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A reactive control strategy is implemented to attenuate the streaks formed on a wing
boundary layer due to free-stream turbulence (FST). Numerical simulations are performed
on a section of a NACA0008 profile, considering its leading edge, while forced by FST
with turbulence intensities of 0.5 % and 2.5 %. The controller is composed of localised
sensors and actuators, with the control law consisting of a linear quadratic Gaussian
regulator designed on a reduced-order model based only on the impulse responses of
the system. Three configurations are evaluated by considering three different numbers
of sensors/actuators along the spanwise direction. It is found that all configurations are
effective in damping the streaks inside the boundary layer, whose effect is sustained
downstream of the objective function location. However, distinct behaviours are observed
when comparing the capability of the controllers with delay transition, where the best
performance is attained for the case with larger number of sensors/actuators. This is
attributed to the effectiveness of the controller in damping the streaks that will later
break down, which in this case are associated with relatively short spanwise wavelength.
This observation is confirmed by analysing the stability of the flow before the appearance
of turbulent spots. Our results suggest that for an effective transition delay, efforts should
not only be put into control of streaks with average spanwise wavelength, but also in the
short spanwise wavelength associated with breakdown.

Key words: boundary layer control, boundary layer stability, instability control

1. Introduction
Decreasing overall drag in engineering systems has a number of desirable consequences,
many of them associated with the economic and environmental benefits coming from
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lower energy consumption. In wall-bounded flows, a large share of the total drag comes
from the high skin friction of the turbulent part of the boundary layer, and therefore
reducing this component is an effective way to decrease the overall drag. One possible
way to reduce this component is by maintaining a laminar boundary for a larger
surface extension, which is characterised by a lower skin friction compared with its
turbulent counterpart. Any efforts in this regard to be effective requires accounting for
the instabilities causing the laminar-to-turbulent transition (Baylyl et al. 1988; Kachanov
1994; Schmid & Henningson 2001).

In order to sustain a laminar state, active or passive control strategies can be followed
to drive the boundary layer to a desired state. Here, active or passive control differentiates
whether energy is injected to the system or not. In the present investigation, we explore the
use of active control in a boundary layer forced by free-stream turbulence (FST), analysing
its effect on the disturbances and subsequent transition delay effect. The work is performed
numerically but considering realistic conditions in both, the flow characteristic (geometry
and inflow conditions) and the controller configuration.

1.1. Bypass transition
The term bypass transition was first coined by Morkovin (1969) referring to any route that
bypasses the growth and breakdown of two-dimensional waves. However, the term has
also become a common name to FST-induced transition, which is the notation adopted
in this work. This route to transition is dominated by the formation and breakdown of
streaks. While other mechanisms, such as roughness elements (see, for instance, Fransson
et al. 2005; Loiseau et al. 2014), can also generate streaks, here, the focus is only on
streaks as a response to FST. In this context, these streaks can be referred to as the primary
instabilities in the flow field, with a characteristic spanwise modulation of regions of low
and high streamwise velocity perturbation. The sequence of events to transition follows
the common steps in wall-bounded flows: excitation of perturbations, the receptivity and
amplification of disturbances and the final breakdown to turbulence. For a more detailed
description of the whole process, good reviews can be found, for example, in Matsubara
& Alfredsson (2001) and Brandt et al. (2004); Zaki (2013).

Although FST is generally composed of perturbations of different sizes and time scales,
only low-frequency perturbations are able to penetrate and develop inside the boundary
layer, which is attributed to the filtering effect of the shear (Hunt & Durbin 1999).
This initial stage of the disturbance evolution is referred to as receptivity, dictating the
initial shape and amplitude of the perturbation inside the boundary layer (Saric et al.
2002). The formation and amplification of streaks can be explained by the lift-up effect
(Landahl 1980), responsible for the displacement of streamwise momentum in the wall-
normal direction, where free-stream vorticity pushes high-momentum fluid towards the
wall while lifting low-momentum fluid away from the wall. Here, optimal disturbance
theory provides a mathematical framework for their study (Andersson et al. 1999; Luchini
2000), explaining many of the features in terms of streak shape and amplification observed
in experiments. However, the theory is limited to linear growth, and energy transfers
from nonlinear interactions are not considered. The onset of transition originates from the
appearance of streak secondary instabilities, showing an exponential growth and leading to
the nucleation of turbulent spots (Schlatter et al. 2008; Hack & Zaki 2014). These turbulent
spots will grow while being convected downstream, until they merge with neighbouring
turbulent spots to form a fully turbulent boundary layer.
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1.2. Streak control
In the general frame of flow control, the choice of the control strategy is largely dependent
on the flow type to be controlled. In this context, the categories of noise amplifier and
oscillator (Huerre & Monkewitz 1990; Sipp & Schmid 2016) require distinctive treatments
for effective control. Oscillators correspond to flows dominated by a global instability,
where a necessary condition to control the flow is the suppression of the instability
(Leclercq et al. 2019). Noise amplifiers, on the other hand, are sensitive to incoming
perturbations, with the flow amplifying and convecting the disturbances. Boundary layers
fall into this last category, where the main goal of the controller is to attenuate the
disturbance amplification.

One of the principal strategies in boundary-layer control is to act on the primary
instabilities by damping their amplitude and therefore delaying the appearance of
secondary instabilities and subsequent breakdown. Examples of Tollmien–Schlichting
(TS) wave control can be found, for instance, in Högberg & Henningson (2002), Li &
Gaster (2006), Sasaki et al. (2018) and Brito et al. (2021) and for cross-flow instabilities in
Wassermann & Kloker (2002) and Shahriari et al. (2018). An account of passive control
for different disturbances can be found in Saric et al. (2011). It is interesting to note that
different types of disturbances can coexist and even interact. An example is the damping
effect that streaks can have on TS amplification (see, for instance, Fransson et al. 2005).

Studies regarding active control of streaks can be categorised according to the
methodology, either experimental or numerical. In both types of approaches different
levels of approximation have been explored. For instance, Lundell & Alfredsson (2003)
and Bade et al. (2016) arranged experimental set-ups to introduce streaks systematically in
the boundary layer for their control. In both cases, the control action was based on sensors
measuring the streamwise shear stress. The experimental work by Lundell (2007) showed
that a reactive control strategy was also able to damp the random disturbances generated by
FST. It was also pointed out in that work the experimental constraints regarding localised
sensing and actuation with respect to numerical simulations.

On the numerical side, Högberg & Henningson (2002) and Semeraro et al. (2011)
studied the damping of optimal disturbance on a flat plate. The former considered the Orr–
Sommerfeld–Squire equations to obtain the optimal control gain from the full information
of the flow field. While the latter designed a linear–quadratic–Gaussian controller on
a balanced reduced-order model (Rowley 2005), with the actuation based only on wall
measurements. Monokrousos et al. (2008), instead of optimal disturbances, considered
a boundary layer forced by FST, applying an optimal control using the full state and an
estimator to feed the controller. The sensing and actuation considered the whole span but
limited at the wall and only for a finite streamwise extension. Later, Morra et al. (2019)
and Sasaki et al. (2019) considered a similar configuration to Monokrousos et al. (2008),
but in their case the controller was limited to localised sensing and actuation, in an attempt
to mimic experimental limitations.

Most of the studies mentioned in the previous paragraphs constructed the control
strategy under the assumption of a linear model representing the dynamics of the system.
The physical justification for such an assumption is that the controller is placed in the
laminar region of the boundary layer, where the local growth mechanisms are those
coming from the linearised equations (Schmid & Henningson 2001). Moreover, the
relative position between control devices can be adjusted to ensure a desired linear
correlation between them. One practical reason for the use of linear models is that linear
system theory supplies us with a mature and robust framework for control. Besides, in
practice, an accurate description of the flow is not generally necessary for an effective
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control. For the interested reader, an overview of linear control in the context of fluid
mechanics can be found in Kim & Bewley (2007).

