Hostname: page-component-857557d7f7-bvshn Total loading time: 0 Render date: 2025-12-09T06:11:58.688Z Has data issue: false hasContentIssue false

A diffuse-interface Marangoni instability

Published online by Cambridge University Press:  04 December 2025

Xiangwei Li
Affiliation:
Multicomponent Fluids Group, Center for Complex Flows and Soft Matter Research, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen, 518055 Guangdong, PR China
Dongdong Wan
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore, Republic of Singapore
Haohao Hao
Affiliation:
Multicomponent Fluids Group, Center for Complex Flows and Soft Matter Research, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen, 518055 Guangdong, PR China
Christian Diddens
Affiliation:
Physics of Fluids Department, Max-Planck Center Twente for Complex Fluid Dynamics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P. O. Box 217, 7500AE Enschede, The Netherlands
Mengqi Zhang
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore, Republic of Singapore
Huanshu Tan*
Affiliation:
Multicomponent Fluids Group, Center for Complex Flows and Soft Matter Research, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen, 518055 Guangdong, PR China
*
Corresponding author: Huanshu Tan, tanhs@sustech.edu.cn

Abstract

We investigate a novel Marangoni-induced instability that arises exclusively in diffuse fluid interfaces, that is absent in classical sharp-interface models. Using a validated phase-field Navier–Stokes–Allen–Cahn framework, we linearise the governing equations to analyse the onset and development of interfacial instability driven by solute-induced surface tension gradients. A critical interfacial thickness scaling inversely with the Marangoni number, $\delta _{\textit{cr}} \sim \textit{Ma}^{-1}$, emerges from the balance between advective and diffusive transport. Unlike sharp-interface scenarios where matched viscosity and diffusivity stabilise the interface, finite thickness induces asymmetric solute distributions and tangential velocity shifts that destabilise the system. We identify universal power-law scalings of velocity and concentration offsets with a modified Marangoni number $\textit{Ma}_\delta$, independent of capillary number and interfacial mobility. A critical crossover at $ \textit{Ma}_\delta \approx 590$ distinguishes diffusion-dominated stabilisation from advection-driven destabilisation. These findings highlight the importance of diffuse-interface effects in multiphase flows, with implications for miscible fluids, soft matter, and microfluidics where interfacial thickness and coupled transport phenomena are non-negligible.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, D.M., McFadden, G.B. & Wheeler, A.A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1), 139165.10.1146/annurev.fluid.30.1.139CrossRefGoogle Scholar
Ault, J.T. & Shin, S. 2025 Physicochemical hydrodynamics of particle diffusiophoresis driven by chemical gradients. Annu. Rev. Fluid Mech. 57, 227255.10.1146/annurev-fluid-030424-110950CrossRefGoogle Scholar
Bauer, C., Frink, A. & Kreckel, R. 2002 Introduction to the ginac framework for symbolic computation within the c++ programming language. J. Symb. Comput. 33 (1), 112.10.1006/jsco.2001.0494CrossRefGoogle Scholar
Bergfreund, J., Diener, M., Geue, T., Nussbaum, N., Kummer, N., Bertsch, P., Nyström, G. & Fischer, P. 2021 Globular protein assembly and network formation at fluid interfaces: effect of oil. Soft Matter 17 (6), 16921700.10.1039/D0SM01870HCrossRefGoogle ScholarPubMed
Berry, M.V. 1971 The molecular mechanism of surface tension. Phys. Educ. 6 (2), 79.10.1088/0031-9120/6/2/001CrossRefGoogle Scholar
Cahn, J.W. & Hilliard, J.E. 1958 Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28 (2), 258267.10.1063/1.1744102CrossRefGoogle Scholar
Chandrasekhar, S. 2013 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Darhuber, A.A. & Troian, S.M. 2003 Marangoni driven structures in thin film flows. In Gallery of Fluid Motion, p. S9.Google Scholar
Demont, T. H. B., Stoter, S. K. F. & Van Brummelen, E. H. 2023 Numerical investigation of the sharp-interface limit of the Navier–Stokes–Cahn–Hilliard equations. J. Fluid Mech. 970, A24.10.1017/jfm.2023.611CrossRefGoogle Scholar
