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THE SHORT EXACT SEQUENCE IN DEFINABLE GALOIS
COHOMOLOGY

DAVID MERETZKY

Abstract. In [2], Pillay introduced definable Galois cohomology, a model-theoretic generalization of
Galois cohomology. Let M be an atomic and strongly �-homogeneous structure over a set of parameters
A. Let B be a normal extension of A in M. We show that a short exact sequence of automorphism groups
1 → Aut(M/B) → Aut(M/A) → Aut(B/A) → 1 induces a short exact sequence in definable Galois
cohomology. We also discuss compatibilities with [3]. Our result complements the long exact sequence
in definable Galois cohomology developed in [4].

§1. Introduction and preliminaries. In Remarks on Galois cohomology and
definability [2], Anand Pillay introduced definable Galois cohomology, a model-
theoretic generalization of the first nonabelian Galois cohomology set adapted for
suitable first order theories T. When T is specialized to the theory DCF0, definable
Galois cohomology coincides with constrained differential Galois cohomology as
defined in Chapter 7 of Kolchin’s Differential Algebraic Groups [1]. When specialized
to the theory ACF0, definable Galois cohomology coincides with usual algebraic
non-abelian Galois cohomology as defined in Chapter 1 Section 5 of Serre’s Galois
Cohomology [5]. We begin by recalling the setting and main result of [2] before
stating our results. We will continue to work in this setting throughout this paper.

Let T be a complete theory eliminating imaginaries (or consider Teq). Let M be
a model of T which is atomic and strongly�-homogeneous over a set of parameters
A. That is, the type of any finite tuple from M over A is isolated and for any two
finite tuples from M with the same type over A, there is an automorphism of M
taking one tuple to the other.

Recall from [2] that an (A-definable) right principal homogeneous space (PHS)
for an A-definable group G is a nonempty A-definable set X together with a right
A-definable action � : X ×G → X such that ∀x, y ∈ X there exists a unique z ∈ G
such that �(x, z) = y. A pointed PHS for G is a pair (X,p) consisting of a PHS for
G with a specified M-point p of X.

An A-definable bijection between two PHSs for G which commutes with the
actions of G is an isomorphism of PHSs. The set of isomorphism classes of PHSs
for G has the structure of a pointed set with basepoint being the isomorphism class
containing G itself considered as a PHS. Altering slightly the notation from [2], we
will denote this pointed set Pdef (M/A,G(M )).
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2 DAVID MERETZKY

Similarly, an A-definable bijection of two pointed PHSs for G commuting with
the actions of G and which sends the basepoint of one to the basepoint of the other
is an isomorphism of pointed PHSs. The set of A-isomorphism classes of pointed
PHSs for G also has the structure of a pointed set. The basepoint is the isomorphism
class containing the pointed PHS (G, e) where e is the identity of G. We will denote
this pointed set Pdef,∗(M/A,G(M )).

A (right) definable cocycle is a functionϕ from Aut(M/A) toG(M ), the M-points
of G, such that firstly, for any �, � ∈ Aut(M/A),

ϕ(��) = ϕ(�)�(ϕ(�))

and secondly, there exists an A-definable function h(x̄, ȳ) and tuple ā from M such
that ∀� ∈ Aut(M/A),

ϕ(�) = h(ā, �(ā)).

The set of cocycles from Aut(M/A) to G(M ) is denoted Z1
def (M/A,G(M )) and has

the structure of a pointed set. The cocycle which takes constant value at the identity
e ∈ G(M ) is the basepoint.

Two definable cocyclesϕ and� are said to be cohomologous if there is an element
b ∈ G(M ) such that

ϕ(�) = b–1�(�)�(b)

for all � ∈ Aut(M/A). Cohomology is an equivalence relation on the pointed set of
cocycles, Z1

def (M/A,G(M )), and a cocycle is called trivial if it is cohomologous to
the constant cocycle. Taking the quotient of Z1

def (M/A,G(M )) by the cohomology
equivalence relation yields another pointed set, the pointed set of cohomology
classes of cocycles, which is denoted H1

def(B/A,G(B)) and which has the class of
trivial cocycles as its basepoint.