The high-dimensional and nonlinear nature of the Navier–Stokes equations usually
limits the direct use of control laws, requiring the construction of reduced-order models
for practical control law designs. Rowley & Dawson (2017) provide a good summary
of the techniques commonly used for fluids. Once the plant is set, that is the type and
position of sensors and actuators, one desirable property of the model for control design is
being balanced (Moore 1981). Here, the balanced property indicates a model whose states
that are the most controllable are the most observable as well, where, for a given system,
the observability and controllability properties dictate the states that can be accessed via
the outputs and are affected by the inputs, respectively (see, for instance, Moore 1981;
Kim & Bewley 2007). The method introduced by Rowley (2005), mentioned previously,
satisfies this balanced condition. One drawback of its application, especially in the context
of experiments, is that it requires the impulse response of the adjoint equations from
the outputs to the inputs of the system. A method that theoretically produces the same
reduced model (Ma et al. 2011) is the eigensystem realisation algorithm (Juang & Pappa
1985), which is based only on input/output data without prior knowledge of the system
equations, making its use feasible in experiments. Since the algorithm is based on the
input/output data of the system, the information that is lost is related to the unobservable
and uncontrollable states.

Once a reduced-order model is obtained, one has access to a range of tools from
control theory. From these range, the linear–quadratic–Gaussian (LQG) framework can
be found in many investigations within the flow control literature (Illingworth et al. 2011;
Semeraro et al. 2011; Barbagallo et al. 2012; Juillet et al. 2013; Morra et al. 2019, to
name a few). An important reason to utilise the LQG method is its theoretical optimality,
constructed from a Kalman filter, serving as an optimal observer for state estimation, and
a regulator that minimises the defined cost function. One drawback in some applications
is that the stability margins are not guaranteed (Doyle 1978), and therefore lack stability
robustness. However, this is not an issue when a feedforward configuration is adopted (see,
for instance, Sipp & Schmid 2016), i.e. when sensors are placed upstream of actuators and
therefore no actuation effects are measured by the sensors. When it comes to performance
robustness, on the other hand, the LQG-feedforward approach presents some drawbacks
due to its strong dependence on the model accuracy (Belson et al. 2013). If stability
and robustness are principal concerns, one could use instead H∞ controllers (Flinois &
Morgans 2016; Leclercq et al. 2019), or multi-criteria structured mixed H2/H∞ synthesis
(see Nibourel et al. 2023, and the references therein for a more detailed account).

1.3. Present work
In this work, we implement the experimentally realisable controller developed for a flat
plate by Morra et al. (2019) and Sasaki et al. (2019) in a wing boundary layer. The method
also considers the construction of a reduced-order model of the flow system, which is
used for the controller design process. We assess the performance of the reduced-order
model and controller in the nonlinear simulations, showing the applicability of the method
to increasingly complex flow configurations towards realistic conditions, including the
leading edge in the simulations and pressure gradient effects due to the surface curvature.
Moreover, we provide new insights regarding the need of the controller in identifying the
breaking streaks for an effective transition control.
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The present manuscript is structured as follows. In § 2 we describe the numerical
methods, the details of the flow case and the different controller configurations. In § 3,
we elaborate on the procedure regarding the construction of the control law and the
reduced-order model for its design. Section 4 presents the results concerning the final
controller implementation in the Direct Numerical Simulations (DNS), together with the
corresponding performance analysis. To finalise, § 5 includes the main conclusions of our
work.

2. Case set-up

2.1. Numerical simulations
We study the flow over a NACA0008 profile by means of numerical simulations. In this
regard, the incompressible Navier–Stokes equations are expressed as

∂q
∂t

+ (q · ∇) q = −∇ p + 1
Re

∇2q + f, (2.1a)

∇ · q = 0, (2.1b)
with q = (q1(x, t), q2(x, t), q3(x, t))T representing the velocity vector, p = p(x, t) the
pressure field, f a body force and Re = cU∞/ν = 5.33 × 105 the Reynolds number, based
on the chord c, viscosity ν and free-stream velocity U∞. Accordingly, length scales
are made non-dimensional with the chord, and velocities with the free-stream velocity,
which is the format these quantities will be presented in throughout the document. The
equations are solved in the Cartesian coordinates x = (x1, x2, x3)

T, but some quantities in
this document will be expressed in the natural coordinates (xs, xn), corresponding to the
wall tangent and normal directions, respectively. A schematic of the domain together with
the coordinate system is presented in figure 1, which corresponds to the geometry used in
Faúndez Alarcón et al. (2022b) with a span length of Lx3 = 0.07, but considering a longer
domain along the streamwise direction.

The set (2.1) is solved using the spectral element code Nek5000 (Fischer et al. 2008).
Here, the spatial discretisation is done considering a IPN − IPN−2 formulation, with the
velocity field expanded on Lagrange polynomial defined on N Gauss–Lobatto–Legendre
nodes, and the pressure field on N − 2 staggered Gauss–Legendre nodes. The solution is
marched in time by a semi-implicit scheme, where the viscous terms are treated implicitly
with a second-order backward differentiation while the nonlinear terms are computed
explicitly through an extrapolation method of the same order. In these simulations,
the number of spectral elements corresponds to Nxs × Nxn × Nx3 = 230 × 30 × 45 =
3 10 500, and a polynomial order equal to 7 in each element direction.

Regarding the boundary conditions, periodicity is imposed along the spanwise direction
x3 and no slip at the wing surface. For the outer part of the domain and the two outlets, we
rely on a precursor two-dimensional simulation, where its solution, qB F , is used to impose
Dirichlet boundary conditions in the free stream, while the outlet boundary condition is
defined as a stress-free condition

1
Re

(n · ∇q) − pn = −pan, (2.2)

where n is the surface normal unitary vector and pa the pressure field coming from the
two-dimensional simulation. Free-stream turbulence is synthesised from random Fourier
modes following the Von Kármán spectrum

E(k) = 2
3

1.606(kL)4[
1.305 + (kL)2

]17/6 LqT u, (2.3)

1011 A10-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

38
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.388


J.M. Faúndez Alarcón, A. Hanifi and D.S. Henningson

−0.1
0 0.1

0.2
0.3

0.4
0.5

0.6

−0.1

0

0.1

yd y u z

x1x3

x2

Outlet

Dirichlet

Figure 1. Domain and boundary conditions considered for the numerical simulations. The rows of sensors
and actuators are shown in red and blue, respectively.
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Figure 2. Discrete spectra considered in this work to synthesise the incoming FST.

with E being the energy for the total wavenumber k =
√

k2
x1

+ k2
x2

+ k2
x3

, L the turbulence

length scale and qT u = 3/2T u2 the total turbulence kinetic energy and T u is the
turbulence intensity. The spectrum (2.3) is discretised with 40 equidistant wavenumbers
k in the range kmin = 90 to kmax = 1890, which is shown in figure 2. For each discrete
total wavenumber, the energy is divided into 40 random wavenumber combinations
k = (kx1, kx2, kx3), while respecting the periodic condition along x3, leading to a total
1600 Fourier modes. The amplitude |q′

i | of the i Fourier mode is dictated by (2.3), while
its direction is randomly chosen but forced to satisfy the continuity condition q′

i · ki = 0.
The random perturbations q′

i enter the domain as Dirichlet boundary condition on top of
qB F in front of the leading edge.

