Hostname: page-component-857557d7f7-nfgnx Total loading time: 0.001 Render date: 2025-12-09T13:38:22.688Z Has data issue: false hasContentIssue false

Effect of ethanol and sperm head reducing agents on the preimplantation development of bovine embryos generated by Piezo-ICSI

Published online by Cambridge University Press:  09 December 2025

Víctor Gallardo
Affiliation:
Laboratory of Reproduction, Center of Excellence in Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agricultural and Environmental Sciences, Universidad de la Frontera, Temuco, Chile Master of Science Program specializing in Biology of Reproduction, Universidad de La Frontera, Temuco, Chile
Luis Aguila
Affiliation:
Laboratory of Reproduction, Center of Excellence in Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agricultural and Environmental Sciences, Universidad de la Frontera, Temuco, Chile
María Elena Arias
Affiliation:
Laboratory of Reproduction, Center of Excellence in Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agricultural and Environmental Sciences, Universidad de la Frontera, Temuco, Chile Department of Agricultural Production, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
Ricardo Felmer*
Affiliation:
Laboratory of Reproduction, Center of Excellence in Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agricultural and Environmental Sciences, Universidad de la Frontera, Temuco, Chile Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
*
Corresponding author: Ricardo Felmer; Email: ricardo.felmer@ufrontera.cl