The main result of [2] is the following:

Proposition 1.1. [2, Proposition 3.3]. There is a natural isomorphism (basepoint
preserving bijection, natural with respect to morphisms of definable groups in the second
coordinate),

Pdef(M/A,G(M )) ∼= H1
def(M/A,G(M )),

between the pointed set of isomorphism classes of A-definable right principal
homogeneous spaces for G and H1

def(M/A,G(M )), the pointed set of equivalence
classes of definable cocycles from Aut(M/A) to G(M ) modulo the cohomology
relation.

An extension of parameters B, with A ⊆ B ⊆M , is called normal if it is closed
under type (in finitely many variables) in M over A: Let b̄ be a finite tuple from B. If
b̄′ is a finite tuple from M with tp(b̄/A) = tp(b̄′/A) then b̄′ must also be contained
in B. By Aut(B/A) we mean the group of elementary permutations of B fixing
A. In Section 2 of this paper we will review normal extensions and describe some
additional properties which they satisfy in the three settings of atomic and strongly
�-homogeneous structures discussed in [2].

In Section 3 of this paper we will define the definable Galois cohomology set
H1

def (B/A,G(B)) where B is a normal extension of A in M and generalize the main

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.8
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.56, on 26 Jun 2025 at 18:21:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.8
https://www.cambridge.org/core


THE SHORT EXACT SEQUENCE IN DEFINABLE GALOIS COHOMOLOGY 3

result of [2] to show that H1
def (B/A,G(B)) classifies exactly the isomorphism classes

of PHS for G which contain a B-point.
In [3], Pillay adapted the notion of a (relatively) definable subset of Aut(M/A)

from the setting of a saturated model to that of an atomic and strongly �-
homogeneous structure. This yields an equivalent definition of a definable cocycle
(see [3, Lemma 3.5]). Also in [3], Pillay introduces (relatively) definable subsets of
Aut(B/A) for normal extensions B of A in M. At the end of Section 3 below, we will
show that our notion of definable cocycle, introduced at the beginning of Section 3
for the setting of a normal extension, has an equivalent phrasing using the definition
of definable subset of Aut(B/A) from [3].

In Section 4 we will prove the main result of this paper: For B, a normal extension
of A contained in M, a short exact sequence

1 → Aut(M/B) → Aut(M/A) → Aut(B/A) → 1

induces the following short exact sequence in definable Galois cohomology:

1 → H1
def(B/A,G(B)) → H1

def(M/A,G(M )) → H1
def(M/B,G(M ))Aut(B/A).

We begin section 4 with an adaptation of Serre’s “transform” action of Aut(B/A)
on H1

def(M/B,G(M )) to conclude that the image of the final map of the sequence
lands in the fixed points of this action.

The short exact sequence of the present paper is a generalization of a classical
algebraic statement appearing in Chapter 1 Section 5.8 of Serre’s Galois Cohomology
[5]. The result was proved by Kolchin in the differential setting as Theorem 1
of Chapter 7 Section 2 of [1]. Kolchin’s statement does not include mention of
the action of Aut(B/A) on the final term so we have strengthened the differential
statement slightly. The result is novel in the general definable setting of [2]. Together
with the long exact sequence of [4], our result brings definable Galois cohomology
into a more fully developed state.

§2. Normal extensions. We continue in the setting of [2]. Namely, T is a complete
theory eliminating imaginaries. We work in a model M of T which is atomic and
strongly �-homogeneous over a set of parameters A.

The following definition precedes [6, Lemma 9.2.6].

Definition 2.1. An extension A ⊆ B of parameters in M is said to be normal if,
for any finite tuple b̄ from B, every realization of tp(b̄/A) in M is contained in B.

