Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-12-07T08:59:39.626Z Has data issue: false hasContentIssue false

Extreme events of wall pressure fluctuations in turbulent boundary layers: effects of compressibility

Published online by Cambridge University Press:  24 November 2025

Peng-Jun-Yi Zhang
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230027, PR China
Zhen-Hua Wan*
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230027, PR China
Nan-Sheng Liu
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230027, PR China
De-Jun Sun*
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230027, PR China
Xi-Yun Lu
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230027, PR China
*
Corresponding authors: Zhen-Hua Wan, wanzh@ustc.edu.cn; De-Jun Sun, dsun@ustc.edu.cn
Corresponding authors: Zhen-Hua Wan, wanzh@ustc.edu.cn; De-Jun Sun, dsun@ustc.edu.cn

Abstract

Wall pressure fluctuations (WPFs) over aerodynamic surfaces contribute to the physical origin of noise generation and vibrational loading. Understanding the generation mechanism of WPFs, especially those exhibiting extremely high amplitudes, is important for advancing design and control in practical applications. In this work, we systematically investigate extreme events of WPFs in turbulent boundary layers and the compressibility effects thereon. The compressibility effects, encompassing extrinsic and intrinsic ones, ranging from weak to strong, are achieved by varying Mach numbers and wall temperatures. A series of datasets at moderate Reynolds numbers obtained from direct numerical simulation are analysed. It is found that the intermittency of WPFs depends weakly on extrinsic compressibility effects, whereas intrinsic compressibility effects significantly enhance intermittency at small scales. Coherent structures related to extreme events are identified using volumetric conditional average. Under extrinsic compressibility effects, extreme events are associated with the weak dilatation structures induced by interactions of high- and low-speed motions. When intrinsic compressibility effects dominate, these events are associated with the strong alternating positive and negative dilatation structures embedded in low-speed streaks. Furthermore, Poisson-equation-based pressure decomposition is performed to partition pressure fluctuations into components governed by distinct physical mechanisms. By analysing the proportion of each pressure component in extreme events, it is found that the contributions of the slow pressure and viscous pressure exhibit weak dependence on the compressibility effects, especially the extrinsic ones, and the varying trend of contributions of the rapid pressure with compressibility effects is opposite to that of the compressible pressure component.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, N.A. 1998 Direct numerical simulation of turbulent compression ramp flow. Theor. Comp. Fluid Dyn. 12 (2), 109129.10.1007/s001620050102CrossRefGoogle Scholar
Anantharamu, S. & Mahesh, K. 2020 Analysis of wall-pressure fluctuation sources from direct numerical simulation of turbulent channel flow. J. Fluid Mech. 898, A17.10.1017/jfm.2020.412CrossRefGoogle Scholar
Baranwal, A., Donzis, D. & Bowersox, R. 2025 Mach number and wall thermal boundary condition effects on near-wall compressible turbulence. J. Fluid Mech. 1008, A42.10.1017/jfm.2025.66CrossRefGoogle Scholar
Beresh, S.J., Henfling, J.F., Spillers, R.W. & Pruett, B.O.M. 2011 Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer. Phys. Fluids 23 (7), 075110.10.1063/1.3609271CrossRefGoogle Scholar
