Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-11-29T07:58:29.123Z Has data issue: false hasContentIssue false

Beyond individual selection: adaptive networks and collective social niche construction

Published online by Cambridge University Press:  27 November 2025

Cédric Sueur*
Affiliation:
Université de Strasbourg, IPHC, CNRS, Strasbourg, France Cedric.sueur@iphc.cnrs.fr Institut Universitaire de France, Paris, France jean-louis.deneubourg@ulb.be
Jean-Louis Deneubourg
Affiliation:
CENOLI, Université Libre de Bruxelles, Bruxelles, Belgium
*
*Corresponding author.

Abstract

Dunbar explains primates group cohesion through cognitive and structural mechanisms like grooming and social cognition. We extend this by highlighting collective social niche construction, where emergent social properties arise from feedback loops, selection pressures, and self-organisation. Adaptive social networks evolve through multilevel selection, cultural transmission, and ontogenetic changes, shaping survival, cognition, and collective intelligence across species.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almaatouq, A., Noriega-Campero, A., Alotaibi, A., Krafft, P., Moussaid, M., & Pentland, A. (2020). Adaptive social networks promote the wisdom of crowds. Proceedings of the national academy of sciences of the United States of America, 117(21), 11379113686. https://doi.org/10.1073/pnas.1917687117 CrossRefGoogle ScholarPubMed
Ashe, A., Colot, V., & Oldroyd, B. P. (2021). How does epigenetics influence the course of evolution?. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1826), 20200111. https://doi.org/10.1098/rstb.2020.0111 CrossRefGoogle ScholarPubMed
Avena-Koenigsberger, A., Goñi, J., Solé, R., & Sporns, O. (2015). Network morphospace. Journal of The Royal Society Interface, 12(103), 20140881. https://doi.org/10.1098/rsif.2014.0881 CrossRefGoogle ScholarPubMed
Birch, J., & Heyes, C. (2021). The cultural evolution of cultural evolution. Philosophical Transactions of the Royal Society B, 376(1828), 20200051. https://doi.org/10.1098/rstb.2020.0051 CrossRefGoogle ScholarPubMed
Boguñá, M., Bonamassa, I., De Domenico, M., Havlin, S., Krioukov, D., & Serrano, M. Á. (2021). Network geometry. Nature Reviews Physics, 3(2), 114135. https://doi.org/10.1038/s42254-020-00264-4 CrossRefGoogle Scholar
Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in ecology & evolution, 12(5), 188193.CrossRefGoogle ScholarPubMed
Boyd, R., & Richerson, P. J. (2004). The origin and evolution of cultures. Oxford University Press.Google Scholar
Cantor, M., Maldonado-Chaparro, A. A., Beck, K. B., Brandl, H. B., Carter, G. G., He, P., Hillemann, F., Klarevas-Irby, J. A., Ogino, M., Papageorgiou, D., Prox, L., & Farine, D. R. (2021). The importance of individual-to-society feedbacks in animal ecology and evolution. Journal of Animal Ecology, 90(1), 2744. https://doi.org/10.1111/1365-2656.13336 CrossRefGoogle ScholarPubMed
Centola, D. (2022). The network science of collective intelligence. Trends in Cognitive Sciences, 26(11), 923941. https://doi.org/10.1016/j.tics.2022.08.009 CrossRefGoogle Scholar
Claidière, N., Smith, K., Kirby, S., & Fagot, J. (2014). Cultural evolution of systematically structured behaviour in a non-human primate. Proceedings of the Royal Society B: Biological Sciences, 281(1797), 20141541. https://doi.org/10.1098/rspb.2014.1541 CrossRefGoogle Scholar
