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Introduction

We are overwhelmed with data, but information is hard to extract. Humans have
learned to navigate this complexity quite e�ciently. Mathematics, statistics, and
intelligent machines are still far less capable.

1.1 Modeling

Humans constantly use models to interpret reality and take decisions. We use
models when we try to understand what is happening and when we try to pre-
dict what will happen next. We need them to manage, and perhaps reduce, the
unpredictability of the world. We need them to survive.

Without models, reality will be an overwhelming amount of data with no in-
formation. Indeed, in my view, models are the instruments that transform data
into information.

Humans construct models in various ways, consciously or unconsciously, ra-
tionally or instinctively. There is an increasing need to advance knowledge and
understanding of the mechanisms and tools for reliable data-driven models. Nowa-
days, scientists and engineers are developing automated modeling tools. The pur-
pose is to give machines the instruments to select and learn models, developing
their ability to interact with the real world and make autonomous decisions. This
is broadly called artificial intelligence (AI).

There are many di↵erent kinds of models; the ones we use, for instance, to
choose our food at the market are di↵erent from the ones we use to place our
satellites into the right orbit. As an example, let’s think about the model we use
when we cross a busy road. Let’s make an e↵ort to analyze what we normally,
spontaneously, do in this situation. The process is surprisingly complex and so-
phisticated. Normally, we start looking if there is any vehicle and, if there isn’t,
then we cross. In the case there are vehicles, then we gauge their distance and,
if they are far away enough, we cross. If the vehicles are not far away, then we
estimate their speed and predict how long they will take to arrive, pondering if
there is a su�cient amount of time for us to cross the road also accounting for
the uncertainty of our prediction. There are many other variables that we evalu-
ate. We distinguish cars from trucks and trucks from buses; they have di↵erent
typical speeds and behaviors. We might consider the vehicle’s trajectory and, in
some cases, look at the driver and guess his or her intent to let us pass. We also
consider, and normally dismiss, other variables that are in most cases marginal,
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for instance, the color of the vehicle, its brand, or the age of the driver. This op-
eration is an example of data-driven modeling. We have learned these operations
from observations and, perhaps, from imitation. We do not have a general the-
ory; we do all this spontaneously and instinctively without noticing the amount
of data that we are processing and the way we make predictions; we ponder,
compare, and, use them. We consider this to be simple but it is actually a very
complex operation that we, modern humans, can perform quite easily but that
is extremely hard to encode in machines or formulate precisely with our current
mathematical and computational tools.

1.2 Models as Maps between Data Representations

Models can be deterministic, perhaps including some degree of uncertainty due to
limited and noisy observations, or they can be probabilistic. Newton’s gravitation
law and the consequent modeling of the motion of celestial bodies is an example of
deterministic modeling that can be written in the form y = g(x) and for which the
true model can be learned with arbitrary precision given a large enough number
of observations.1 In contrast, the Maxwell–Boltzmann distribution, describing the
speed of particles in a gas, is an example of probabilistic modeling where the law
to be learned is the probability that a particle has a velocity smaller or equal to
a given value v: Probability(V  v).2 This is a di↵erent kind of problem than the
previous; however, also in this case, one can formulate the problem in the same
form y = g(x) where, this relation represents a form of probabilistic dependence
between the variables and one must add an uncertainty term, ✏, to the relation.3

Some problems cannot be represented in terms of an input and an output, and
the modeling task becomes the discovery of mutual dependence relations between
the variables. The goal becomes to map the structure of the interactions between
the system’s variables and uncover their similarities, their hierarchies, and their
causal relations. In other contexts, one might aim instead to discover emerging
behaviors from simple rules, and for this task simulations are often adopted. What
I have just described are di↵erent forms of modeling, and they all serve the same
purpose of helping us to navigate reality by describing what is happening and
making a prediction about what will happen. In other terms, models help us to
interpret existing observations and make predictions about future ones.

Models are tools to transform data into useful information that can be used
for decisions and actions. Data, and observations, can be images, movies, journal
articles, chats, financial prices, or electric signals, or – indeed – anything that
is produced by some process and carries some information. Data can always be
represented as points and shapes in a space. The space might not be ordinary;
it is often high-dimensional and sometimes non-Euclidean. In some cases, such
as in deep learning, one might use data representations across several spaces.

1 Here, I use the notation x and y to generically indicate two sets of input and output variables, and

g(·) a function mapping between the two sets.
2 Where V is the random variable indicating the velocity of a particle and v is a value.
3 Deterministic models could be seen as probabilistic models with zero uncertainty.
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At this level of abstraction, models are maps between points in these spaces.
These maps must both guide us as precisely as possible to the positions of the
existing observations and to help us to find the most likely positions of future
observations. The model provides a description of the system by locating the
observations and their interrelation in these spaces; the model can also provide
predictions by inferring the presence and location of unobserved points.

Such maps between di↵erent data representation spaces are functions that mod-
els learn to approximate. Scientists have developed e�cient methods to approx-
imate them with so-called universal approximators. There are several universal
approximators that can be used for modeling, from polynomials to trees (Tikk
et al., 2003). Among the most versatile and presently popular are deep neural
networks. Whether deep learning architectures are the best-suited tools for mod-
eling has still to be proved. However, they are certainly surprisingly good and
e�cient for many modeling tasks.