Bernardini, M., Della Posta, G., Salvadore, F. & Martelli, E. 2023 a Unsteadiness characterisation of shock wave/turbulent boundary-layer interaction at moderate Reynolds number. J. Fluid Mech. 954, A43.CrossRefGoogle Scholar
Bernardini, M., Modesti, D., Salvadore, F. & Pirozzoli, S. 2021 STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Comput. Phys. Commun. 263, 107906.10.1016/j.cpc.2021.107906CrossRefGoogle Scholar
Bernardini, M., Modesti, D., Salvadore, F., Sathyanarayana, S., Della Posta, G. & Pirozzoli, S. 2023 b STREAmS-2.0: supersonic turbulent accelerated Navier–Stokes solver version 2.0. Comput. Phys. Commun. 285, 108644.10.1016/j.cpc.2022.108644CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23 (8), 085102.10.1063/1.3622773CrossRefGoogle Scholar
Blonigan, P.J., Farazmand, M. & Sapsis, T.P. 2019 Are extreme dissipation events predictable in turbulent fluid flows? Phys. Rev. Fluids 4 (4), 044606.10.1103/PhysRevFluids.4.044606CrossRefGoogle Scholar
Bradshaw, P. 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9, 3352.10.1146/annurev.fl.09.010177.000341CrossRefGoogle Scholar
Bull, M.K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190 (3), 299315.10.1006/jsvi.1996.0066CrossRefGoogle Scholar
Camussi, R. & Bogey, C. 2021 Intermittent statistics of the 0-mode pressure fluctuations in the near field of Mach 0.9 circular jets at low and high Reynolds numbers. Theor. Comp. Fluid Dyn. 35 (2), 229247.10.1007/s00162-020-00553-9CrossRefGoogle Scholar
Cardesa, J.I., Monty, J.P., Soria, J. & Chong, M.S. 2019 The structure and dynamics of backflow in turbulent channels. J. Fluid Mech. 880, R3.10.1017/jfm.2019.774CrossRefGoogle Scholar
Ceci, A., Palumbo, A., Larsson, J. & Pirozzoli, S. 2022 Numerical tripping of high-speed turbulent boundary layers. Theor. Comp. Fluid Dyn. 36 (6), 865886.10.1007/s00162-022-00623-0CrossRefGoogle Scholar
Chang, P.A.I.I.I., Piomelli, U. & Blake, W.K. 1999 Relationship between wall pressure and velocity-field sources. Phys. Fluids 11 (11), 34343448.10.1063/1.870202CrossRefGoogle Scholar
Chase, D.M. 1980 Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 70 (1), 2967.10.1016/0022-460X(80)90553-2CrossRefGoogle Scholar
Chase, D.M. 1987 The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112 (1), 125147.10.1016/S0022-460X(87)80098-6CrossRefGoogle Scholar
Chen, X., Chung, Y.M. & Wan, M. 2023 Backflow structures in turbulent pipe flows at low to moderate reynolds numbers. J. Fluid Mech. 966, A38.10.1017/jfm.2023.461CrossRefGoogle Scholar
Chou, P.-Y. 1945 On velocity correlations and the solutions of the equations of turbulent fluctuation. Quart. Appl. Math. 3 (1), 3854.CrossRefGoogle Scholar
Cogo, M., Baù, U., Chinappi, M., Bernardini, M. & Picano, F. 2023 Assessment of heat transfer and Mach number effects on high-speed turbulent boundary layers. J. Fluid Mech. 974, A10.10.1017/jfm.2023.791CrossRefGoogle Scholar
Coleman, G.N., Kim, J. & Moser, R.D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.10.1017/S0022112095004587CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M.P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.10.1017/S0022112010000959CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of mach number. J. Fluid Mech.. 672, 245267.10.1017/S0022112010005902CrossRefGoogle Scholar
Duan, L. et al. 2019 Characterization of freestream disturbances in conventional hypersonic wind tunnels. J. Spacecr. Rockets 56 (2), 357368.10.2514/1.A34290CrossRefGoogle ScholarPubMed
Fei, H., Wang, R., Lai, P., Wang, J. & Xu, H. 2024 On the extreme wall shear stress events in a turbulent pipe flow. Phys. Fluids 36 (5).10.1063/5.0206708CrossRefGoogle Scholar
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.10.1017/S0022112004009371CrossRefGoogle Scholar