Diddens, C., Dekker, P.J. & Lohse, D. 2024 Non-monotonic surface tension leads to spontaneous symmetry breaking in a binary evaporating drop, arXiv preprint arXiv:2402.17452.Google Scholar
Diddens, C. & Rocha, D. 2024 Bifurcation tracking on moving meshes and with consideration of azimuthal symmetry breaking instabilities. J. Comput. Phys. 518, 113306.10.1016/j.jcp.2024.113306CrossRefGoogle Scholar
Eckert, K., Acker, M., Tadmouri, R. & Pimienta, V. 2012 Chemo-Marangoni convection driven by an interfacial reaction: pattern formation and kinetics. Chaos: Interdiscipl. J. Nonlinear Sci. 22 (3), 037112.10.1063/1.4742844CrossRefGoogle Scholar
Hao, H., Li, X., Liu, T. & Tan, H. 2025 Enhanced profile-preserving phase-field model of two-phase flow with surfactant interfacial transport and marangoni effects. J. Comput. Phys. 114058.10.1016/j.jcp.2025.114058CrossRefGoogle Scholar
Hao, H., Li, X., Xu, L., Liu, T. & Tan, H. 2026 Profile-preserving phase-field model for surfactant transport and adsorption–desorption in two-phase flow systems. J. Comput. Phys. 546, 114510.10.1016/j.jcp.2025.114510CrossRefGoogle Scholar
Heil, M. & Hazel, A.L. 2006 Oomph-lib – an object-oriented multi-physics finite-element library. In Fluid-Structure Interaction (ed. H.-J. Bungartz & M. Schäfer), pp. 1949. Springer.10.1007/3-540-34596-5_2CrossRefGoogle Scholar
Jacqmin, D. 1999 Calculation of two-phase navier stokes flows using phase-field modeling. J. Comput. Phys. 155 (1), 96127.10.1006/jcph.1999.6332CrossRefGoogle Scholar
Joseph, D.D., Renardy, Y.Y., Joseph, D.D. & Renardy, Y.Y. 1993 Fluid dynamics of two miscible liquids with diffusion and gradient stresses. In Fundamentals of Two-Fluid Dynamics: Part II: Lubricated Transport, Drops and Miscible Liquids, pp. 324395.10.1007/978-1-4615-7061-5_6CrossRefGoogle Scholar
Kovalchuk, N. & Vollhardt, D. 2006 Marangoni instability and spontaneous non-linear oscillations produced at liquid interfaces by surfactant transfer. In Advances in Colloid and Interface Science.Google Scholar
Levich, V. G. & Krylov, V. S. 1969 Surface-tension-driven phenomena. Annu. Rev. Fluid Mech. 1 (1), 293316.10.1146/annurev.fl.01.010169.001453CrossRefGoogle Scholar
Li, X., Wan, D., Zhang, M. & Tan, H. 2025 Marangoni interfacial instability induced by solute transfer across liquid–liquid interfaces. Int. J. Multiphas. Flow 184, 105073.10.1016/j.ijmultiphaseflow.2024.105073CrossRefGoogle Scholar
Liu, C., Yang, J., Guo, B.-B., Agarwal, S., Greiner, A. & Xu, Z.-K. 2021 Interfacial polymerization at the alkane/ionic liquid interface. Angew. Chem-GER. Edit. 133 (26), 1475714764.10.1002/ange.202103555CrossRefGoogle Scholar
Lohse, D. & Zhang, X. 2020 Physicochemical hydrodynamics of droplets out of equilibrium. Nat. Rev. Phys. 2 (8), 426443.10.1038/s42254-020-0199-zCrossRefGoogle Scholar
Magaletti, F., Picano, F., Chinappi, M., Marino, L. & Casciola, C. M. 2013 The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95126.10.1017/jfm.2012.461CrossRefGoogle Scholar
Manikantan, H. & Squires, T.M. 2020 Surfactant dynamics: hidden variables controlling fluid flows. J. Fluid Mech. 892, P1.10.1017/jfm.2020.170CrossRefGoogle ScholarPubMed
Marchand, A., Weijs, J.H., Snoeijer, J.H. & Andreotti, B. 2011 Why is surface tension a force parallel to the interface? Am. J. Phys. 79 (10), 9991008.10.1119/1.3619866CrossRefGoogle Scholar
Michelin, S. 2023 Self-propulsion of chemically active droplets. Annu. Rev. Fluid Mech. 55 (1), 77101.10.1146/annurev-fluid-120720-012204CrossRefGoogle Scholar
Mitra, S., Singh, S.K., Shevchenko, E., Sachan, M., Ghosh, A., Basak, M., Pattader, G. & Sarathi, P. 2020 Efficient microextraction process exploiting spontaneous interfacial convection driven by marangoni and electric field induced instability: a computational fluid dynamics study. Phys. Fluids 32 (1), 014102.10.1063/1.5133733CrossRefGoogle Scholar
Mitrinović, D.M., Tikhonov, A.M., Li, M., Huang, Z. & Schlossman, M.L. 2000 Noncapillary-wave structure at the water-alkane interface. Phys. Rev. Lett. 85 (3), 582.10.1103/PhysRevLett.85.582CrossRefGoogle ScholarPubMed