Summary

Intracytoplasmic sperm injection (ICSI) is a widely used assisted reproduction technique, but in cattle it faces major challenges due to inefficient oocyte activation after sperm microinjection. This study investigated different oocyte activation strategies and assessed the potential role of reducing agents glutathione (GSH), cysteamine (Cys) and dithiobutylamine (DTBA) to improve sperm head decondensation and embryo development following Piezo-ICSI. Haploid parthenogenetic activation using different ethanol concentrations (1%, 3%, 7% and 10%) failed to yield blastocysts, while diploid activation with ethanol or ionomycin combined with inhibitors significantly improved cleavage (43–55%) and blastocyst rates (14–27%), respectively. However, applying two ethanol pulses was detrimental, reducing both cleavage and blastocysts likely due to toxic overexposure. Sperm head decondensation compounds in Piezo-ICSI showed a high percentage of inactivated oocytes (75% GSH, 55% Cys and 40% DTBA). The highest male pronuclear formation rates were observed in the control without sperm head decondensation (21%) and with DTBA treatment (10%). Despite this, the treatment with Cys resulted in higher developmental potential to the blastocyst stage (22%) comparable to the control (24%). These data suggest that the inclusion of sperm head decondensing agents could represent a promising new strategy for enhancing the early in vitro development of ICSI-generated embryos. However, for this purpose, careful optimization of the concentration and incubation time of these decondensing compounds is essential.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdalla, H., Shimoda, M., Hirabayashi, M., Hochi, S. (2009) A combined treatment of ionomycin with ethanol improves blastocyst development of bovine oocytes harvested from stored ovaries and microinjected with spermatozoa. Theriogenology 72, 453460.10.1016/j.theriogenology.2009.03.011CrossRefGoogle ScholarPubMed
Akagi, S., Tani, S., Matsukawa, K. (2020) Timing of the first cleavage and in vitro developmental potential of bovine somatic cell nuclear transfer embryos activated by different protocols. Cellular Reprogramming 22, 3642. doi: 10.1089/cell.2019.0074. Epub 2019 Dec 31.CrossRefGoogle ScholarPubMed
Alberio, R., Zakhartchenko, V., Motlik, J., Wolf, E. (2001) Mammalian oocyte activation: lessons from the sperm and implications for nuclear transfer. International Journal of Developmental Biology 45, 797809.Google ScholarPubMed
Arias, M.E., Sánchez, R., Felmer, R. (2016) Effect of anisomycin, a protein synthesis inhibitor, on the in vitro developmental potential, ploidy and embryo quality of bovine ICSI embryos. Zygote 24, 724732. doi: 10.1017/S0967199416000034.CrossRefGoogle ScholarPubMed
Ashibe, S., Miyamoto, R., Kato, Y., Nagao, Y. (2019) Detrimental effects of oxidative stress in bovine oocytes during intracytoplasmic sperm injection (ICSI). Theriogenology 133, 7178. doi: 10.1016/j.theriogenology.2019.04.012.CrossRefGoogle ScholarPubMed
Canel, N.G., Suvá, M., Bevacqua, R.J., Arias, M.E., Felmer, R., Salamone, D.F. (2018) Improved embryo development using high cysteamine concentration during IVM and sperm co-culture with COCs previous to ICSI in bovine. Theriogenology 117, 2633.10.1016/j.theriogenology.2018.05.017CrossRefGoogle ScholarPubMed
Chung, J.T., Keefer, C.L., Downey, B.R. (2000) Activation of bovine oocytes following intracytoplasmic sperm injection (ICSI). Theriogenology 53, 12731284.10.1016/S0093-691X(00)00271-5CrossRefGoogle ScholarPubMed
De Matos, D.G., Furnus, C.C. (2000) The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development: effect of β-mercaptoethanol, cysteine and cystine. Theriogenology 53, 761771.10.1016/S0093-691X(99)00278-2CrossRefGoogle ScholarPubMed
Fissore, R.A., Robl, J.M. (1993) Sperm, inositol trisphosphate, and thimerosal-induced intracellular Ca2+ elevations in rabbit eggs. Developmental Biology 159, 122130. doi: 10.1006/dbio.1993.1226.CrossRefGoogle ScholarPubMed
Fuentes, F., Muñoz, E., Contreras, M.J., Arias, M.E., Felmer, R. (2022) Bovine ICSI: limiting factors, strategies to improve its efficiency and alternative approaches. Zygote 30, 749767. doi: 10.1017/S0967199422000296.CrossRefGoogle ScholarPubMed
Fujinami, N., Hosoi, Y., Kato, H., Matsumoto, K., Saeki, K., Iritani, A. (2004) Activation with ethanol improves embryo development of ICSI-derived oocytes by regulation of kinetics of MPF activity. The Journal of Reproduction and Development 50, 171178.10.1262/jrd.50.171CrossRefGoogle ScholarPubMed
Gadea, J., Gumbao, D., Matas, C., Romar, R. (2005) Supplementation of the thawing media with reduced glutathione improves function and the in vitro fertilizing ability of boar spermatozoa after cryopreservation. Journal of Andrology 26, 749756.10.2164/jandrol.05057CrossRefGoogle ScholarPubMed
García-Roselló, E., García-Mengual, E., Coy, P., Alfonso, J., Silvestre, M.A. (2009) Intracytoplasmic sperm injection in livestock species: an update. Reproduction in Domestic Animals 44, 143149.10.1111/j.1439-0531.2007.01018.xCrossRefGoogle ScholarPubMed
Gurtovenko, A., Anwar, J. (2009) Interaction of ethanol with biological membranes: the formation of non-bilayer structures within the membrane interior and their significance. Journal of Physical Chemistry B 113, 19831992. doi: 10.1021/jp808041z CrossRefGoogle ScholarPubMed
Hamano, K., Li, X., Qian, X.Q., Funauchi, K., Furudate, M., Minato, Y. (1999) Gender preselection in cattle with intracytoplasmically injected, flow cytometrically sorted sperm heads. Biology of Reproduction 60, 11941197.10.1095/biolreprod60.5.1194CrossRefGoogle ScholarPubMed
Horiuchi, T., Emuta, C., Yamauchi, Y., Oikawa, T., Numabe, T., Yanagimachi, R. (2002) Birth of normal calves after intracytoplasmic sperm injection of bovine oocytes: a methodological approach. Theriogenology 57, 10131024.10.1016/S0093-691X(01)00701-4CrossRefGoogle Scholar