If B is a normal extension of A, then B is Aut(M/A)-invariant and the restriction
map from Aut(M/A) to Aut(B/A), the group of elementary permutations of B
fixing A, is a group homomorphism with kernel Aut(M/B). So there is a short exact
sequence

1 → Aut(M/B) → Aut(M/A) → Aut(B/A).

In [2], three model-theoretic settings are discussed in which the conditions onA ⊆
M of atomicity and strong �-homogeneity are satisfied. These conditions ensure
that Proposition 1.1 holds, i.e., that definable Galois cohomology classifies principal
homogeneous spaces for definable groups.
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4 DAVID MERETZKY

In the first setting, M is taken to be the prime model over A of an�-stable theory.
In the second setting, M is taken to be acl(A). In the third setting, M is the countable
model of an�-categorical theory. We will now address the assumptions on B needed
in each setting so that the final map in the above sequence is surjective, that is, every
elementary permutation of B fixing A extends to an automorphism of M fixing A.

When M is the model-theoretic algebraic closure of A or the prime model over A
of an �-stable theory, then for any normal extension B in M over A the restriction
map from Aut(M/A) to Aut(B/A) is surjective. In the �-categorical setting B\A
must be finite for the restriction map to be surjective.

Remark 2.2. We slightly generalize the first setting of an �-stable theory T
to a totally transcendental theory T. Note that any �-stable theory is totally
transcendental, the converse being true when T is countable.

To see the surjectivity of the restriction map in the setting of the prime model
of a totally transcendental theory, we use a fundamental characterization of such
models which can be found in [6, Chapter 9]:

Fact 2.3. Let T be a totally transcendental theory. A model M of T is prime over
a set of parameters A if and only if it is atomic over A and contains no uncountable
A-indiscernible sequence.

Lemma 2.4. Let M be the prime model over A of a totally transcendental theory T.
Let B be a normal extension over A in M. Then

(i) M is atomic over B.
(ii) M is prime over B.

(iii) The restriction homomorphism Aut(M/A) → Aut(B/A) is surjective.

Proof.

(i) This can also be found in [6, Chapter 9]. Note that the isolated types are
dense in the type space over arbitrary parameter sets in totally transcendental
theories.

Let b̄ ∈Mn. Let φ(x̄) isolate tp(b̄/A). Since the isolated types are dense
over B, there is a formula �(x̄, d̄ ) isolating a complete type over B which
contains the formula φ(x̄). Let b̄′ realize�(x̄, d̄ ) in M. Then b̄′ realizes φ(x̄)
and so b̄ and b̄′ have the same type over A. By the strong �-homogeneity of
M there is an automorphism � of M taking b̄′ to b̄. Let ē = �(d̄ ), which by
normality must lie in B. Then �(x̄, ē) isolates the type of b̄ over B.

(ii) As A ⊆ B , any B-indicernible sequence is A-indicernible. As M is prime
over A, it contains no uncountable A-indicernible sequence and therefore
no uncountable B-indicernible sequence. This, together with (i), shows from
Fact 2.3 that M is prime over B.

(iii) Let � be an elementary permutation of B over A. Let M̄ be a sufficiently
saturated and strongly homogeneous model of T. Then we can assume that
M̄ contains M and that � extends to an automorphism 	 ∈ Aut(M̄/A). Let
M ′ = 	(M ). By the characterization of prime models,M ′ is still the prime
model over B. By the uniqueness of prime models of an �-stable theory,
there is an isomorphism � :M ′ →M fixing B. Then � ◦ 	|M :M →M is an
automorphism of M extending �. �
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THE SHORT EXACT SEQUENCE IN DEFINABLE GALOIS COHOMOLOGY 5

Proposition 2.5. Let B be normal in M over A where M is acl(A) or the prime
model of a totally transcendental theory or where M is �-categorical and additionally
we require B\A to be finite. Then there is a short exact sequence of groups:

1 → Aut(M/B) → Aut(M/A) → Aut(B/A) → 1.