Only one turbulence length scale L = 0.01 and two turbulence intensities T u =
{0.5 %, 2.5 %} were considered in this work. Compared with the previous investigations to
this work (Morra et al. 2019; Sasaki et al. 2019), the integral length scale was chosen to be
closer to values that are more likely found in grid-generated turbulence (see, for instance,
Jonáš et al. 2000; Fransson & Shahinfar 2020). At the same time, it is desirable to keep the
value as small as possible to save computational time by limiting the spanwise extension.
The choice of the integral length scale has implications for the flow dynamics, and, as will
be shown, has consequences for the control design and performance. More details about
the spectrum can be found in Faúndez Alarcón et al. (2022b), while more examples on the
use of this method for FST generation can be found, for instance, in Brandt et al. (2004),
Negi (2019), Durović et al. (2021) and De Vincentiis et al. (2022).
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−0.2 0 0.2

−5 0 5

×10−3

U∞

x2 x1

x3

Figure 3. Wall-normal planes at an arbitrary snapshot (T u = 2.5 %). The red and blue contours represent the
positive and negative streamwise velocity perturbations, respectively, at two wall-normal planes from the wing
surface. The grey contours represent the shear at the wall. Note that the lower face of the wing has been included
for better visualisation, but only a small fraction of it is part of the numerical domain.

Finally, and to avoid numerically destabilising backflow at the outlets, a sponge region
of the form

fλ(x, t) = λ(x)
(
qB F (x) − q(x, t)

)
, (2.4)

is imposed before the outlets. Here, fλ is a forcing term in (2.1) that drives the flow to the
base flow qB F before leaving the domain, and λ a non-negative function with support in
the sponge region only. The extension of the sponge regions for both outlets was set to
�x1 = 0.025.

Figure 3 includes three wall-normal planes at an arbitrary snapshot of the uncontrolled
simulation with T u = 2.5 %, showing the main features of the boundary-layer response
to FST. The two planes above the wing surface show streaks at different stages of their
development inside the boundary layer, with a few turbulent spots producing high shear at
the wall (white contours on the wing surface). This figure serves as a good representation
to motivate our control goal in damping the streaks to avoid their breakdown, and as a
result, avoid the large shear associated with this.

2.2. Controller configuration
Throughout this work, the configuration of the controller involving the placement and
type of sensors and actuators is fixed, corresponding to rows of localised and equidistant
devices along the span, as shown in figure 1. The only two parameters that vary are the
number of sensors/actuators along the span and, accordingly, the spanwise size of the
sensors/actuators. Here, Nyd sensors are placed at x1,yd = 0.075, Ny sensors at x1,y =
0.1, Nu actuators at x1,u = 0.125 and Nz sensors at x1,z = 0.15. The precise role of these
devices will be explained in the next section, but it is worth noting now that, for a given
case, the condition Nyd = Nu = Ny = Nz is imposed. The motivation for this choice lies
on the three-dimensional nature of the disturbance to be controlled, the homogenous base
flow and the random appearance of turbulent spots along the span.

The position of the control devices was based on physical and performance
considerations. In this respect, there exists a trade-off between placing the devices close
or farther away from the leading edge. Closer to the leading edge, the disturbances
have a lower amplitude, and therefore it would require less control effort to damp them.
However, in this early stage of receptivity, the boundary layer has not yet filtered out
disturbances that will decay downstream and they are consequently less relevant for the
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transition process. It would be tempting then to place the devices far downstream, where
only the most amplified disturbances are present. This has the drawback that nonlinear
interactions become more prominent downstream, which could affect the performance of
a linear controller. Besides, the scattered appearance in time and space of turbulent spots
forces us to be conservative regarding how far downstream the devices can be placed.

The relative position between rows of sensors and actuators represents a feedforward
configuration, where the actuation (u) is based on measurements upstream (y) to minimise
another set of measurements downstream (z). This type of arrangement is more effective
in controlling amplifier flows (Belson et al. 2013; Sipp & Schmid 2016), as is the case
of a boundary layer. Moreover, an extra benefit of this configuration is that robustness
regarding stability of the controller is guaranteed (Sipp & Schmid 2016).

Similarly to the work by Morra et al. (2019) and Sasaki et al. (2019), the sensors are
localised at the wall and measure the perturbation streamwise wall shear as

1
A

∫
A

∂q ′
s

∂xn

∣∣∣∣
xn=0

dA, (2.5)

where A corresponds to the area of the sensor given by the radius r = Lx3/(2Ny) and q ′
s is

the streamwise velocity perturbation. The sensor size was chosen to avoid overlap between
consecutive devices. These time-dependent signals will be referred to as the outputs of
the system, and correspond to the quantities d, y and z. On the other hand, the actuators
correspond to body forces in (2.1) of the form

fuk (x, t) = uk(t)bk(x), (2.6)

where bk is a prescribed spatial support of the force and uk the time modulation signal,
both quantities corresponding to the k actuator along the span. In what follows, the quantity
u will be referred to as the input of the system, which will be computed from optimal
control theory based on the available output y to minimise the output z. The spatial support
is defined to act only in the wall-normal direction, and takes the form

bk = (
0, bxn (k), 0

)T
, (2.7a)

bxn (k) = exp

(
−(xs − xs,k)

2

σ 2
xs

− x2
n

σ 2
xn

− (x3 − x3,k)
2

σ 2
x3

)
, (2.7b)

with xk = (xs,k, 0, x3,k)
T the centre of the k actuator at the wall and σxs = σxn = 0.005

for all the cases. These values were chosen such the actuators do not overlap with the
sensors upstream and downstream, and to have significant support inside the boundary
layer, since it has been shown by Sasaki et al. (2019) that optimal actuator shapes possess
this characteristic (cf. figure 9). For the scalar σx3 , three values were considered based on
the number of actuators. The shapes of the three actuators are presented in figure 4 together
with their corresponding σx3 value. It can be seen that the actuators have significant
support up to 3δ∗, with δ∗ the displacement thickness at the actuator’s position. Also note
that, for the first actuator, σx3 is slightly smaller than σxs and σxn , this was arbitrarily
chosen but under the consideration that actuators do not overlap at the level 0.9, in
concordance with the shapes used in Morra et al. (2019).

A summary of the cases under study with their relevant parameters is presented in
table 1. The ratios in the last two columns correspond to parameters used in the control
problem, and their significance will be elaborated on in the next section. The purpose of
the simulation with T u = 0.5 % is to evaluate the performance of the controller in a case
where the dynamics of the disturbances is mostly linear, as was shown in Faúndez Alarcón
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−5 0 5

×10−3

0
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x3

−5 0 5

x3

−5 0 5

x3
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σx� = 0.0047

×10−3

0

2

4

×10−3

0

2

4
σx� = 0.0047/2 σx� = 0.0047/3

Figure 4. Actuator shapes considered in this work. The figures show three consecutive actuators and their
overlap for the contour levels {0.8, 0.9}. The x-axis only shows a portion of the span length.

Case T u NI/O σx3 (·103) R/Q vn/vd

1 0.5 20 4.7 100 0.1
2 2.5 20 4.7 100 0.1
3 2.5 40 4.7/2 10 1
4 2.5 60 4.7/3 1000 0.1

Table 1. List of cases and their corresponding parameters. NI/O corresponds to the number of
sensors/actuators along each row.

