P) P y = x

P′ P′ �K
P′

3  Affine geometry
Since we will use  non-singular matrices that are not orthogonal

matrices, the following discussion takes place in the context of affine, rather
than Euclidean, geometry. There is no need to embark on mental gymnastics
to motivate affine geometry for, according to Felix Klein, a geometry is a
group  of bijections of a set  onto itself, together with those properties of
subsets of  that are invariant under the group . Euclidean geometry
consists of the set  with the group generated by all translations and all

 orthogonal matrices, while affine geometry consists of  with the
group generated by all translations and all  non-singular matrices.

2 × 2

G X
X G

�2

2 × 2 �2

2 × 2
 Affine geometry is the geometry of vector spaces. A line  through the

origin in  is a one-dimensional subspace of , and a line not through the
origin, but parallel to , is a coset, say . Under affine maps, cosets
map to cosets, so parallel lines map to parallel lines. Also, if a segment  is
mapped to a segment , then the midpoint of  is mapped to the mid-point
of . Some quantities are invariant under Euclidean motions but not under
affine motions (for example, lengths and angles); on the other hand, we have

L
�2 �2

L a + L
σ

σ′ σ
σ′
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a far larger supply of affine motions, and therefore more flexibility in affine
geometry. A conic  in  is the set of solutions of some equation of the
form , and for our purposes it is
crucial to note that an affine map takes one conic to another. In fact, any
two ellipses are affine equivalent to each other, and the same is true for any
two hyperbolas, and for any two parabolas. For more details see, for
example, [1].

� �2

ax2 + by + cy2 + dx + ey + f = 0

4  A group structure on a general conic
The next step is to understand that any non-degenerate conic  in  can

be endowed with a binary operation  such that  is a group. A proof of
this is given in [2] in the Gazette, so here we shall simply give the geometric
definition of  (which is also in [2]). We choose any point  on : this will
serve as the identity (or neutral) element in the group . Now take any
two points say  and  on  and form the chord  of . Next, construct
the line through  and parallel to ; this meets  at another point , say,
and we define the binary operation  on  by . Note
that  is the inverse  of  if, and only if, the chord  is parallel to the
tangent to  at . It then follows that  is an abelian group with identity
element . It is obvious that , and once the equation
of , and the coordinates of  and , are known we can obtain an explicit
algebraic formula for the coordinates of , and hence for the binary
operation  (although we prefer geometric arguments).

� �2

⊕ (�, ⊕)

⊕ N �
(�, ⊕)

P Q � PQ �
N PQ � R

⊕ � P ⊕ Q = R = Q ⊕ P
Q P−1 P PQ

� N (�, ⊕)
N P ⊕ N = P = N ⊕ P

� P Q
P ⊕ Q

⊕
Let us illustrate this with the case when  is the unit circle. We take

to be the point , and let  and . Then (as we
leave the reader to prove from Figure 1), . In
other words, this group operation on  is just the usual
multiplication of complex numbers.

� N
(1, 0) P = exp (iθ) Q = exp (iϕ)

P ⊕ Q = exp (i [θ + ϕ])
{z : |z| = 1}

P

Q
N = (1,0)

R = P ⊕ Q

P−1

FIGURE 1: The operation  when the conic  is a circle⊕ �

Now it is shown in [2] that if an affine map takes a conic  onto a
conic  then it transfers (in the obvious sense) the binary operation  on
to the corresponding binary operation  on . In particular, as every ellipse
is affinely equivalent to the unit circle in , it follows that the group
is isomorphic (indeed, conjugate in affine geometry) to the corresponding
group for the unit circle which, as we have just seen, is the group of

�1
�2 �1

�2 �
�2 (�, ⊕)
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rotations of the circle. Thus, in an obvious sense, we may regard the group
 as the group of affine rotations of the ellipse onto itself. Here it is

essential to use affine, and not Euclidean, geometry.
(�, ⊕) �

5  The geometric action of  when  is an ellipseΦ �K

We now return to the discussion in Section 2, and we shall suppose that
, so that the conic  is an ellipse which we shall now denote by

. Our aim is to relate the geometric description of  given in (4) on  in
terms of the group operation  on : see Figure 2 (where ). First,
we shall take  (the identity in the group) to be the point in the first
quadrant where the major axis  meets .

0 < k < 2 �K
� Φ �

Φ � k = 6 / 5
N

y = x �
y = x

N

P−1 = (t , s)
R

P = (s, t)

Q = (t , kt − s)

FIGURE 2: , or P−1 ⊕ Q = R Q = RP

We now recall the geometric description of the map  given in Section
2. We started with any point  on , and then reflected  in the line
to reach a point . Since the line joining  to its reflection is parallel to the
tangent at , we find that the reflected point  is the inverse  in the group

. Next we move  vertically until it meets  again at a point which
we label . It follows immediately (see Section 4) that ,
where  is the point where the vertical line through  (which is the identity
in the group) meets . This shows (recall that the group is abelian) that

, so that the map  is actually the map
. We have now proved the following result.