Rayleigh, L. 1892 Xx. On the theory of surface forces—ii. Compressible fluids. Lond., Edinb., Dublin Philos. Mag. J. Sci. 33 (201), 209220.10.1080/14786449208621456CrossRefGoogle Scholar
Reder, M., Prahs, A., Schneider, D. & Nestler, B. 2024 Viscous stress approximations in diffuse interface methods for two-phase flow based on mechanical jump conditions. Comput. Methods Appl. Mech. 432, 117341.10.1016/j.cma.2024.117341CrossRefGoogle Scholar
Reichenbach, J. & Linde, H. 1981 Linear perturbation analysis of surface-tension-driven convection at a plane interface (marangoni instability). J. Colloid Interf. Sci. 84 (2), 433443.10.1016/0021-9797(81)90234-4CrossRefGoogle Scholar
Ruckenstein, E. & Berbente, C. 1964 The occurrence of interfacial turbulence in the case of diffusion accompanied by chemical reaction. Chem. Eng. Sci. 19 (5), 329347.10.1016/0009-2509(64)80002-6CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31 (1), 567603.10.1146/annurev.fluid.31.1.567CrossRefGoogle Scholar
Schwarzenberger, K., Köllner, T., Linde, H., Boeck, T., Odenbach, S. & Eckert, K. 2014 Pattern formation and mass transfer under stationary solutal Marangoni instability. Adv. Colloid Interfac. 206, 344371.10.1016/j.cis.2013.10.003CrossRefGoogle ScholarPubMed
Scriven, L. E. 1960 Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem. Eng. Sci. 12 (2), 98108.10.1016/0009-2509(60)87003-0CrossRefGoogle Scholar
Senapati, S. & Berkowitz, M.L. 2001 Computer simulation study of the interface width of the liquid/liquid interface. Phys. Rev. Lett. 87 (17), 176101.10.1103/PhysRevLett.87.176101CrossRefGoogle ScholarPubMed
Shim, S. 2022 Diffusiophoresis, diffusioosmosis, and microfluidics: surface-flow-driven phenomena in the presence of flow. Chem. Rev. 122 (7), 69867009.10.1021/acs.chemrev.1c00571CrossRefGoogle ScholarPubMed
Stanley, H.E. 1971 Introduction to Phase Transitions and Critical Phenomena. Oxford University Press.Google Scholar
Sternling, C. V. & Scriven, L. E. 1959 Interfacial turbulence: hydrodynamic instability and the marangoni effect. Aiche J. 5 (4), 514523.10.1002/aic.690050421CrossRefGoogle Scholar
Sultan, E., Boudaoud, A. & Amar, M.B. 2005 Evaporation of a thin film: diffusion of the vapour and marangoni instabilities. J. Fluid Mech. 543, 183202.10.1017/S0022112005006348CrossRefGoogle Scholar
Tan, H., Diddens, C., Lv, P., Kuerten, J.G.M., Zhang, X. & Lohse, D. 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating ouzo drop. Proc. Natl. Acad. Sci. 113 (31), 86428647.10.1073/pnas.1602260113CrossRefGoogle ScholarPubMed
Truzzolillo, D. & Cipelletti, L. 2017 Off-equilibrium surface tension in miscible fluids. Soft Matter 13(1), 1321.10.1039/C6SM01026ACrossRefGoogle Scholar
Verschueren, M., Van De Vosse, F. N. & Meijer, H. E. H. 2001 Diffuse-interface modelling of thermocapillary flow instabilities in a Hele–Shaw cell. J. Fluid Mech. 434, 153166.10.1017/S0022112001003561CrossRefGoogle Scholar
van der Waals, J. 1893 Verhandel. konink. akad. weten. amsterdam (sect1). Philos. Mag. 1, 56.Google Scholar
Zhang, M., Lashgari, I., Zaki, T.A. & Brandt, L. 2013 Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. J. Fluid Mech. 737, 249279.10.1017/jfm.2013.572CrossRefGoogle Scholar
Supplementary material: File

Li et al. supplementary movie 1

Direct numerical simulations of system dynamics with parameters Sc = 103, Ca = 0.01, α = 1.5 (Pe φ ∼ δ −α ), Ma = 104, and δ = 0.05, corresponding to Fig. 3c in the main text. Panels show: (a) temporal evolution of kinetic energy ( $${E_k} = \sqrt {\boldsymbol{u \cdot u}} $$ ); (b) kinetic energy contours; (c) solute concentration field c; (d) phase-field distribution φ s; (e) velocity profile u along y at the x-location of |u|max; (f) solute perturbation profile c ′ = c − C b along y at the x-location of |u|min.
Download Li et al. supplementary movie 1(File)
File 899.2 KB
Supplementary material: File

Li et al. supplementary movie 2

Same setup as Movie 1, but with δ = 0.8, corresponding to Fig. 3d in the main text. Panel descriptions are identical to those in Movie S1.
Download Li et al. supplementary movie 2(File)
File 1.1 MB
Supplementary material: File

Li et al. supplementary material 3

Li et al. supplementary material
Download Li et al. supplementary material 3(File)
File 93.8 KB