System (DNS)

(a) Collect impulse responses

u
d z

yt
t

(b) Reduced order model

System

identification
LQG control

t

(c) Evaluate controller

System (DNS)

LQG control

d z
y

u

t

Figure 5. Summary of the controller design, (a) starting from the collection of impulse responses of the open
loop system, (b) the offline design of the model and controller and (c) the final implementation in the DNS
closed loop system.

et al. (2022b). The choice of NI/O = 20 for this case emanates from the observation that
most of the disturbance energy is contained in low spanwise wavenumbers, and solving up
to the 9th wavenumber gives an accurate representation of the spectrum. On the other hand,
the purpose of the cases with T u = 2.5 % is twofold. First, evaluating the performance
of the linear controller when the nonlinear dynamics becomes more significant. And
secondly, the effect it has downstream in delaying transition.

3. Control law design
In this section, we describe the process from which we construct the control law. In this
regard, we follow the procedure developed in Morra et al. (2019) and Sasaki et al. (2019)
for a flat plate, wherein more details about the implementation can be found. The block
diagram of the open and closed loop representation of the system is included in figure 5,
and it is also added the intermediate step where the control law is designed. These
represent the basic steps involved in our implementation.
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3.1. Linear–quadratic–Gaussian control
In order to design the control strategy, we rely on the dynamical system representation
of the flow. By considering an equilibrium state q0, the state vector q′ describes the
fluid motion of the perturbations about that equilibrium, where the state vector is
decomposed as q = q0 + q′ ∈R

N×1. In this scenario, a linearised system can be obtained
for sufficiently small perturbation amplitude. The action of the controller on the system is
governed by an input signal fed by sensor measurements, the latter corresponding to output
signals. The system is also perturbed by noise environment, where the role of the actuator
is to minimise the norm of a second set of measurements. With these considerations, the
dynamical system can be expressed as

q̇′(t) = Aq′(t) + Buu(t) + Bdd(t), (3.1a)
y(t) = Cyq′(t) + n(t), (3.1b)
z(t) = Czq′(t), (3.1c)

where A ∈R
N×N dictates the dynamics of the perturbations, Bu ∈R

N×Nu how the input
signal u(t) ∈R

Nu×1 of the controller acts on the flow and Bd ∈R
N×Nd how the stochastic

noise d(t) ∈R
Nd×1 affects the perturbations. The matrices Cy ∈R

Ny×N and Cz ∈R
Nz×N

contain the information regarding of how the information is extracted from the system
to obtain the outputs y(t) ∈R

Ny×1 and z(t) ∈R
Nz×1, respectively. The stochastic noise

n(t) ∈R
Ny×1 is added to account for the contamination of the sensor signal.

The control problem consists on finding the signal u(t) based on the measurements
y(t), to minimise a cost objective function J, by taking into account the measurements
z(t) together with the input signal u(t), which is included to penalise excessive control
energy. Hence, the cost objective function takes the form

J=E

⎡
⎣ lim

T →∞
1
T

T∫
0

z(t)TQz(t) + u(t)TRu(t)dt

⎤
⎦ , (3.2)

where the matrices Q and R are user-defined weights that balance the two terms in the cost
function. When using a LQG controller, the optimisation problem can be separated into
two independent optimisation problems: the optimal observer and the optimal feedback
control problem.

The optimal feedback control problem assumes full knowledge of the system state q′,
and its solution is known as the linear –quadratic regulator (LQR). The optimisation of the
cost function in (3.2) yields to a Riccati equation from which the optimal control gain K
can be obtained, which is used to define the actuation signal as u = Kq′. Here, the matrix
P is the unknown of the Riccati equation

ATP + PA − PBuR−1BT
u P + CT

z QCz = 0, (3.3)

from which the optimal control gain is obtained as

K = −R−1BT
u P. (3.4)

As mentioned before, this optimal gain assumes full access to the state vector q′,
which is not always feasible to obtain and in most cases one is limited to the output y
to decide the control action. This results in the estimator problem, where the goal is to
obtain an approximation q̃′ of the vector state q′ based exclusively on the measurements
y. The estimation state q̃′ is described by an identical system as (3.1), where the noise is
ignored, and the estimator is forced by −L(y − ỹ), penalising the differences between the
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true measurements y and its estimation ỹ. This new system therefore reads

˙̃q′(t) = Aq̃′(t) + Buu(t) − L(y(t) − ỹ(t)), (3.5a)
ỹ(t) = Cy q̃′(t), (3.5b)
e(t) = q′(t) − q̃′(t). (3.5c)

By minimising the norm of the error e(t) while satisfying the governing equations, we
end up with the linear–quadratic estimation (LQE) problem, whose solution is given by
the Riccati equation

SAT + AS − SCT
y V−1

n CS
y + BdVdBT

d = 0, (3.6)

where S is the unknown, and Vn and Vd are the covariances of the sensor and background
noise, respectively. The optimal L is referred to as the Kalman gain and can be computed
as

L = −SCT
y V−1

n . (3.7)

The separation principle, that allows us to solve independently the LQR and LQE
problems, has also the implication that the estimator q̃′ can be used instead of q′ to obtain
the input signal u through the optimal gain K. Therefore, with the available output y(t)
and by ignoring the initial state q̃′(0), the input signal can be computed from

u(t) = −
t∫

0

Ke(A+BuK+LCy)(t−τ)Ly(τ )dτ, (3.8a)

= −
t∫

0

K(t − τ)y(τ )dτ, (3.8b)

where K ∈R
Nu×Ny will be referred to as the control kernel. Alternatively, the control

signal in (3.8) can be obtained by solving the first-order differential equations of the
controller in state-space form as in Nibourel et al. (2023). This second approach could
benefit in terms of calculation costs from further reductions in the order N of the model.
Such a reduction could be achieved, for example, by choosing a larger threshold in the
eigensystem realisation algorithm (ERA) described below, or by removing unnecessary
delays originated from the convective character of the flow (Nibourel et al. 2023).

3.2. Reduced-order model
One of the main limitations in the application of LQG is the size of the state vector, which
in this case would be three times the number of grid points, and therefore of the order of a
hundred million points. For this reason, a reduced-order model (ROM) is first built based
only on input–output data coming from the DNS.

To construct the ROM, the ERA (Juang & Pappa 1985) is employed. Two main benefits
of the algorithm are that it is based on input–output data of the system, and it leads to
a state-space representation of the system as in (3.1), where the LQG can be designed
directly. Moreover, Ma et al. (2011) showed that, for linear systems, ERA produces the
same ROM as the one obtained from balanced proper orthogonal decomposition, without
the need of an adjoint system and at lower computational cost.

The algorithm relies on the impulse response from the inputs, u and d, to the outputs,
y and z. Assuming that the impulse responses were collected for 2Nt + 2 steps, we
build the Hankel matrices H0, H1 ∈R

NO (Nt+1)×NI (Nt+1), where NO = Ny + Nz and NI =
1011 A10-11
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Figure 6. Impulse responses from one actuator centred at x3 = 0 to the objective position. The contours
represent the sensors measurements with the same colour bar for all figures.

Nu + Nd are the total number of outputs and inputs, respectively. Here, H0 is built
with the time steps it = 1, . . . , 2Nt + 1, while H1 with it = 2, . . . , 2Nt + 2. From the
singular value decomposition (SVD) of H0 together with the Hankel matrix H1, the
ERA constructs the reduced version of the dynamical system in (3.1), giving the system
(Ar , Bu,r , Bd,r , Cy,r , Cz,r ) which is used to design the LQG. The subscript r denotes the
reduced version of the system, but also represents the r singular value from which the
SVD is truncated. In this case, this value is chosen based on the condition σr/σ1 > 10−3,
with σ1 being the largest singular value. More details about the ERA and how we build
the Hankel matrices are included in Appendix A.