Φ
P � P y = x

P′ P
N P P−1

(�, ⊕) P−1 �
Q P−1 ⊕ Q = R

R N
�

Q = R ⊕ P Φ : P → Q
P → R ⊕ P

Theorem 1: In the notation above, the map  is the map . In
particular, the orbit of  under the forward and backward iterates of  is the
coset  in the group , where  is the cyclic subgroup of
that is generated by .

Φ P → R ⊕ P
P Φ

〈R〉 P (�, ⊕) 〈R〉 (�, ⊕)
R

In simpler terms, this result shows that if we select a starting point
 for the recurrence relation (3), then this point lies on an ellipse

that is invariant under , and that the set of points  is
the set of points  in .

(y0, y1) �
Φ {(yn, yn + 1) : n ∈ �}

{Rn ⊕ P : n ∈ �} �
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6  Periodicity
We shall now consider the periodic solutions of the recurrence relation

(3), and the periodicity (or the lack of it) of . In general, a function  of a
set  onto itself may have points of different periods; for example, the
permutation  of  has two points of period two, and
three points of period three. In contrast to this, if we ignore the origin,
cannot have cycles of different lengths: if one point of  first returns to is
original position after  applications of  then the same is true of every
point of . Indeed, as  is given by the matrix  (see (4)), say, it is simply a
matter of finding which (if any) integers  are such that  is the identity
matrix. A standard result in linear algebra says that a square matrix with
distinct eigenvalues is diagonalisable, and as F has distinct eigenvalues this
essentially solves our problem. However, in the present context it is perhaps
more helpful to regard this result as providing the affine map of the ellipse
onto a circle. As ,  has no fixed points on , so there are no
periodic points of period one. We now give a necessary and sufficient
condition on , where , for  to be periodic.

Φ f
X

(1 2 3) (4 5) {1, 2, 3, 4, 5}
Φ

�
m Φ

� Φ F
m Fm

0 < k < 2 Φ �

θ k = 2 cos θ Φ

Theorem 2: Let  be a positive integer with . Then  (the
identity matrix) if, and only if,  for some integer  that is
coprime with .

m m ≥ 2 Fm = I
θ = 2πq / m q

m

Proof: Since , where , we see thatk = 2 cos θ = ζ + 1 / ζ ζ = eiθ

F = ( ) = ( ) .0 1
−1 k

0 1
−1 ζ + 1/ζ

Now  has eigenvalues  and , and these are distinct, as otherwise
 implies , and we have excluded this case. Next, with

, the reader can check that

F ζ 1 / ζ
k = ζ |k| = 1

U = ( )1 −ζ
−ζ 1

UFU −1 = ( ) ,  UFmU −1 = ( ) .
ζ 0

0 1 / ζ
ζm 0

0 1 / ζm

It is now clear that  if, and only if, , and this is so if.
and only if,  or, equivalently,  for some integer .

Fm = I UFmU −1 = I
ζm = 1 θ = 2πq / m q

Theorem 2 shows that if  is irrational, then the successive images of
each point of  move around , never returning to any point that has been
visited before. On the other hand, if  is rational, say  with  and
coprime, then every solution is periodic with period  and so, under
repeated applications of the matrix , each point on the ellipse  cycles
through a finite set of exactly  points on .

θ / π
� �

θ / π 2q / m q m
m

F �
m �
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7  Chebyshev polynomials
Although we did not mention this when we introduced (3), our

motivation for studying the recurrence relation (3) came from the extremely
important class of Chebyshev polynomials, so let us now briefly discuss
these. The Chebyshev polynomials are certain solutions of the polynomial
recurrence relation

pn + 2 (z) + pn (z) = 2zpn + 1 (z) , (5)
where  is a complex number, and which the reader should compare with
(3). Specifically, the Chebyshev polynomials  of the first kind,
and the Chebyshev polynomials  of the second kind, are
solutions of the recurrence relation (5) generated from the initial terms

z
T0, T1, T2, …

U 0, U 1, U 2, …

T0 (z) = 1,  T1 (z) = z;

U 0 (z) = 1,  U 1 (z) = 2z.
For readers who are not familiar with the Chebyshev polynomials, we note
that

T0 (z) = 1, T1 (z) = z, T2 (z) = 2z2 − 1, ,T3(z) = 4z3 − 3z …

and

U 0(z) = 1, U 1(z) = 2z, U 2(z) = 4z2 − 1, ,U 3(z) = 8z3 − 4z … .

