Given
$p\in[1,\infty)$ and a bounded open set
$\Omega\subset\mathbb{R}^d$ with Lipschitz boundary, we study the
$\Gamma$-convergence of the weighted fractional seminorm
\begin{equation*}[u]_{s,p,f}^p=\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|\tilde u(x)- \tilde u(y)|^p}{\|x-y\|^{d+sp}}\,f(x)\,f(y)\,\mathrm{d} x\,\mathrm{d} y,\end{equation*}
as
$s\to1^-$ for
$u\in L^p(\Omega)$, where
$\tilde u=u$ on
$\Omega$ and
$\tilde u=0$ on
$\mathbb{R}^d\setminus\Omega$. Assuming that
$(f_s)_{s\in(0,1)}\subset L^\infty(\mathbb{R}^d;[0,\infty))$ and
$f\in\mathrm{Lip}_b(\mathbb{R}^d;(0,\infty))$ are such that
$f_s\to f$ in
$L^\infty(\mathbb{R}^d)$ as
$s\to1^-$, we show that
$(1-s)[u]_{s,p,f_s}^p$
$\Gamma$-converges to the Dirichlet
$p$-energy weighted by
$f^2$. In the case
$p=2$, we also prove the convergence of the corresponding gradient flows.