The impulse responses are obtained directly from the DNS. The first set of impulse
responses, from the actuation input u to the outputs y and z, is more straightforward to
obtain, and where some simplifications are possible. Due to the convective nature of the
flow and the feedforward configuration of the controller, by placing the output y upstream
of the input u, the response u → y is equal to zero. Moreover, given that the base flow is
homogeneous in the spanwise direction, the periodicity along the same coordinate in the
simulations, and the fact that the rows of actuators and sensors are composed by identical
units, only one simulation of the impulse response from one actuator is needed. Those
time signals are then repeated and translated along the spanwise direction to get the full set
u → z. The impulse responses for the three actuators considered in this work are presented
in figure 6, showing the sensors measurements z. These will be referred to as guz(t, k),
with k representing the index of the sensor.

Computing the impulse responses from the disturbances to outputs, d → y and d →
z, is more challenging in this type of flow configuration. The reason behind this is the
broadband spectrum in the free stream that is forcing the boundary layer, which in this case
was synthesised with 1600 Fourier modes. Therefore, this would not only require the same
number of simulations to be performed, but also the SVD of a much larger Hankel matrix.
Arguably, only a fraction of these modes can be amplified, and hence be made relevant, by
the boundary layer. This would require a receptivity analysis to discriminate the modes of
interest, but with no guarantee that the reduction in number of modes will be significant.
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Figure 7. Signal corresponding to one sensor for uncontrolled case, showing the extent of the signal used for
design and testing the controller.

Moreover, such an impulse response study is not feasible in experiments, and even with
simulations one could miss modes that can be nonlinearly generated (Brandt et al. 2002;
Blanco et al. 2024). For all these reasons, we take a different approach. Here, we place a
new set of outputs, referred to as yd, upstream of the outputs y, and run an uncontrolled
simulation while collecting the time signals of all the outputs yd, y and z. Note that yd is
an output in the context of the simulations that represents the disturbance input in (3.1),
and we have deliberately kept the same notation to emphasise this. From the time signals,
we compute the frequency response of the system, which by definition coincides with the
impulse response. To this end, the optimal frequency response is computed from the auto-
and cross-spectra of the time signals (Bendat & Piersol 2011) as

Ĝ yd y(ω, β) = Ŝyd y(ω, β)

Ŝyd yd (ω, β)
, Ĝ yd z(ω, β) = Ŝyd z(ω, β)

Ŝyd yd (ω, β)
, (3.9)

with Ŝlm representing the cross-spectra between the time signals l and m, and the hat
indicates that the quantities are in the frequency domain. Note that, due to the periodicity
along the spanwise coordinate, the transfer functions are dependent on the spanwise
wavenumber β as well, where the discretisation is given by the discrete number of sensors.
The time frequency part of the spectra, ω, is computed by means of ensemble average
(Bendat & Piersol 2011), by using 28 batches with 75 % of overlap. The impulse response
is finally retrieved by taking the inverse Fourier transform of the transfer functions in (3.9),
referred to as gdy(t, k) and gdz(t, k). In this case, it is also worth noting that the way to
estimate the signals y and z using the transfer functions

ŷ = Ĝ yd y ŷd , ẑ = Ĝ yd z ŷd , (3.10)

correspond to double convolutions in physical space. In terms of the impulse response,
this means that we have to repeat and translate gyd y and gyd z along the span to obtain the
response in time of the output y and z for each of the Nyd sensors.

4. Results

4.1. Reduced-order model and control kernel
With the methods described in § 3.1 and § 3.2 we can now obtain the control kernel as in
(3.8). Figure 7 shows the time signal of one of the sensors for the uncontrolled case with
T u = 0.5 %, where we indicate the extent of the signal that is used to obtain the transfer
functions in (3.9), and also the extent of the signal where the controller is tested in the
simulations.
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Figure 8. Comparison of original impulse responses (−) and the ones from the ROM (−−), corresponding to
d → y (panel (b)), d → z (panel (c)), and u → z (panel (c)). Panel (a) shows the singular values of the Hankel
matrix and the threshold to build the ROM.

Figure 8 shows the singular values of the Hankel matrix H0 with the threshold used to
build the ROM for the case T u = 0.5 %, resulting in a ROM of order N = 298. It also
includes the comparison between the original impulse responses and the ones obtained
from the ROM, where it can be seen that a good reconstruction is obtained. Due to
periodicity along the span and the use of identical devices, these plots are shown as a
function of the spacing �x3 between one single input to the elements of the row of outputs
downstream.

With the ROM, it is possible now to design the LQG. To solve the Riccati equations,
(3.3) and (3.6), we start by defining the weight and covariance matrices as R = RINu ,
Q = QINd , Vn = vnINy and Vd = vdINd , with Im the identity matrix of size m and R, Q,
vn , vd scalar quantities. The final selection of these scalars is through trial and error by
evaluating the performance of the ROM in minimising the output z in the design data.
Here, a performance index is defined as

E= 1 − Jcontrolled

Juncontrolled
, (4.1)

with

J = 1
NzT

T∫
0

z(t)Tz(t)dt, (4.2)

which represents the mean square value of the output at the objective function location.
The scalars R, Q, vn and vd are evaluated as the ratios R/Q and vn/vd , and the
performance of the kernels on the ROM for different ratios combinations are presented in
figure 9, with the colours representing the values of (4.1). The control kernels are finally
selected considering the parameter combination for which the ROM reaches the maximum
performance in figure 9, where only the design data were used. Note that in figure 9 the
parameter combinations leading to maximum performance are different among the cases,
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Figure 9. Performance of the ROM as in (4.1) for different weight and covariance ratio combinations.

and while the underlying reasons were not investigated in detail, this behaviour can be
attributed to the use of sensors and actuators of different sizes for each case. The kernels
for the different cases under study are shown in figure 10. Despite some differences among
the kernels, they all share some similarities. For instance, most of the weight is put into
the sensor y at the same spanwise position �x3 = 0. Also, in all cases, the kernel presents
the highest values around t = 0 to then decay rapidly towards zero. One of the main im-
plications of this behaviour in our implementation is that the lower limit of the integral in
(3.8) is replaced to t − 0.3. This is done to get a faster computation of the actuation signal,
and justified by the fact that the convolution will render zero values for larger time lags.

4.2. Control performance
The final control kernel designs presented in figure 10 are implemented and evaluated in
the DNS considering only the time span of the test data, which was not used during the
controller design. The use of numerical simulations allows us to have a full restart of the
flow fields, being able to contrast the controlled and uncontrolled simulations at the exact
same time and conditions.

We start by presenting the performance of the controller in the DNS simulations, where
the focus is on three quantities of interest. The first quantity corresponds to the output time
signal at the objective function location. The second quantity is disturbance attenuation in
the boundary layer. And the last one corresponds to transition delay.

The results for the performance index using (4.1) are presented in table 2, where the
values from the ROM and the DNS are included. We can observe that, despite small
differences, the ROM predicts reasonably well the performance of the controller in the
DNS in the test data. The time series of the mean square signal, along the spanwise
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Figure 10. Control kernels for the different cases as a function of time and the spanwise distance �x3 from
the input uk to the outputs y.

Case 1 Case 2 Case 3 Case 4

ROM/Design 0.94 0.65 0.56 0.5
DNS 0.89 0.79 0.53 0.66

Table 2. Controller performance, as in (4.1), for the different cases.

direction, are presented in figure 11. From this set of plots and the results shown in
table 2, we can conclude that all the controllers are effective in minimising the output
at the objective function location. In particular, for the cases with T u = 2.5 % the best
performance is achieved for the controller corresponding to NI/O = 20. This could be
explained by the role of the actuator in generating wider structures along the span, as
can be seen in figure 6, and it is therefore more effective in damping the energetic low
wavenumbers in the flow. However, a more detailed comparison between the cases in
table 2 is not very straightforward, due to the fact that the sensors are different in each
case, measuring the average of the skin friction over the number-dependent sensor size.
Therefore, the main point to emphasise from table 2 is that the controllers keeping their
performance in the simulations suggests that the control laws are robust enough to act on a
new data set, and also to account for differences between the ROM and the actual system.