Costello, R. A., Cook, P. A., Brodie, E. D., III, & Formica, V. A. (2023). Multilevel selection on social network traits differs between sexes in experimental populations of forked fungus beetles. Evolution, 77(1), 289303. https://doi.org/10.1093/evolut/qpac012 CrossRefGoogle ScholarPubMed
Couzin, I. (2007). Collective minds. Nature, 445(7129), 715715. https://doi.org/10.1038/445715a CrossRefGoogle ScholarPubMed
Couzin, I. D., & Krause, J. (2003). Self-Organization and Collective Behavior in Vertebrates: Vol. Volume 32 (p. 175). Academic Press. http://www.sciencedirect.com/science/article/B7J0V-4F07VV3-3/2/0a33fa35173ca6d985f703ae4bc8357f Google Scholar
Dunbar, R. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews, 6(5), 178190.3.0.CO;2-8>CrossRefGoogle Scholar
Farine, D. R., Montiglio, P.-O., & Spiegel, O. (2015). From individuals to groups and back : The evolutionary implications of group phenotypic composition. Trends in ecology & evolution, 30(10), 609621.CrossRefGoogle ScholarPubMed
Fisher, D., & McAdam, A. (2017). Social traits, social networks and evolutionary biology. Journal of evolutionary biology, 30(12), 20882103. https://doi.org/10.1111/jeb.13195 CrossRefGoogle ScholarPubMed
Gross, T., & Blasius, B. (2007). Adaptive coevolutionary networks : A review. Journal of The Royal Society Interface, 5(20), 259271. https://doi.org/10.1098/rsif.2007.1229 CrossRefGoogle Scholar
Harari, Y. N. (2014). Sapiens : A brief history of humankind. Random House.Google Scholar
Henrich, J. (2017). The secret of our success : How culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press.Google Scholar
Henrich, J., & McElreath, R. (2003). The evolution of cultural evolution. Evolutionary Anthropology: Issues, News, and Reviews, 12(3), 123135. https://doi.org/10.1002/evan.10110 CrossRefGoogle Scholar
Jablonka, E., & Lamb, M. J. (1998). Epigenetic inheritance in evolution. Journal of Evolutionary Biology, 11(2), 159183. https://doi.org/10.1046/j.1420-9101.1998.11020159.x CrossRefGoogle Scholar
Marcoux, M., & Lusseau, D. (2013). Network modularity promotes cooperation. Journal of Theoretical Biology, 324, 103108. https://doi.org/10.1016/j.jtbi.2012.12.012 CrossRefGoogle ScholarPubMed
McMillen, P., & Levin, M. (2024). Collective intelligence : A unifying concept for integrating biology across scales and substrates. Communications Biology, 7(1), 117. https://doi.org/10.1038/s42003-024-06037-4 CrossRefGoogle ScholarPubMed
Meguerditchian, A., Marie, D., Margiotoudi, K., Roth, M., Nazarian, B., Anton, J.-L., & Claidière, N. (2021). Baboons (Papio anubis) living in larger social groups have bigger brains. Evolution and Human Behavior, 42(1), 3034. https://doi.org/10.1016/j.evolhumbehav.2020.06.010 CrossRefGoogle Scholar
Muthukrishna, M., Doebeli, M., Chudek, M., & Henrich, J. (2018). The cultural brain hypothesis : How culture drives brain expansion, sociality, and life history. PLOS Computational Biology, 14(11), e1006504. https://doi.org/10.1371/journal.pcbi.1006504 CrossRefGoogle ScholarPubMed
Neumann, K. M., & Bell, A. M. (2023). Social network differences and phenotypic divergence between stickleback ecotypes. Behavioral Ecology, 34(3), 437445. https://doi.org/10.1093/beheco/arad009 CrossRefGoogle Scholar
Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314(5805), 15601563. https://doi.org/10.1126/science.1133755 CrossRefGoogle ScholarPubMed