Now consider a sequence ,  defined byz0 z1, …

zn = αTn (w) + βU n (w) ,  n = 0,  1, … ,
where ,  and  are complex numbers that will be defined shortly. Then
the  satisfy the relations

α β w
zn

z0 = α + β,

z1 = w (α + 2β) ,

zn + 2 + zn = 2wzn + 1,  n = 0,  1,  …  .
Now (as we have seen above) any recurrence relation  can
be reduced (by a change of variable, see (3)) to the form

xn +2 = axn +1 + bxn

yn + 2 + yn = kyn + 1,
so if we put  and choose  and  such that equationsw = k / 2 α β

y0 = α + β,

y1 = w (α + 2β)
(this can always be done) then we find that  or, equivalently,yn = zn

yn = αTn (1
2k) + βU n (1

2k) . (6)
In conclusion, the Chebyshev polynomial solutions and of the single
polynomial recurrence relation (5) simultaneously solve all recurrence
relations  for all choices of , ,  and .

Tn U n

xn + 2 = axn + 1 + bxn a b x0 x1
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In fact, there is a better way to look at Chebyshev polynomials, for the
polynomials  and  are intimately connected to the trigonometric
functions by the relations

Tn U n

Tn (cos z) = cos nz,  U n (cos z) =
sin (n + 1) z

sin z
,

and these and other formulae for the Chebyshev polynomials can easily be
found in the literature. For example, the trigonometric identity

cos (n + 2) z + cos nz = 2 cos z cos (n + 1) z
shows that the  satisfy (5). Now, broadly speaking, identities satisfied by
the trigonometric functions imply identities between the Chebyshev
polynomials, and these then induce combinatorial identities for the solutions
of the most general linear recurrence relation, and especially those that
satisfy the initial conditions  and . We are all familiar with a
multitude of identities between the Fibonacci numbers , but it should be
more widely known that these are just very special cases of far more general
results. Consider, for example, the well-known Cassini identity 

Tn

z0 = 0 z1 = 1
Fn

Fn + 1Fn − 1 − F2
n = (−1)n .

Now for all complex  we haveθ

sin ([n + 2] θ) sin (nθ) = sin2 ([n + 1] θ) sin2 θ. (7)
This shows that

U n + 1 (cos θ) U n − 1 (cos θ) = U n (cos θ)2 − 1,
and, if we let  and use the known fact [4] that ,
we obtain the Cassini identity for the Fibonacci numbers. However, by taking
different values of  we obtain Cassini's identity for every other
recurrence relation, so Cassini's identity is really (7), and the restriction to
Fibonacci numbers is entirely unnecessary. For more information and
examples of this type, see [3, 4, 5].

cosθ = −i /2 Fn+ 1 = inU n(−i /2)

cos θ

8  Golden triples
In this section we comment briefly on the rational points of a conic and

some of the associated number theory. In [6] the author defines four sets of
integer triples as follows: an integer triple  is (a, b, c)

a Pythagorean triple if ;a2 + b2 = c2

a golden triple if ;a2 + ab − b2 = c2

an Eisenstein triple if ;a2 − ab + b2 = c2

an aureate triple if .a2 − ab − b2 = c2

The set  of golden triples in which  is discussed in detail in [6],
where it is shown that if we define a multiplication, denoted by , of golden
triples by the rule

� c ≠ 0
∗

(a1, b1, c1) ∗ (a2, b2, c2) = (a1a2 + b1b2, b1b2 + a1b2 + a2b1, c1c2) ,
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then, with this multiplication,  is an abelian group with identity (1, 0, 1),

and where the inverse of  is . Now a triple

of integers with  is a golden triple if, and only if, the point  lies

on the hyperbola  whose equation is . It is then noted in
[6] that the binary relation  on  induces a binary operation (which we
continue to denote by ) on , and then  is a group with respect to the
operation

�

(a, b, c) (a + b
c2

, −
b
c2

,
1
c ) (a, b, c)

c ≠ 0 (a
c

,
b
c )

� x2 + xy − y2 = 1
∗ �

∗ � (�, ∗)

(a1, b1) ∗ (a2, b2) = (a1a2 + b1b2, b1b2 + a1b2 + a2b1) .
In fact, this operation  on  given in [6] is precisely the binary operation
on  that was described earlier in [2], and it is therefore directly available
without being introduced through number theory. To verify this it is
sufficient to construct an affine map  of the hyperbola  onto the
hyperbola , where

