Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-11-29T10:33:53.722Z Has data issue: false hasContentIssue false

Infinitely resizable urn models

Published online by Cambridge University Press:  24 November 2025

Nobuaki Hoshino*
Affiliation:
Kanazawa University
*
*Postal address: School of Economics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. Email address: hoshino@kenroku.kanazawa-u.ac.jp

Abstract

Any margin of the multinomial distribution is multinomially distributed. Retaining this closure property, a family of generalized multinomial distributions is proposed. This family is characterized within multiplicative probability measures, using the Bell polynomial. The retained closure property simplifies marginal properties such as moments. The family can be obtained by conditioning independent infinitely divisible distributions on the total and also by mixing the multinomial distribution with the normalized infinitely divisible distribution. The closure property justifies a stochastic process of the family by Kolmogorov’s extension theorem. Over time, Gibbs partitions of a positive integer appear as the limiting distributions of the family.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aczél, J. (2006). Lectures on Functional Equations and Their Applications. Dover, Mineola, NY.Google Scholar
Aigner, M. (1997). Combinatorial Theory. Springer, Berlin and Heidelberg.10.1007/978-3-642-59101-3CrossRefGoogle Scholar
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman & Hall, London.10.1007/978-94-009-4109-0CrossRefGoogle Scholar
Arratia, R., Barbour, A. D. and Tavaré, S. (2003). Logarithmic Combinatorial Structures: A Probabilistic Approach. European Mathematical Society, Zürich.10.4171/000CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Jørgensen, B. (1991). Some parametric models on the simplex. J. Multivariate Anal. 39, 106116.10.1016/0047-259X(91)90008-PCrossRefGoogle Scholar
Breiman, L. (1992). Probability. SIAM, Philadelphia.10.1137/1.9781611971286CrossRefGoogle Scholar
Carlton, M. A. (2002). A family of densities derived from the three-parameter Dirichlet process. Adv. Appl. Prob. 39, 764774.10.1239/jap/1037816017CrossRefGoogle Scholar
Charalambides, C. A. (2002). Enumerative Combinatorics. Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
Cheg, G., Liu, B., Peng, L., Zhang, B. and Zheng, S. (2019). Testing the equality of two high-dimensional spatial sign covariance matrices. Scandinavian J. Statist. 46, 257271.Google Scholar
Ping, Cheng (1964). Minimax estimates of parameters of distributions belonging to the exponential family. Acta Math. Sinica 5, 277299.Google Scholar
Comtet, L. (1974). Advanced Combinatorics. Reidel, Boston.10.1007/978-94-010-2196-8CrossRefGoogle Scholar
Consul, P. C. and Famoye, F. (2006). Lagrangian Probability Distributions. Birkhäuser, Boston.Google Scholar
Consul, P. C. and Jain, G. C. (1973). A generalization of the Poisson distribution. Technometrics 15, 791799.10.1080/00401706.1973.10489112CrossRefGoogle Scholar
Consul, P. C. and Mittal, S. P. (1975). A new urn model with predetermined strategy. Biometrische Zeitschrift 17, 6775.10.1002/bimj.19750170202CrossRefGoogle Scholar
Consul, P. C. and Mittal, S. P. (1977). Some discrete multinomial probability models with predetermined strategy. Biometrical J. 19, 161173.10.1002/bimj.4710190302CrossRefGoogle Scholar
Crane, H. (2016). The ubiquitous Ewens sampling formula. Statist. Sci. 31, 119.Google Scholar
Davis, C. S. (1993). The computer generation of multinomial random variates. Comput. Statist. Data Anal. 16, 205217.10.1016/0167-9473(93)90115-ACrossRefGoogle Scholar
Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer, New York.10.1007/978-1-4613-8643-8CrossRefGoogle Scholar
Devroye, L. (1993). A triptych of discrete distributions related to the stable law. Statist. Prob. Lett. 18, 349351.10.1016/0167-7152(93)90027-GCrossRefGoogle Scholar
Egozcue, J. J. and Pawlowsky-Glahn, V. (2019). Compositional data: The sample space and its structure. TEST 28, 599638.10.1007/s11749-019-00670-6CrossRefGoogle Scholar
Favaro, S, Hadjicharalambous, G. and Prünster, I. (2011). On a class of distributions on the simplex. J. Statist. Planning Infer. 141, 29873004.10.1016/j.jspi.2011.03.015CrossRefGoogle Scholar
Federer, W. T. (1951). Testing proportionality of covariance matrices. Ann. Math. Statist. 22, 102106.10.1214/aoms/1177729697CrossRefGoogle Scholar
Feng, S. (2010). The Poisson–Dirichlet Distribution and Related Topics. Springer, Heidelberg.10.1007/978-3-642-11194-5CrossRefGoogle Scholar
Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. Springer, New York.Google Scholar
Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237264.10.1093/biomet/40.3-4.237CrossRefGoogle Scholar
Grandell, J. (1997) Mixed Poisson Processes. Chapman & Hall, London.10.1007/978-1-4899-3117-7CrossRefGoogle Scholar