Gerolymos, G.A., Sénéchal, D. & Vallet, I. 2007 Wall-effects on pressure fluctuations in quasi-incompressible and compressible turbulent plane channel flow, In 37th AIAA Fluid Dynamics Conference and Exhibit, p. 3863, AIAA paper.10.2514/6.2007-3863CrossRefGoogle Scholar
Gerolymos, G.A., Sénéchal, D. & Vallet, I. 2013 Wall effects on pressure fluctuations in turbulent channel flow. J. Fluid Mech. 720, 1565.10.1017/jfm.2012.633CrossRefGoogle Scholar
Ghaemi, S. & Scarano, F. 2013 Turbulent structure of high-amplitude pressure peaks within the turbulent boundary layer. J. Fluid Mech. 735, 381426.10.1017/jfm.2013.501CrossRefGoogle Scholar
Gomit, G., de Kat, R. & Ganapathisubramani, B. 2018 Structure of high and low shear-stress events in a turbulent boundary layer. Phys. Rev. Fluids 3 (1), 014609.10.1103/PhysRevFluids.3.014609CrossRefGoogle Scholar
Grasso, G., Jaiswal, P., Wu, H., Moreau, S. & Roger, M. 2019 Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient. J. Fluid Mech. 877, 10071062.10.1017/jfm.2019.616CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. National Acad. Sci. 118 (34).10.1073/pnas.2111144118CrossRefGoogle Scholar
Guerrero, B., Lambert, M.F. & Chin, R.C. 2020 Extreme wall shear stress events in turbulent pipe flows: spatial characteristics of coherent motions. J. Fluid Mech. 904, A18.10.1017/jfm.2020.689CrossRefGoogle Scholar
Guerrero, B., Lambert, M.F. & Chin, R.C. 2022 Precursors of backflow events and their relationship with the near-wall self-sustaining process. J. Fluid Mech. 933, A33.10.1017/jfm.2021.1082CrossRefGoogle Scholar
Hack, M.J.P. & Schmidt, O.T. 2021 Extreme events in wall turbulence. J. Fluid Mech. 907, A9.10.1017/jfm.2020.798CrossRefGoogle Scholar
Hadjadj, A., Ben-Nasr, O., Shadloo, M.S. & Chaudhuri, A. 2015 Effect of wall temperature in supersonic turbulent boundary layers: a numerical study. Intern. J. Heat Mass Transf. 81, 426438.CrossRefGoogle Scholar
Hasan, A.M., Costa, P., Larsson, J., Pirozzoli, S. & Pecnik, R. 2025 Intrinsic compressibility effects in near-wall turbulence. J. Fluid Mech. 1006, A14.10.1017/jfm.2024.1238CrossRefGoogle Scholar
Hasan, A.M., Larsson, J., Pirozzoli, S. & Pecnik, R. 2023 Incorporating intrinsic compressibility effects in velocity transformations for wall-bounded turbulent flows. Phys. Rev. Fluids 8 (11), L112601.10.1103/PhysRevFluids.8.L112601CrossRefGoogle Scholar
Howe, M.S. 1998 Acoustics of Fluid-Structure Interactions. Cambridge University Press.10.1017/CBO9780511662898CrossRefGoogle Scholar
Hu, N., Reiche, N. & Ewert, R. 2017 Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence. J. Fluid Mech. 826, 421454.10.1017/jfm.2017.448CrossRefGoogle Scholar
Huang, J., Duan, L., Casper, K.M., Wagnild, R.M. & Bitter, N.P. 2024 Transducer resolution effect on pressure fluctuations beneath hypersonic turbulent boundary layers. AIAA J. 62 (3), 882895.10.2514/1.J062994CrossRefGoogle Scholar
Huang, J., Duan, L. & Choudhari, M.M. 2022 Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number. J. Fluid Mech. 937, A3.10.1017/jfm.2022.80CrossRefGoogle Scholar
Hutchins, N., Monty, J.P., Ganapathisubramani, B., Ng, H.C. & Marusic, I. 2011 Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255285.10.1017/S0022112010006245CrossRefGoogle Scholar
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.10.1006/jcph.1996.0130CrossRefGoogle Scholar
Jiménez, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44 (1), 2745.10.1146/annurev-fluid-120710-101039CrossRefGoogle Scholar
Jiménez, J. 2013 Near-wall turbulence. Phys. Fluids 25 (10).10.1063/1.4824988CrossRefGoogle Scholar