Hwang, S., Lee, E., Yoon, J., Yoon, B.K., Lee, J.H., Choi, D. (2000) Effects of electric stimulation on bovine oocyte activation and embryo development in intracytoplasmic sperm injection procedure. Journal of Assisted Reproduction and Genetics 17, 310314.10.1023/A:1009496726343CrossRefGoogle ScholarPubMed
Kashir, J., Nomikos, M., Lai, F.A. (2018) Phospholipase C zeta and calcium oscillations at fertilisation: the evidence, applications, and further questions. Advances in Biological Regulation 67, 148162.10.1016/j.jbior.2017.10.012CrossRefGoogle ScholarPubMed
Keefer, C.L. (1989) Fertilization by sperm injection in the rabbit. Gamete Research 22, 5969.10.1002/mrd.1120220107CrossRefGoogle ScholarPubMed
Keskintepe, L., Pacholczyk, G., Machnicka, A., Norris, K., Curuk, M.A., Khan, I., Brackett, B.G. (1997) Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biology of Reproduction 67, 409415.10.1095/biolreprod67.2.409CrossRefGoogle Scholar
Kimura, Y., Yanagimachi, R. (1995) Intracytoplasmic sperm injection in the mouse. Biology of Reproduction 52, 709720.10.1095/biolreprod52.4.709CrossRefGoogle ScholarPubMed
Li, X., Hamano, K., Qian, X.Q., Funauchi, K., Furudate, M., Minato, Y. (1999) Oocyte activation and parthenogenetic development of bovine oocytes following intracytoplasmic sperm injection. Zygote 7, 233237.10.1017/S0967199499000611CrossRefGoogle ScholarPubMed
Malcuit, C., Kurokawa, M., Fissore, R. (2006) Calcium oscillations and mammalian egg activation. Journal of Cellular Physiology 206, 565573.10.1002/jcp.20471CrossRefGoogle ScholarPubMed
Méo, S.C., Leal, C.L., Garcia, J.M. (2004) Activation and early parthenogenesis of bovine oocytes treated with ethanol and strontium. Animal Reproduction Science 81, 3546.10.1016/j.anireprosci.2003.09.004CrossRefGoogle ScholarPubMed
Nakada, K., Mizuno, J. (1998) Intracellular calcium responses in bovine oocytes induced by spermatozoa and by reagents. Theriogenology 15, 269282.10.1016/S0093-691X(98)00135-6CrossRefGoogle Scholar
Oikawa, T., Takada, N., Kikuchi, T., Numabe, T., Takenaka, M., Horiuchi, T. (2005) Evaluation of activation treatments for blastocyst production and birth of viable calves following bovine intracytoplasmic sperm injection. Animal Reproduction Science 86, 187194.10.1016/j.anireprosci.2004.07.003CrossRefGoogle ScholarPubMed
Rho, G., Wu, B., Kawarsky, S., Leibo, S., Betteridge, K. (1998a) Activation regimens to prepare bovine oocytes for intracytoplasmic sperm injection. Molecular Reproduction and Development 50, 485492.10.1002/(SICI)1098-2795(199808)50:4<485::AID-MRD12>3.0.CO;2-13.0.CO;2-1>CrossRefGoogle ScholarPubMed
Rho, G., Kawarsky, S., Johnson, W., Kochhar, K., Betteridge, K. (1998b) Sperm and oocyte treatments to improve the formation of male and female pronuclei and subsequent development following intracytoplasmic sperm injection into bovine oocytes. Biology of Reproduction 59, 918924.10.1095/biolreprod59.4.918CrossRefGoogle ScholarPubMed
Salamone, D.F., Canel, N.G., Rodríguez, M.B. (2017) Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 154, 111124.10.1530/REP-17-0357CrossRefGoogle ScholarPubMed
Sekhavati, M.H., Shadanloo, F., Hosseini, M.S., Tahmoorespur, M., Nasiri, M.R., Hajian, M., Nasr-Esfahani, M.H. (2012) Improved bovine ICSI outcomes by sperm selected after combined heparin-glutathione treatment. Cellular Reprogramming 14, 295304.10.1089/cell.2012.0014CrossRefGoogle ScholarPubMed
Susko-Parrish, J.L., Leibfried-Rutledge, M.L., Northey, D.L., Schutzkus, V., First, N.L. (1994) Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Developmental Biology 166, 729739.10.1006/dbio.1994.1351CrossRefGoogle ScholarPubMed
Sutovsky, P., Schatten, G. (1997) Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biology of Reproduction 56, 15031512.10.1095/biolreprod56.6.1503CrossRefGoogle ScholarPubMed
Suttirojpattana, T., Somfai, T., Matoba, S., Nagai, T., Parnpai, R., Geshi, M. (2016) Pretreatment of bovine sperm with dithiobutylamine (DTBA) significantly improves embryo development after ICSI. The Journal of Reproduction and Development 62, 577585.10.1262/jrd.2016-084CrossRefGoogle ScholarPubMed
Saunders, C.M., Larman, M.G., Parrington, J., Cox, L.J., Royse, J., Blayney, L.M., Swann, K., Lai, F.A. (2002) PLC zeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development (Cambridge, England) 129, 35333544.10.1242/dev.129.15.3533CrossRefGoogle ScholarPubMed
Suvá, M., Canel, N.G., Salamone, D.F. (2019) Effect of single and combined treatments with MPF or MAPK inhibitors on parthenogenetic haploid activation of bovine oocytes. Reproductive Biology 19, 386393.10.1016/j.repbio.2019.09.001CrossRefGoogle ScholarPubMed
Van Steirteghem, A.C., Nagy, Z., Joris, H., Liu, J., Staessen, C., Smitz, J., Wisanto, A., Devroey, P. (1993) High fertilization and implantation rates after intracytoplasmic sperm injection. Human Reproduction (Oxford, England) 8, 10611066.10.1093/oxfordjournals.humrep.a138192CrossRefGoogle ScholarPubMed
Valencia, C., Pérez, F.A., Matus, C., Felmer, R., Arias, M.E. (2021) Activation of bovine oocytes by protein synthesis inhibitors: New findings on the role of MPF/MAPKs. Biology of Reproduction 104, 11261138.10.1093/biolre/ioab019CrossRefGoogle ScholarPubMed
Zambrano, F., Águila, L., Arias, M.E., Sánchez, R., Felmer, R. (2016) Improved preimplantation development of bovine ICSI embryos generated with spermatozoa pretreated with membrane-destabilizing agents lysolecithin and Triton X-100. Theriogenology 86, 14891497.10.1016/j.theriogenology.2016.05.007CrossRefGoogle ScholarPubMed
Zambrano, F., Águila, L., Arias, M.E., Sánchez, R., Felmer, R. (2017) Effect of sperm pretreatment with glutathione and membrane destabilizing agents lysolecithin and Triton X-100, on the efficiency of bovine intracytoplasmic sperm injection. Reproduction in Domestic Animals 52, 305311.10.1111/rda.12906CrossRefGoogle ScholarPubMed
Zhang, X.G., Liu, Q., Wang, L.Q., Yang, G.S., Hu, J.H. (2016) Effects of glutathione on sperm quality during liquid storage in boars. Animal Science Journal 87, 11951201.10.1111/asj.12545CrossRefGoogle ScholarPubMed