No CrossRef data available.
Published online by Cambridge University Press: 24 November 2025

Wall pressure fluctuations (WPFs) over aerodynamic surfaces contribute to the physical origin of noise generation and vibrational loading. Understanding the generation mechanism of WPFs, especially those exhibiting extremely high amplitudes, is important for advancing design and control in practical applications. In this work, we systematically investigate extreme events of WPFs in turbulent boundary layers and the compressibility effects thereon. The compressibility effects, encompassing extrinsic and intrinsic ones, ranging from weak to strong, are achieved by varying Mach numbers and wall temperatures. A series of datasets at moderate Reynolds numbers obtained from direct numerical simulation are analysed. It is found that the intermittency of WPFs depends weakly on extrinsic compressibility effects, whereas intrinsic compressibility effects significantly enhance intermittency at small scales. Coherent structures related to extreme events are identified using volumetric conditional average. Under extrinsic compressibility effects, extreme events are associated with the weak dilatation structures induced by interactions of high- and low-speed motions. When intrinsic compressibility effects dominate, these events are associated with the strong alternating positive and negative dilatation structures embedded in low-speed streaks. Furthermore, Poisson-equation-based pressure decomposition is performed to partition pressure fluctuations into components governed by distinct physical mechanisms. By analysing the proportion of each pressure component in extreme events, it is found that the contributions of the slow pressure and viscous pressure exhibit weak dependence on the compressibility effects, especially the extrinsic ones, and the varying trend of contributions of the rapid pressure with compressibility effects is opposite to that of the compressible pressure component.