Kraichnan, R.H. 1956 Pressure fluctuations in turbulent flow over a flat plate. J. Acoust. Soc. Am. 28 (3), 378390.10.1121/1.1908336CrossRefGoogle Scholar
Lagha, M., Kim, J., Eldredge, J. & Zhong, X. 2011 A numerical study of compressible turbulent boundary layers. Phys. Fluids 23 (1).10.1063/1.3541841CrossRefGoogle Scholar
Lele, S.K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26 (1), 211254.10.1146/annurev.fl.26.010194.001235CrossRefGoogle Scholar
Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P. & Örlü, R. 2012 Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24 (3), 035110.10.1063/1.3696304CrossRefGoogle Scholar
Limei, J., Yuan, X., Dong, S., Li, X. & Tong, F. 2024 Extremely high wall pressure events in shock wave and turbulent boundary layer interactions using dns data. Chinese J. Aeronaut. 37 (11), 8193.10.1016/j.cja.2024.07.008CrossRefGoogle Scholar
Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469520.10.1017/S0022112091003786CrossRefGoogle Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. Mécanique de la Turbulence 367 (380), 26.Google Scholar
Pan, C. & Kwon, Y. 2018 Extremely high wall-shear stress events in a turbulent boundary layer. In J. Phys.: Conf. Ser, vol. 1001, pp. 012004. IOP Publishing.Google Scholar
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229 (19), 71807190.10.1016/j.jcp.2010.06.006CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361393.10.1017/S0022112010001710CrossRefGoogle Scholar
Poinsot, T.J. & Lele, S.K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.10.1016/0021-9991(92)90046-2CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Sapsis, T.P. 2021 Statistics of extreme events in fluid flows and waves. Annu. Rev. Fluid Mech. 53 (1), 85111.10.1146/annurev-fluid-030420-032810CrossRefGoogle Scholar
Sarkar, S. 1992 The pressure–dilatation correlation in compressible flows. Phys. Fluids A 4 (12), 26742682.10.1063/1.858454CrossRefGoogle Scholar
Schmidt, O.T. & Schmid, P.J. 2019 A conditional space–time POD formalism for intermittent and rare events: example of acoustic bursts in turbulent jets. J. Fluid Mech. 867, R2.10.1017/jfm.2019.200CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.10.1017/S002211200100667XCrossRefGoogle Scholar
Sheng, J., Malkief, E. & Katz, J. 2009 Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer. J. Fluid Mech. 633, 1760.10.1017/S0022112009006934CrossRefGoogle Scholar
Smits, A.J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer Science & Business Media.Google Scholar
Spalart, P.R., Moser, R.D. & Rogers, M.M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96 (2), 297324.10.1016/0021-9991(91)90238-GCrossRefGoogle Scholar
Stahl, S.L., Prasad, C., Goparaju, H. & Gaitonde, D. 2023 Conditional space-time POD extensions for stability and prediction analysis. J. Comput. Phys. 492, 112433.10.1016/j.jcp.2023.112433CrossRefGoogle Scholar
Tang, J., Zhao, Z., Wan, Z.-H. & Liu, N.-S. 2020 On the near-wall structures and statistics of fluctuating pressure in compressible turbulent channel flows. Phys. Fluids 32 (11), 115121.10.1063/5.0024639CrossRefGoogle Scholar
Toki, T., Sousa, V.C.B., Chen, Y., Camillo, G.P., Wagner, A. & Scalo, C. 2025 Large-eddy simulations of conical hypersonic turbulent boundary layers over cooled walls via volumetric rescaling method. J. Fluid Mech. 1003, A28.10.1017/jfm.2024.1219CrossRefGoogle Scholar
Tong, F., Dong, S., Lai, J., Yuan, X. & Li, X. 2022 Wall shear stress and wall heat flux in a supersonic turbulent boundary layer. Phys. Fluids 34 (1), 015127.10.1063/5.0079230CrossRefGoogle Scholar
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence. Springer.10.1007/978-90-481-3174-7CrossRefGoogle Scholar
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.10.2514/8.1895CrossRefGoogle Scholar