Hinde, J. and Demétrio, C. G. B. (1998). Overdispersion: Models and estimation. Comput. Statist. Data Anal. 27, 151170.10.1016/S0167-9473(98)00007-3CrossRefGoogle Scholar
Ho, F. C. M., Gentle, J. E. and Kennedy, W. J. (1979). Generation of random variates from the multinomial distribution. Proc. Amer. Statist. Assoc. Statist. Comput. Sec. 336339.Google Scholar
Hoshino, N. (2006). A discrete multivariate distribution resulting from the law of small numbers. J. Appl. Prob. 43, 852866.10.1239/jap/1158784951CrossRefGoogle Scholar
Hoshino, N. (2009). The quasi-multinomial distribution as a tool for disclosure risk assessment. J. Official Statist. 25, 269291.Google Scholar
Hoshino, N. (2020). A firm foundation for statistical disclosure control. Japan. J. Statist. Data Sci. 3, 721746.10.1007/s42081-020-00086-9CrossRefGoogle Scholar
Hoshino, N. and Takemura, A. (1998). Relationship between logarithmic series model and other superpopulation models useful for microdata disclosure risk assessment. J. Japan Statist. Soc. 28, 125134.10.14490/jjss1995.28.125CrossRefGoogle Scholar
Hu, J. and Hoshino, N. (2018). The quasi-multinomial synthesizer for categorical data. Privacy in Statistical Databases (PSD 2018) (Lecture Notes in Computer Science 11126), eds J. Domingo-Ferrer and F. Montes, pp. 7591. Springer, Cham.10.1007/978-3-319-99771-1_6CrossRefGoogle Scholar
Ishii, G. and Hayakawa, R. (1960). On the compound binomial distribution. Ann. Inst. Statist. Math. 12, 6980. Errata, 12, 208.10.1007/BF01577666CrossRefGoogle Scholar
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions. Wiley, New York.Google Scholar
Johnson, N. L., Kotz, S. and Kemp, A. W. (1993). Univariate Discrete Distributions, 2nd edn. Wiley, New York.Google Scholar
Lijoi, A., Mena, I. R. H. and Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer. Statist. Assoc. 100, 12781291.10.1198/016214505000000132CrossRefGoogle Scholar
Lukacs, E. (1955). A characterization of the gamma distribution. Ann. Math. Statist. 26, 319324.10.1214/aoms/1177728549CrossRefGoogle Scholar
Malefaki, S. and Iliopoulos, G. (2007). Simulating from a multinomial distribution with large number of categories. Comput. Statist. Data Anal. 51, 54715476.10.1016/j.csda.2007.03.022CrossRefGoogle Scholar
Morel, J. G. and Nagaraj, N. K. (1993). A finite mixture distribution for modelling multinomial extra variation. Biometrika 80, 363371.10.1093/biomet/80.2.363CrossRefGoogle Scholar
Mosimann, J. E. (1962). On the compound multinomial distribution, the multivariate $\beta$ -distribution, and correlations among proportions. Biometrika 49, 6582.Google Scholar
Neerchal, N. K. and Morel, J. G. (2005). An improved method for the computation of maximum likelihood estimates for multinomial overdispersion models. Comput. Statist. Data Anal. 49, 3343.10.1016/j.csda.2004.05.007CrossRefGoogle Scholar
Paul, S. R., Balasooriya, U. and Banerjee, T. (2005). Fisher information matrix of the Dirichlet-multinomial distribution. Biometrical J. 47, 230236.10.1002/bimj.200410103CrossRefGoogle ScholarPubMed
Pitman, J. (2006). Combinatorial Stochastic Processes (Lecture Notes in Mathematics 1875). Springer, New York.Google Scholar
Qi, F., Niu, D. W., Lim, D. and Yao, Y. H. (2020). Special values of the Bell polynomials of the second kind for some sequences and functions. J. Math. Anal. Appl. 491, 124382.10.1016/j.jmaa.2020.124382CrossRefGoogle Scholar
Riordan, J. (1968). Combinatorial Identities. Wiley, New York.Google Scholar
Satterthwaite, F. E. (1942). Generalized Poisson distributions. Ann. Math. Statist. 13, 410417.10.1214/aoms/1177731538CrossRefGoogle Scholar
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.10.1002/9780470316481CrossRefGoogle Scholar
Sibuya, M. (1979). Generalized hypergeometric, digamma and trigamma distributions. Ann. Inst. Statist. Math. 31, 373390.10.1007/BF02480295CrossRefGoogle Scholar
Sibuya, M. (1993). A random clustering process. Ann. Inst. Statist. Math. 45, 459465.10.1007/BF00773348CrossRefGoogle Scholar
Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Prob. 1, 893899.Google Scholar
Steutel, F. W. and van Harn, K. (2004). Infinite Divisibility of Probability Distributions on the Real Line. Dekker, New York.Google Scholar
Takemura, A. (1999). Some superpopulation models for estimating the number of population uniques. In Proceedings of the Statistical Data Protection Conference, pp. 4558. Office for Official Publications of the European Communities, Luxembourg.Google Scholar
Tsukuda, K. and Matsuura, S. (2019). High-dimensional testing for proportional covariance matrices. J. Multivariate Anal. 171, 412420.10.1016/j.jmva.2019.01.011CrossRefGoogle Scholar
Vershik, A. M. (1996). Statistical mechanics of combinatorial partitions, and their limit shapes. Functional Analysis and its Applications, 30, 90105.10.1007/BF02509449CrossRefGoogle Scholar
Zhou, M. and Carin, L. (2015). Negative binomial process count and mixture modeling. IEEE Trans. Pattern Anal. Mach. Intellig. 37, 307320.10.1109/TPAMI.2013.211CrossRefGoogle ScholarPubMed