There are other kinds of modeling that might not be directly associated with
function approximations. In some contexts, a meaningful modeling approach con-
sists of starting from the elementary components of the system and modeling their
behaviors and interactions from first principles. This microscopic modeling can
produce precise explanations of the system behavior and can help us to under-
stand the origin of macroscopic phenomena from fundamental microscopic laws.
For instance, this approach is sometimes used to derive the properties of materials
from the constitutive atoms in so-called ab initio simulations. However, in many
real and complex systems, there is nothing comparable to the atoms. Indeed,
in these systems, the elementary components are complex themselves and their
laws of interaction are often unknown. In complex systems, microscopic modeling
approaches often end up either being unrealistic oversimplifications or being too
complex to be of use to explain the underlying system.

1.3 Models for Real and Complex Systems

Scientists are challenged to handle and solve increasingly complex systems, from
markets to self-driving cars. Although data-driven modeling ultimately aims to
automate the process of learning new models, human intuition and creativity is
still central to this domain. This is why, to successfully build data-driven models,
we must learn both the science and the art of modeling, the mathematical rigor
and the intuition.

Complex systems are not abstract objects. They are very real, they are every-
where. Humans are complex systems and so are human societies. Animals – even
the simplest – are complex systems and many human-created artificial systems –
such as financial markets – are complex themselves. The defining characteristic of
complexity is that simplification is not possible without losing crucial properties
of the system. In complex systems, important properties emerge from the com-
bination of many di↵erent elements. Although their elements might be known,
the emergent property is the result of their combination, and prediction is hard
to achieve from the analysis of the constituting elements in isolation (see Parisi
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(2002); Boccara (2010)). An example is a living organism, even a simple one,
which is made of parts with properties and functions that might be well known
and understood. However, even the deepest knowledge of all its parts, will not re-
veal the most important property of the organism: the fact that it is alive. Being
alive is the emergent property of the whole system, which is of greater importance
than the sum of the parts. Understanding emergent properties is very important
in complex systems modeling, it is – literally – a question of life and death, and
it is what makes such modeling very challenging.

Henry Louis Mencken – known as the Sage of Baltimore – once noted that “for
every complex problem there is an answer that is clear, simple, and wrong” (Perry,
2022). Nonetheless, despite complex systems being challenging, one can devise
e↵ective models to describe and predict, at some level of accuracy, their behavior.
We do it all the time. Indeed, we are complex creatures who live in a complex
world. The modeling of complex systems has the same nature and scope as the
modeling of any other system. In complex systems, models are used to describe
the system and to predict its behavior. However, the task can be more arduous.
For instance, often in complex systems not only is the system non-deterministic
but also the internal rules change and adapt. Nonetheless, the modeling of these
systems is still based on the scientific method’s circular approach (see Section
19.1), and the general principles remain the same and models can be formulated
and tested using the general tools that are presented in this book.

Let me mention that one must distinguish between systems described by a
theory and others described by a model trained from examples. A theory, like
Kepler’s laws governing planetary motion, involves equations and principles that
accurately describe a natural phenomenon. These theories provide both under-
standing and predictability. However, for most real, complex systems, a clear
theoretical framework might be lacking and sometimes impossible. In such cases,
purely data-driven models might fit data points and might predict trends but do
not provide any coherent theoretical foundation and their applicability outside
the context where the data have been harvested is often impossible. In contrast,
established scientific theories, like Kepler’s laws, can lead to deeper comprehen-
sion of the phenomenon and can be applied to di↵erent systems from the ones
originally used to formulate the theory.

1.4 Models as Multivariate Probabilities

Models are used to interpret and understand reality. Some models help us to
distinguish between di↵erent scenarios such as distinguishing between friends
and foes or isolating food from poison. These kinds of models can be defined as
recognition and “classification” models. In this setting, one has an input dataset
and an output information. For instance, one could have a picture of an animal
as input and information about the kind of animal provided by the model as
output.

Similarly, one could have a set of observations of a physical system, for instance,
the positions of the planets in the heavens over a period of time, and the model
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might output the mathematical law for the motion of the planets. These problems
are often referred to as “regression” and they concern the discovery of relations
between two sets of variables one called “dependent” (the output) and the other
called “independent” (the input). In this framework, modeling consists of solving
a so-called inverse problem: given the observations find the law that generates
them.

Models are also used to infer the internal relations between a set of variables.
In this case, one has no inputs or outputs and all variables are interdependent.
The problem consists of uncovering the structures of similarities, hierarchies,
dependencies, and causalities that are in the data structure.

Models must be capable of generalizing and predicting outcomes that have not
been observed yet. We use them constantly in our everyday life – to survive – for
instance, to avoid being crushed by a bus when we cross the road. The accuracy
of the model prediction in various circumstances is a measure of the goodness of
the model.

Classification, regression, data-structure investigation, and prediction tasks are
not necessarily distinct and can be seen as di↵erent ways of addressing a problem
and interpreting the model. Indeed, the distinction between input and output
variables is just a useful convention and the laws that map inputs into outputs
coincide with the dependency structure of the dataset. Further, prediction con-
sists of inferring the dependence between variables at di↵erent times or across
di↵erent settings.

In the real and artificial systems that are of interest, the general problem
concerns a set of several variables and their relations. In all these cases, the
knowledge of the multivariate probability of all the system’s variables provides
the full information about the system and it is, therefore, the instrument to model
it. I indeed argue and demonstrate in this book that the vast majority of what
we call modeling can be formulated in terms of the probability functions of the
variables characterizing the system or, in other words, in terms of multivariate
probabilities (see Chapter 6).
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