Proof. In the �-categorical case the surjectivity follows from the strong
�-homogeneity of M and the fact that we have taken B\A to be finite. In the
case where M = acl(A), the surjectivity follows from a standard back and forth
argument. The preceding lemma covers the case of the prime model of a totally
transcendental theory. �

§3. Definable Galois cohomology for normal extensions. We continue to work in
the setting of [2]. Let T be a complete theory eliminating imaginaries (EI). Let M be
a model of T containing a set of parameters A, over which M is atomic and strongly
�-homogeneous.

Let B be a normal extension of A in M such that elementary permutations of B
over A (which we denote Aut(B/A)) extend to automorphisms of M over A and
such that M is atomic and strongly �-homogeneous over B. We have in mind the
three model-theoretic settings of [2] discussed in the last section: i.e., when M is
the prime model over A of a totally transcendental theory or M is acl(A) then
any normal intermediate extension B will satisfy these conditions. When M is the
countable model of an �-categorical theory, B\A must be finite in addition to B
being normal.

By the atomicity and strong �-homogeneity of M over B, we have that an M-
definable Aut(M/B)-invariant set is B-definable, from which it follows that the fixed
set of the action of Aut(M/B) on M is dcl(B).

Definition 3.1. Let G be an A-definable group and X an A-definable set. Let
ϕ(x̄) and �(ȳ) be A-formulas defining the underlying set of G and X respectively.
By G(B) we mean

{g ∈ B |x̄| :M |= ϕ(g)}

or equivalently, G(M ) ∩ B |x̄|. Similarly, by X (B) we mean

{p ∈ B |ȳ| :M |= �(p)}

equivalently,X (M ) ∩ B |ȳ|. We will refer to elements ofG(B) andX (B) as B-points
of G(M ) and X (M ).

We will also now require B = dcl(B) for two reasons, firstly, so that B is exactly
the fixed set of the action of Aut(M/B) on M and secondly, so that G(B) is a
subgroup of G(M ).

Lemma 3.2. Let G be an A-definable group. Let A ⊆ B ⊆M with B = dcl(B).
ThenG(B) is an abstract subgroup ofG(M ). Moreover, if X is an A-definable principal
homogeneous space for G which contains a B-point, thenX (B) is an abstract principal
homogeneous space for G(B) equivariant with respect to the left action of Aut(B/A).

Proof. Again, let ϕ(x̄) and �(ȳ) be A-formulas defining the underlying set of G
and X respectively.
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6 DAVID MERETZKY

Let e ∈ G be the identity. As G is A-definable, e ∈ G(dcl(A)) ⊆ G(B). Let g1, g2 ∈
G(B). Their product g1g2 is definable overA ∪ {g1, g2}, that is g1g2 ∈ dcl(A, g1, g2)
and so must lie in dcl(B) as dcl(B) = B . We have g1g2 ∈ B |x̄| ∩G(M ) = G(B).
Likewise, g–1

1 is definable over dcl(A, g1), so g–1
1 ∈ B |x̄| ∩G(M ) = G(B). Hence

G(B) is an abstract subgroup of G(M ).
By assumptionX (B) �= ∅, so letp ∈ X (B). Let g ∈ G(B), thenpg ∈ dcl(A,p, g).

As dcl(A,p, g) ⊆ dcl(B) = B , pg ∈ B |ȳ|. Hence pg ∈ X (B). So G(B) acts on
X (B). Now let p′ ∈ X (B). As X is an A-definable PHS for G, there is a unique
element g ∈ G(M ) such that pg = g ′. So g ∈ dcl(A,p, p′). As dcl(A,p, p′) ⊆
dcl(B) = B , g ∈ B |x̄|. Hence g ∈ G(B). So X (B) is an abstract PHS for G(B).