Volpiani, P., Iyer, P., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5, 052602.10.1103/PhysRevFluids.5.052602CrossRefGoogle Scholar
Wallace, J.M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131158.10.1146/annurev-fluid-122414-034550CrossRefGoogle Scholar
Xu, D., Wang, J. & Chen, S. 2023 Wall cooling effect on spectra and structures of thermodynamic variables in hypersonic turbulent boundary layers. J. Fluid Mech. 974, A55.10.1017/jfm.2023.836CrossRefGoogle Scholar
Xu, D., Wang, J., Wan, M., Yu, C., Li, X. & Chen, S. 2021 Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer. J. Fluid Mech. 929, A33.10.1017/jfm.2021.875CrossRefGoogle Scholar
Yang, B. & Yang, Z. 2022 On the wavenumber–frequency spectrum of the wall pressure fluctuations in turbulent channel flow. J. Fluid Mech. 937, A39.10.1017/jfm.2022.137CrossRefGoogle Scholar
Yin, Y., Wu, Y., Wang, R., Ren, C., Qu, Q., Zhang, Q. & Liu, J. 2023 Positive and negative wall-pressure fluctuations beneath a supersonic turbulent boundary layer. Acta Mech. Sin. 39 (1), 122035.10.1007/s10409-022-22035-xCrossRefGoogle Scholar
Yu, M., Liu, P., Fu, Y., Tang, Z. & Yuan, X. 2022 a Wall shear stress, pressure, and heat flux fluctuations in compressible wall-bounded turbulence, part I: one-point statistics. Phys. Fluids 34 (6), 065139.10.1063/5.0088405CrossRefGoogle Scholar
Yu, M., Liu, P.X., Fu, Y.L., Tang, Z.G. & Yuan, X.X. 2022 b Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. II. Spectra, correlation and nonlinear interactions. Phys. Fluids 34 (6).10.1063/5.0093852CrossRefGoogle Scholar
Yu, M., Xu, C.-X. & Pirozzoli, S. 2019 Genuine compressibility effects in wall-bounded turbulence. Phys. Rev. Fluids 4 (12), 123402.10.1103/PhysRevFluids.4.123402CrossRefGoogle Scholar
Yu, M., Xu, C.-X. & Pirozzoli, S. 2020 Compressibility effects on pressure fluctuation in compressible turbulent channel flows. Phys. Rev. Fluids 5 (11), 113401.10.1103/PhysRevFluids.5.113401CrossRefGoogle Scholar
Yu, M., Zhou, Z., Dong, S., Yuan, X. & Xu, C. 2024 On the generation of near-wall dilatational motions in hypersonic turbulent boundary layers. J. Fluid Mech. 984, A44.10.1017/jfm.2024.216CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2017 Effect of wall cooling on boundary-layer-induced pressure fluctuations at Mach 6. J. Fluid Mech. 822, 530.10.1017/jfm.2017.212CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.10.2514/1.J057296CrossRefGoogle Scholar
Zhang, P.-J.-Y., Liu, N.-S., Wan, Z.-H., Sun, D.-J., Lu, X.-Y., Chen, J.-Q. & Dong, S.-W. 2024 a Wall heat flux in the hypersonic boundary layer over the windward side of a lifting body. Phys. Rev. Fluids 9 (11), 114609.10.1103/PhysRevFluids.9.114609CrossRefGoogle Scholar
Zhang, P.-J.-Y., Wan, Z.-H., Dong, S.-W., Liu, N.-S., Sun, D.-J. & Lu, X.-Y. 2023 Conditional analysis on extreme wall shear stress and heat flux events in compressible turbulent boundary layers. J. Fluid Mech. 974, A38.10.1017/jfm.2023.797CrossRefGoogle Scholar
Zhang, P.-J.-Y., Wan, Z.-H., Liu, N.-S., Sun, D.-J. & Lu, X.-Y. 2022 Wall-cooling effects on pressure fluctuations in compressible turbulent boundary layers from subsonic to hypersonic regimes. J. Fluid Mech. 946, A14.10.1017/jfm.2022.595CrossRefGoogle Scholar
Zhang, P.-J.-Y., Wan, Z.-H., Sun, D.-J. & Lu, X.-Y. 2024 b The intrinsic scaling relation between pressure fluctuations and mach number in compressible turbulent boundary layers. J. Fluid Mech. 993, A2.10.1017/jfm.2024.566CrossRefGoogle Scholar
Zhang, Y.-S. 2013 The study of compressible flat-plate turbulent boundary layers with structural ensemble dynamics PhD thesis. Peking University.Google Scholar