∗ � ⊕
�

Θ �0
�

�0 {(u, v) : uv = 1} ,  � {(x, y) : x2 + xy − y2 = 1} ;

and show that the operation  on  transfers to the operation  on . We
have chosen  here because it is parametrised by the points , where

, and if  then the operation  on  takes a particularly simple
form, namely

⊕ �0 ∗ �
�0 (t,  1 / t)

t ≠ 0 N (1, 1) ⊕ �0

(t, 1
t ) ⊕ (s,

1
s ) = (st,

1
st )

(see [2]). Thus we need to show that

Θ ((s,
1
s ) ⊕ (t, 1

t )) = Θ (s,
1
s ) ∗ Θ (t, 1

t ) ,

or, equivalently,

Θ ((st,
1
st )) = Θ (s,

1
s ) ∗ Θ (t, 1

t ) .

Let us now construct the map , but first we note that it is more
efficient to express  in matrix form, namely

Θ
∗

(a1, b1) ∗ (a2, b2) = (a3, b3) ,
where

a3 = (a1, b1) (a2, b2)t ,  b3 = (a1, b1) J (a2, b2)t ;  J = ( ) .0 1
1 1

and  denotes the transpose of .Xt X
Now let 

ϕ =
1 + 5

2
,  ψ =

1 − 5
2

,  ϕψ = −1,  ϕ + ψ = 1,

so that  is the golden ratio. Now consider the map  given
by  and . Then

ϕ (x, y) → (u, v)
u = x + ϕy v = x + ψy

uv = (x + ϕy) (x + ψy) = x2 + xy − y2,
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and we see that the inverse map , which we take to be our
map , takes the hyperbola  bijectively onto the hyperbola . It is best to
write this in matrix form, namely

(u, v) → (x, y)
Θ �0 �

(x, y) = Θ (u, v) = (u, v) M,  (u, v) = Θ−1 (x, y) = (x, y) M−1,
where

M =
1
5 ( ) ,  M−1 = ( ) .

−ψ 1

ϕ −1
1 1
ϕ ψ

It follows that we need to show that

(st,
1
st ) M = (s,

1
s ) M ∗ (t, 1

t ) M,

or, equivalently, that

(st,
1
st ) M = (U , V)

U = (s,
1
s ) MMt (t, 1

t )t

;

V = (s,
1
s ) MJMt (t, 1

t )t

.

The verification of these equations is a matter of simple algebra which we
leave to the reader.

Finally, the discussion in [6] is concerned with solutions of various
Diophantine equations, and the fact that these are related to the rational
points on a conic. It is important to note that rational points on a conic are
not necessarily transferred to rational points under an affine map (see [2]),
and, with this in mind, it seems worthwhile to record the next result (which,
although expressed here in a slightly different form, is Lemma 2.1 in [7]).

Theorem 3: Let , where , be an integral solution of the
Diophantine equation

(A, B, C) C ≠ 0

αX2 + βXY + γY2 = δZ2, (8)
where , ,  and  are integers with  and . Then any
integral solution  of (8) is a rational multiple of some vector

, where  and  are some coprime integers with , and
where

α β γ δ β2 ≠ 4αγ δ ≠ 0
(X, Y , Z)

(A1, B1, C1) m n m ≥ 0

A1 = γn (An − 2Bm) − (αA + βB) m2;

B1 = αm (Bm − 2An) − (γB + βA) n2;

C1 = ±C (αm2 + βmn + γn2) .
If  and , we obtain , and we find that

every Pythagorean triple is a rational multiple of some vector 
α = δ = γ = 1 β = 0 X2 + Y2 = Z2

(n2 − m2,  2mn, ± (m2 + n2)) ,
where  and  are coprime. It is then easy to see that the Pythagorean triplem n
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is actually an integer multiple of this vector, and so we see that the familiar
result on Pythagorean triples is just one of a whole family of similar results.
It is noteworthy that the proof of Theorem 3 in [7] is entirely elementary,
and consist of nothing more than finding where a line with rational
coordinates, and that passes through the point , meets the given
conic. Thus this result is in the same spirit, and at the same level of
difficulty, as the construction of the group operation .

(A, B, C)

⊕

9  Lyness cycles
We end with the briefest of notes about another circumstance in which

the recurrence relation (3) seems to make an appearance. In the recent paper
[8] in the Gazette, Stan Dolan discusses the idea of a -curve, and a
corresponding ‘unfolding map’, associated with a recurrence relation

Z

xn + 2 + xn = f (xn + 1) ,
where  is some suitable (but fairly general) function. These ideas can be
found in some earlier unpublished notes by Christopher Zeeman on Lyness
cycles (see [8]), and the author thanks Stan Dolan for his valuable
contributions during many discussions on parts of this paper.

f
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