Let � ∈ Aut(B/A). Let p ∈ X (B) and g ∈ G(B) then �(pg) = �(p)�(g) as the
action is A-definable and � is an A-elementary permutation of B. So the equivariance
of the action is verified. �

In this section we will define definable Galois cohomology in the setting of a
normal extension A ⊆ B and introduce the notation H1

def(B/A,G(B)). We then
introduce some further notation for certain pointed sets of isomorphism classes
of definable PHSs. We then prove that H1

def (B/A,G(B)) classifies exactly the
isomorphism classes of definable PHSs for G which contain a B-point. This refines
Proposition 1.1, the main result of [2], to apply in the setting of normal intermediate
extensions.

Definition 3.3. A definable (right) cocycle ϕ : Aut(B/A) → G(B) is a function
ϕ together with an A-definable function h(x̄, ȳ) and a tuple ā from B satisfying
∀�, � ∈ Aut(B/A),

(i) ϕ(��) = ϕ(�)�(ϕ(�)) (cocycle condition)
(ii) ϕ(�) = h(ā, �(ā)) (definability condition)

The definable cocycles from Aut(B/A) to G(B) form a pointed set, which we
denote Z1

def (B/A,G(B)). We define the basepoint of Z1
def (B/A,G(B)) to be the

constant cocycle which sends every elementary permutation to the identity of G.
Two definable cocyclesϕ and� are said to be cohomologous if there is an element

b ∈ G(B) such that

ϕ(�) = b–1�(�)�(b)

for all � ∈ Aut(B/A). As we required B to be dcl-closed, G(B) is a group and
cohomology is again an equivalence relation on Z1

def (B/A,G(B)). Again we call
a cocycle trivial if it is cohomologous to the constant cocycle. Trivial cocycles are
therefore of the form

ϕ(�) = b–1�(b)

for some b ∈ G(B). The quotient of Z1
def (B/A,G(B)) via the cohomology

equivalence relation is again a pointed set which we denote H1
def (B/A,G(B)) and

which has the class of trivial cocycles as its basepoint.

We now describe the relationship between the pointed sets Z1
def (B/A,G(B)) and

Z1
def (M/A,G(M )). Let 
 : Aut(M/A) → Aut(B/A) be the projection homomor-

phism which via our assumptions is surjective.
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THE SHORT EXACT SEQUENCE IN DEFINABLE GALOIS COHOMOLOGY 7

Lemma 3.4. Let ϕ ∈ Z1
def(B/A,G(B)), then

– ◦
 : Z1
def (B/A,G(B)) → Z1

def(M/A,G(M ))

defined by ϕ → ϕ ◦ 
 is an injective map of pointed sets whose image is exactly the set
of definable cocycles in Z1

def(M/A,G(M )) which have definability parameter ā in B.
Moreover – ◦
 descends to an injective map on cohomology,


1 : H1
def (B/A,G(B)) → H1

def(M/A,G(M )).

Proof. Let ϕ be a definable cocycle from Aut(B/A) to G(B) with definability
data h(x̄, ȳ) and ā in B. We first check that ϕ ◦ 
 is still a cocycle witnessed by the
same definability data:

Let �, � ∈ Aut(M/A),

ϕ ◦ 
(��) = ϕ(
(�) · 
(�))

= ϕ(
(�)) · 
(�)(ϕ(
(�)))

= ϕ ◦ 
(�) · �(ϕ ◦ 
(�)).

So the cocycle condition is satisfied. For the definability condition, let � ∈
Aut(M/A). As ā is in B,

ϕ ◦ 
(�) = h(ā, 
(�)(ā)) = h(ā, �(ā)).