After corroborating that the controller is minimising the objective that it was designed
for, we can inspect the effect that it has on the disturbances inside the boundary layer.
Since the boundary layer is populated by streamwise streaks of different scales, as is the
case of boundary layers forced by FST, we naturally choose the root mean square (r.m.s.)
of the streamwise velocity as a first metric of interest to analyse. Figure 12 shows the
maximum r.m.s. of the streamwise velocity along the chord for all the cases, noting that
statistics were computed after a �T = 0.4 in order to allow the effect of the controller
to reach the end of the domain. From panel (a), showing the case with T u = 0.5 %, we
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Figure 11. Mean square of the sensors measurements at the objective function location, with the red and
black lines showing the uncontrolled and controlled simulations, respectively.

can see that the controller effectively damps the streaks inside the boundary layer, and,
similarly to the results for optimal disturbances in Semeraro et al. (2011), its effects are
sustained throughout the domain. This case, T u = 0.5 %, was indeed the first simulation
that was run to check that the controller configuration was effective in attenuating streaks.
The response of the boundary layer to these FST conditions is mostly linear (Faúndez
Alarcón et al. 2022b), which can explain the good performance of the controller designed
under linear assumptions.

Figure 12(b) shows the results for the cases with T u = 2.5 %, a turbulence level where
nonlinear interaction become non-negligible. Here, we observe a similar behaviour as
the case with T u = 0.5 %, where a noticeable attenuation of the streaks at the objective
function location is obtained for all controlled cases, being also sustained downstream but,
in these cases, not until the end of the domain. This is further portrayed with the velocity
profiles at different x1 stations shown in figure 13. When comparing the amplitude of
the three controlled cases at the objective function location, we can also observe some
differences in terms of their performance. In this respect, we do not observe a one-to-one
correspondence between the minimisation of the objective function and the damping of
the disturbance inside the boundary layer, where, for the latter, the best performance is
attained to the case NI/O = 60 instead.

By looking downstream of the objective position, around x1 ≈ 0.4, we see an abrupt
increment of the r.m.s. values, which is an indication of transition to a fully turbulent
boundary layer. From this, it is possible to point out some interesting observations.
First, even though the cases NI/O = 20 and NI/O = 40 sustain a lower disturbance level
downstream of the objective compared with the uncontrolled case, around x1 ≈ 0.4 they
recover the level of the uncontrolled case with a slight better performance for case
NI/O = 40. Interestingly, this recovery of the disturbance level towards the uncontrolled
case has been observed experimentally in the work by Lundell (2007). Secondly, the only
case that shows a significant delay in the rapid rise of qs,rms is the one corresponding
to NI/O = 60. This is more clearly seen when looking at the r.m.s. streamwise velocity
profiles at x1 = 0.4 in figure 13, where only the case NI/O = 60 shows a distinctive shape
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Figure 12. Maximum qs,rms inside the boundary layer for uncontrolled and controlled simulations. The right
plots show the same quantity but normalised by the corresponding uncontrolled case.
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Figure 13. Streamwise r.m.s. profiles at different streamwise stations x1. Lines as in figure 12.

with respect to the uncontrolled case. While this could be attributed to the larger reduction
at the objective function location, such a conclusion would contradict the behaviour
observed in the other two cases, which takes us to the last point. The better performance of
NI/O = 20 with respect to NI/O = 40 in both minimising the objective function and the
disturbance level at the objective position, does not translate into a better performance in
terms of delaying the rapid growth of the r.m.s. downstream. On the contrary, NI/O = 40
shows a better performance in this regard, which is more clear when observing the friction
coefficient in figure 14. Moreover, when contrasting the three controlled cases at x1 = 0.3
in figure 13, they all exhibit a similar reduction, but at the next station x1 = 0.4 this
similarity is not maintained, with NI/O = 60 clearly outperforming the other two cases.

Before providing an explanation regarding the different behaviours of the controlled
cases downstream of the objective function location, some remarks on the friction
coefficient shown in figure 14 are provided. This is arguably the most important quantity
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Figure 14. Friction coefficient for cases with T u = 2.5 %, with the right plot showing the same quantity but
normalised by the uncontrolled cased. Lines as in figure 12.

for engineering applications, where lower values are generally sought for energy savings.
In this context, only the case NI/O = 60 presents a noticeable reduction with respect
to the uncontrolled case. Besides, the case NI/O = 20 has even higher values than the
uncontrolled case at the end of the domain, which would make it unsuitable for any efforts
regarding transition delay. Note also that at the actuator’s position, the cases NI/O = 20
and NI/O = 40 show a crest and a valley which can be attributed to the lower actuation
penalisation, as was shown in table 1 for the ratio R/Q.

4.3. Turbulent spots
The results from the previous section show an intricate situation, where the reduction in the
disturbance inside the boundary layer does not necessarily reflect on a better performance
in terms of transition delay. In any case, a better performance is found for the controller
corresponding to N I/O = 60 when contrasted to the other two, and the purpose of this
section is to shed some light on the causes behind this.

The motivation to act on the streaks and reduce their amplitude comes from the
reasoning that these structures will grow and breakdown downstream, forming turbulent
spots which will subsequently merge and create a fully turbulent boundary layer. This was,
for instance, the result in the controlled case in Morra et al. (2019), where the nucleation
of turbulent spots when the control was on took place downstream with respect to the
uncontrolled case. In the present investigation, a similar behaviour can be observed for
the case NI/O = 60. To illustrate this, figure 15 shows the streamwise shear for the cases
T u = 2.5 % at the same time instant, which can be recognised by comparing the contours
of the different cases upstream of the actuation. At this time instant, a turbulent spot
is seen in the uncontrolled case, and almost the same turbulent spot is observed in the
cases NI/O = 20 and NI/O = 40. However, for the case NI/O = 60, only initial traces of
it, corresponding to short wavelength streamwise modulation, can be noticed.

Figure 16 includes the time–space diagrams of the streamwise shear for the four cases,
all of which are taken at the same spanwise position x3 = −0.01. In these plots, we can see
the nucleation and convection of turbulent spots, characterised by the high shear with
the white contours levels. The turbulent spot labelled as (b) in figure 16 corresponds
to the same event as the one depicted in figure 15, where the same situation can be
appreciated: only the case NI/O = 60 is able to delay its nucleation with respect to the
uncontrolled case. The spot (c) is observed in the three controlled simulations, but not
in the uncontrolled one, which is of course an undesirable result. For the spots (d) and
(e), the controller NI/O = 60 is effective in delaying their nucleation, while for the other
two controlled cases no big differences with respect to the uncontrolled case are observed.
Finally, spot (a) is effectively damped by controller NI/O = 60 within the domain.
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Figure 15. Streamwise shear at the same time instant t = 10.39 for simulations corresponding to T u = 2.5 %.
The contours in the different plots share the same range for better comparison.

Figures 15 and 16 complement the statistical results presented in the previous section
in figures 12 and 14, portraying a more comprehensive picture regarding the effect that
the controllers have on the flow in terms of transition delay. In this respect, only the case
NI/O = 60 seems to be effective in doing so by delaying the appearance of nucleation
events. The underlying reason seems to be the scale of the streaks that become unstable
and break down in this particular flow, and how effective the controller is in damping
them. This explanation was already envisioned in our previous work Faúndez Alarcón
et al. (2022a) by looking at consecutive snapshots and noting the spanwise spacing of the
breaking streaks. In the present investigation, we strengthen this point through the use of
local stability analysis.