Pasquaretta, C., Levé, M., Claidière, N., van de Waal, E., Whiten, A., MacIntosh, A. J. J., Pelé, M., Bergstrom, M. L., Borgeaud, C., Brosnan, S. F., Crofoot, M. C., Fedigan, L. M., Fichtel, C., Hopper, L. M., Mareno, M. C., Petit, O., Schnoell, A. V., di Sorrentino, E. P., Thierry, B., & Sueur, C. (2014). Social networks in primates : Smart and tolerant species have more efficient networks. Scientific Reports, 4(1), 7600. https://doi.org/10.1038/srep07600 CrossRefGoogle ScholarPubMed
Puga-Gonzales, I., Ostner, J., Schülke, O., Sosa, S., Thierry, B., & Sueur, C. (2017). Proximate mechanisms underlying primates’ complex social networks : A Modelling and comparative approach. Folia Primatologica, 88, 126127.Google Scholar
Romano, V., MacIntosh, A. J. J., & Sueur, C. (2020). Stemming the flow : Information, infection, and social evolution. Trends in Ecology & Evolution, 35(10), 849853. https://doi.org/10.1016/j.tree.2020.07.004 CrossRefGoogle ScholarPubMed
Romano, V., Puga-Gonzalez, I., MacIntosh, A. J., & Sueur, C. (2024). The role of social attraction and social avoidance in shaping modular networks. Royal Society Open Science, 11(2), 231619. https://doi.org/10.1098/rsos.231619 CrossRefGoogle ScholarPubMed
Romano, V., Shen, M., Pansanel, J., MacIntosh, A. J. J., & Sueur, C. (2018). Social transmission in networks : Global efficiency peaks with intermediate levels of modularity. Behavioral Ecology and Sociobiology, 72(9), 154. https://doi.org/10.1007/s00265-018-2564-9 CrossRefGoogle Scholar
Sah, P., Mann, J., & Bansal, S. (2018). Disease implications of animal social network structure : A synthesis across social systems. Journal of Animal Ecology, 87(3), 546558. https://doi.org/10.1111/1365-2656.12786 CrossRefGoogle ScholarPubMed
Sueur, C. (2023). Socioconnectomics : Connectomics should be extended to societies to better understand evolutionary processes. Sci, 5(1), 5. https://doi.org/10.3390/sci5010005 CrossRefGoogle Scholar
Sueur, C., Romano, V., Sosa, S., & Puga-Gonzalez, I. (2019). Mechanisms of network evolution : A focus on socioecological factors, intermediary mechanisms, and selection pressures. Primates; Journal of Primatology, 60(3), 167181. https://doi.org/10.1007/s10329-018-0682-7 CrossRefGoogle ScholarPubMed
Testard, C., Brent, L. J. N., Andersson, J., Chiou, K. L., Negron-Del Valle, J. E., DeCasien, A. R., Acevedo-Ithier, A., Stock, M. K., Antón, S. C., Gonzalez, O., Walker, C. S., Foxley, S., Compo, N. R., Bauman, S., Ruiz-Lambides, A. V., Martinez, M. I., Skene, J. H. P., Horvath, J. E., Unit, C. B. R., & Sallet, J. (2022). Social connections predict brain structure in a multidimensional free-ranging primate society. Science Advances, 8(15), eabl5794. https://doi.org/10.1126/sciadv.abl5794 CrossRefGoogle Scholar
Testard, C., Shergold, C., Acevedo-Ithier, A., Hart, J., Bernau, A., Negron-Del Valle, J. E., Phillips, D., Watowich, M. M., Sanguinetti-Scheck, J. I., Montague, M. J., Snyder-Mackler, N., Higham, J. P., Platt, M. L., & Brent, L. J. N. (2024). Ecological disturbance alters the adaptive benefits of social ties. Science, 384(6702), 13301335. https://doi.org/10.1126/science.adk0606 CrossRefGoogle ScholarPubMed
van Schaik, C. P., Isler, K., & Burkart, J. M. (2012). Explaining brain size variation : From social to cultural brain. Trends in Cognitive Sciences, 16(5), 277284. https://doi.org/10.1016/j.tics.2012.04.004 CrossRefGoogle ScholarPubMed