The crucial role that streak secondary instabilities play in bypass transition has been
shown, for instance, by Schlatter et al. (2008), Hack & Zaki (2014) and Faúndez Alarcón
et al. (2024). Therefore, the stability analysis in the pre-transitional part of flow can
indicate the spanwise size of the streak involved in the nucleation of turbulent spots.
On this basis, we perform local stability analysis in streamwise-normal planes located
upstream and at previous time steps to turbulent spot nucleations. A temporal framework
is adopted in the stability calculations, from which the output corresponds to a set of
eigenfunctions whose complex eigenvalues dictate their stability. For completeness, the
method is described in Appendix B.
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Figure 16. Time–space diagram of the streamwise shear at spanwise position x3 = −0.01. From left to right:
uncontrolled, controlled NI/O = 20, NI/O = 40 and NI/O = 60.
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Figure 17. Example of secondary instability before the nucleation event shown in figure 15. The top plot shows
the full wing span, with the grey contours representing the streaks from the DNS and the red (negative) and
blue (positive) contours the unstable mode from stability analysis. The bottom plots show, from left to right,
the time–space evolution of the unstable mode (black dots) on top of the streamwise shear (grey contours), and
zoomed views of the unstable mode at the first (x1 ≈ 0.18) and last (x1 ≈ 0.29) stations.

Figures 17 and 18 present two unstable modes appearing before the nucleation of
turbulent spots. The stability calculations were performed on the uncontrolled case and
considering a streamwise wavenumber α = 800. From these two examples, it is clear that
the unstable streaks in this flow configuration correspond to relatively short spanwise
wavelength. Therefore, it is not surprising that the case NI/O = 20 cannot perform well
in terms of transition delay, given that the resolution given by the 20 sensors is not able
to resolve such a short wavelength. By increasing the number of sensors, we increase
the spanwise resolution and therefore start seeing some better performance in terms of
transition delay. This can explain the better performance of controller NI/O = 60, and also
the lack of correspondence between the performance in terms of disturbance damping
at the objective function location and closer to the onset of transition, especially when
comparing the cases NI/O = 20 and NI/O = 40.
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Figure 18. Another example of an unstable mode appearing before a nucleation event. Same description as
caption in figure 17, but with first and last stations at x1 ≈ 0.19 and x1 ≈ 0.28, respectively.

The effect of the different controllers over streaks with different spacings was corrobo-
rated by analysing the disturbance amplitude for different spanwise wavenumbers β. This
was done by computing the r.m.s. for each wavenumber in the frequency domain as

q̂s,rms(x1, xn, β) = 1
nx3

√√√√∑
ωk

∣∣∣∣ q̂s(ωk, x1, xn, β)

nt

∣∣∣∣
2

, (4.3)

where q̂s is the double Fourier transform in time and along the homogeneous direction
x3, with nt and nx3 the length of the time signal and the number of points along x3,
respectively. Figure 19 shows the one-sided spectrum using (4.3) at the objective function
location, x1 = 0.15, and for two wall-normal positions. From these two plots, it becomes
clear that the controller NI/O = 20 is very effective in damping the low spanwise
wavenumbers, which are the most energetic waves in a statistical sense. Notably, it has
actually the best reduction for the fundamental wavenumber β1. However, and given the
number of sensors, its performance decreases towards higher wavenumbers, converging
to the uncontrolled case curve after the 10th wavenumber. On the other hand, the cases
with more sensors are able to damp these higher wavenumbers, in particular the case
NI/O = 60 clearly outperforms the other two in this regard.

At first, the explanation regarding the controllers not being effective in damping the
short span wavelengths appeared inconsistent with the results by Morra et al. (2019)
and Sasaki et al. (2019), where the same procedure successfully delayed transition. In
particular, Sasaki et al. (2019) showed that the use of optimised actuators, designed to
efficiently damp the most energetic streaks in the flow field, outperformed the use of non-
optimal actuator shapes. There is, however, a key difference between the present flow and
the one used in the aforementioned work. In the latter, the breaking streaks are the most
energetic as well. This observation comes from the comparison between the eigenvalues
of the spectral proper orthogonal decomposition (SPOD) modes in Sasaki et al. (2019) (cf.
figure 5), where the most energetic streaks are associated with the 3rd wavenumber, and
the stability analysis of their flow field before a nucleation event. For the stability analysis,
the data were kindly provided by the authors, and an example of an unstable mode before
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Figure 19. Distribution of the streamwise velocity r.m.s. along the spanwise wavenumbers, with lines as
in figure 12. The time signals correspond to the cases with T u = 2.5 % at the objective function location
x1 = 0.15, and the (a) and (b) plots represent the wall-normal positions xn = 0.5δ∗ ≈ 0.4 · 10−3 and xn =
1.0δ∗ ≈ 0.8 · 10−3, respectively. Here, β1 corresponds to the fundamental wavenumber given by the length
of the domain.
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Figure 20. Unstable mode before a nucleation event in the case by Morra et al. (2019) and Sasaki et al.
(2019). The plane is at Rex = 3.5−5, and the axis scaling corresponds to the one used in their work.

nucleation is shown in figure 20. By noticing that the figure comprises the full span of their
simulations, we can see how the breaking, unstable, streak represents the 3rd wavenumber
of the domain, and therefore it is also the most energetic one from the SPOD calculations.
This can explain the performance differences between the Morra et al. (2019) and Sasaki
et al. (2019) investigations and the present work. This situation, where breaking streaks are
not necessarily the most energetic ones, together with the sporadic nucleation of turbulent
spots, makes also challenging the design of optimal actuators targeting breaking streaks
(Sasaki et al. 2019), as it would require long time series to collect a significant amount
of breaking events for their characterisation. One could expect, however, that a significant
attenuation of the energetic structures would lead to weaker nonlinear interactions and
thus a more pronounced effect regarding transition delay. One possible reason limiting
this to happen is that, in this flow configuration, the nonlinear interactions responsible for
generating the breaking streaks already took place upstream of actuation. Therefore, when
the controller effectively damps those smaller scales as well (case 4) we start seeing a
bigger impact when it comes to transition delay.

5. Conclusions
In this investigation, we have implemented an optimal controller to damp the disturbances
in a wing boundary forced by FST using numerical simulations, considering two
turbulence intensity levels and one integral length scale. The controller configuration
is built from localised sensors and actuators placed in rows along the wing spanwise
direction. The localised choice of devices is motivated by the commonly limitations
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encountered in experiments, where generally only wall information and actuation is
possible. The control law is designed on a ROM, which is obtained from the input/output
signals of the system only.

The design of the control law relied on a ROM, which was constructed using the ERA
method. In this algorithm, the model is identified from the impulse responses of the system
without the need of a priori knowledge of the operators. Due to the broadband nature
of the incoming disturbances, computing their impulse responses is computationally
demanding and unfeasible in experiments. Therefore, an extra row of dummy sensors is
placed upstream of the control devices, where the transfer function between this row of
sensors and the ones downstream is used as a proxy for the true impulse response of the
disturbances. Once the impulse responses are collected, the ERA produces a model that
reproduces the input/output relationships of the original system, with a state vector with
size of just of the order of hundred.

The low dimensionality of the ROM makes the design of the LQG affordable, where, by
adopting a feedforward configuration, the actuation signal is based only on upstream mea-
surements. Once the controller is active, it is found that it effectively reduces the objective
function not only in the ROM but also in the full numerical simulation. By imposing a low
FST, where the dynamics of the system is nearly linear, we show that the controller is also
effective in damping the streak amplitudes, and maintaining this reduction until the end
of the domain. One of the implications of this is that the streamwise wall shear is a good
surrogate measurement to be minimised when disturbance reduction is sought.

By increasing the turbulence intensity of the simulation, we assessed the linear control
performance when nonlinear interactions become relevant. In this scenario, we analysed
3 different control configurations, by changing the number of sensors/actuators along the
span. In all the cases, the objective function is minimised in the DNS accordingly to the
ROM. Moreover, a noticeable disturbance reduction is achieved by all the controllers at
the objective function location. Such reduction is maintained downstream, but different
behaviours are observed in this regard. Here, only the case with the larger number of
sensors presents a perceptible delay of the onset to transition, while the other two converge
to the uncontrolled case at the transition onset. We argued that this is related to the
effectiveness of the controllers in damping the streaks that will later break down, forming
turbulent spots. In this flow configuration, they correspond to streaks with relatively short
spanwise wavelength, which explains why increasing the number of sensors improves the
performance. This recovery of the disturbance amplitude towards the uncontrolled case has
also been observed experimentally in Lundell (2007), where it was conjectured that this
could either be the effect of optimal disturbances growing again downstream (Högberg &
Henningson 2002), or of new streaks entering from the side or generated by the free stream.
Our results provide an alternative explanation for this behaviour, that can be nonetheless
related to new nonlinearly generated streaks due to energy propagation. This energy
transfer, from low to high wavenumbers through the β-cascade (Henningson et al. 1993),
is able to initiate streaks that can experience maximum growth at upstream positions with
respect to their predecessors, and therefore become unstable before. This idea has been
proposed in Faúndez Alarcón et al. (2025), where different DNS were analysed.

In this work, we have followed the procedure developed by Morra et al. (2019) and
Sasaki et al. (2019), where they successfully delayed transition in a flat plate. When
contrasting their work with our results, similar performances in terms of the disturbance
damping at the objective function location are obtained, but with different outcomes
downstream at the transition onset. We provide an explanation for this apparent discrep-
ancy based on the stability of the different flow fields. In this context, we show that the
breaking streaks in Sasaki et al. (2019) correspond to the most energetic structures in the
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perturbation field, making their damping effective delay their breakdown. In the present
flow case, the breaking streaks are associated with short spanwise wavelengths, which
are not necessarily the most energetic disturbances at the objective function location.
Therefore, the amplitude reduction at the objective function location does not necessarily
translate into amplitude reduction of breaking streaks downstream. Consequently, our
results suggest that, for effective transition delay, the controller should target the breaking
streaks. While this might come as an obvious observation, one challenge is that they are
not necessarily the most energetic ones where actuation is applied.

Several constraints have been considered to account for some of the limitations
commonly encountered in experiments, such as localised sensing and actuation, and a
design based on input/output data only. Moreover, the numerical simulations include
the leading edge to properly resolve the penetration of the free-stream disturbances into
the boundary layer. Compared with similar previous numerical investigations, a larger
integral length scale was selected to have a value closer to those typically found in grid-
generated turbulence. Nevertheless, there are still some experimental aspects that were not
addressed in the present work and could limit the controller implementation. For example,
regarding the actuation signal, no bounds were imposed to avoid unfeasible values or
constraints for real-time calculations. Also, while the actuators had localised support
acting only in the wall-normal direction, no attempt was made to resemble the shape of
a real device. Another relevant aspect is the robustness of the controller. Although the
controller performance was tested with new data, no studies were carried out to evaluate
possible performance deviations under different conditions, such as free-stream velocity,
angles of attack or different disturbance environments.
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Appendix A. Eigensystem realisation algorithm implementation
In this appendix, we include the steps followed to obtain the ROM from the ERA. These
steps consist in

(i) Run the impulse responses of the system for 2Nt + 2 steps and store them in the form
{Y0, Y1, . . . , Y2Nt+2}. Here, the response of the Ny + Nz outputs from the Nu + Nd

are stacked together in the Yi ∈R
(Ny+Nz)×(Nu+Nd ) matrices. Alternatively, and due

to the linearity of the system, the same procedure could be done for each of the inputs
of the system.

(ii) Assemble the block Hankel matrices

H0 =

⎡
⎢⎢⎣

Y0 Y1 · · · YNt

Y1 Y2 · · · YNt+1
...

...
. . .

...

YNt YNt+1 · · · Y2Nt+1

⎤
⎥⎥⎦ , H1 =

⎡
⎢⎢⎣

Y1 Y2 · · · YNt+1
Y2 Y3 · · · YNt+2
...

...
. . .

...

YNt+1 YNt+2 · · · Y2Nt+2

⎤
⎥⎥⎦ .

(A1)
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(iii) Compute the SVD of H0 = UΣV ∗. After sorting the singular values in descending
order, we get the truncated matrices Ur and Vr by taking their first r columns and Σr
by taking its first r rows.

(iv) The reduced matrices of the system (3.1) are obtained from

Tr = Σ
−1/2
r U∗

r H1VrΣ
−1/2
r , (A2a)

Br = the first Nu + Nd columns of Σ1/2V ∗
r , (A2b)

Cr = the first Ny + Nz rows of UrΣ
1/2. (A2c)

The matrices Bu,r and Bd,r are taken as the first Nu and last Nd columns of Br ,
respectively, and the matrices Cy,r and Cz,r as the first Ny and last Nz rows of
Cr , respectively. The reduced version of A is obtained by solving the equation
Tr = eAr Δt .

Appendix B. Local stability analysis
To perform local stability analysis, the velocity and pressure flow fields are decomposed
as

Q(t, x) = QB F (x2, x3) + εq(t, x), (B1a)
P(t, x) = P0(x2, x3) + εp(t, x), (B1b)

with QB F = (Q1, Q2, Q3)
T representing in this case the streaky base flow and q the

disturbance state function with amplitude ε 	 1. Here, a homogeneous assumption is
invoked for the base flow, which is taken as frozen planes at a given x1 streamwise position.
By assuming a normal mode for the perturbation q(x) = q̂(x2, x3) exp(i(αx1 + ωt)), and
similarly for the pressure perturbation, while neglecting the nonlinear terms, the following
linearised system is obtained

(C− �) q̂1 + (Dx2 Q1
)

q̂2 + (Dx3 Q1
)

q̂3 + iα p̂ = iωq̂1, (B2a)(C− � +Dx2 Q2
)

q̂2 + (Dx3 Q2
)

q̂3 +Dx2 p̂ = iωq̂2, (B2b)(Dx2 Q3
)

q̂2 + (C− � +Dx3 Q3
)

q̂3 +Dx3 p̂ = iωq̂3, (B2c)
iαq̂1 +Dx2 q̂2 +Dx3 q̂3 = 0, (B2d)

where C= Q1iα + Q2Dx2 + WDx3 , � = 1/Re(−α2 +D2
x2

+D2
x3

), Dx2 = ∂/∂x2 and
Dx3 = ∂/∂x3. Here, the streamwise wavenumber α is a parameter, and ω has a complex
value whose real part represents the angular frequency and the imaginary part the temporal
growth rate.The differential operators are constructed from a fourth-order finite difference
scheme. For the boundary conditions, no slip is imposed at x2 = 0, periodicity along the
spanwise direction x3 and zero velocity in the free stream. Since the right-hand side matrix
in the generalised eigenvalue problem of the system (B2) is singular, a shift-and-invert
Arnoldi algorithm is employed due to its fast convergence.
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