Since 
 is surjective, the map – ◦
 on cocycles is injective.
Let ϕ ∈ Z1

def(M/A,G(M )) with definability parameter ā coming from B. Let
� ∈ Aut(M/A). The definability condition ϕ(�) = h(ā, �(ā)) shows that ϕ(�) ∈
dcl(ā, �(ā)). By the normality of B and the assumption that B is dcl-closed, we
obtain ϕ(�) ∈ G(B). Furthermore, as ā comes from B and ϕ(�) = h(ā, �(ā)),
ϕ(�) depends only on the restriction 
(�) and so descends to a well defined map
on Aut(B/A) which we call ϕ̃. As ϕ̃ and ϕ have the same image, it is clear that
ϕ̃ ∈ Z1

def(B/A,G(B)) as witnessed by the same definability data. Lastly, ϕ̃ ◦ 
 = ϕ.
So the image of Z1

def (B/A,G(B)) under – ◦
 is exactly the subset of definable
cocycles in Z1

def (M/A,G(M )) which have definability parameter ā in B.
Let ϕ1 and ϕ2 in Z1

def (B/A,G(B)) be cohomologous as witnessed by g ∈ G(B).
As G(B) ⊆ G(M ), the same element g witnesses that ϕ1 ◦ 
 and ϕ2 ◦ 
 are
cohomologous. So the map on cocycles descends to a well defined map on
cohomology which we call 
∗.

Let ϕ1 and ϕ2 be cocycles from Aut(B/A) to G(B) with definability data h1,
ā1 and h2, ā2 respectively. Suppose that ϕ1 ◦ 
 and ϕ2 ◦ 
 are cohomologous via
g ∈ G(M ). So for all � ∈ Aut(M/A),

g–1h1(ā1, �(ā1))�(g) = h2(ā2, �(ā2)).

As ā1 and ā2 lie in B, for all � ∈ Aut(M/B) we have h(ā1, �(ā1)) = e and
h(ā2, �(ā2)) = e and therefore g–1�(g) = e. So g is fixed by the action of Aut(M/B).
Then as B = dcl(B), we have g ∈ G(B). So the same g witnesses that ϕ1 and ϕ2 are
cohomologous. We have then shown that the induced map on cohomology, 
∗, is
injective. �

We now alter and extend slightly the notation from [2] for pointed sets of
isomorphism classes of definable PHSs. We first make some observations.
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8 DAVID MERETZKY

As B is dcl-closed, if X1 and X2 are isomorphic A-definable PHSs for an A-
definable group G then X1 has a B-point if and only if X2 has a B-point. Moreover,
if (X1, p1) and (X2, p2) are isomorphic pointed PHS for G, p1 is a B-point of X1 if
and only if p2 is a B-point of X2.

Definition 3.5. The A-isomorphism classes of A-definable pointed PHS for G
whose representatives all have a B-point as their basepoint form a sub-pointed set
of Pdef(M/A,G(M )) which we will denote Pdef,∗(B/A,G(B)).

In addition, the set of A-isomorphism classes of A-definable PHS for G whose
representatives all contain a B-point form a sub-pointed set of Pdef(M/A,G(M ))
which we denote Pdef(B/A,G(B)).

Note that the identity of G is an A-point, so contained in B. So the isomorphism
class containing G is in Pdef(B/A,G(B)). Note also that the isomorphism class of
(G, e) is in Pdef,∗(B/A,G(B)). Thus Pdef,∗(B/A,G(B)) and Pdef(B/A,G(B)) are
nonempty.

Remark 3.6. As B is required to be dcl-closed, if X is any A-definable right PHS
for G with a B-point, then restricting the action of G on X to B-points, we see that
X (B) is an abstract right PHS for G(B) equivariant with respect to the left action
of Aut(B/A).

We now refine Proposition 1.1 to describe the setting of normal extensions of
parameters.

Proposition 3.7. There is a natural isomorphism

Pdef(B/A,G(B)) ∼= H1
def(B/A,G(B))

between the set of cohomology classes of definable cocycles from Aut(B/A) to G(B)
and the pointed set of isomorphism classes of A-definable PHS X for G which contain
a B-point.

The following lemmas trace the constructions (from [2]) of a cocycle in
Z1

def (M/A,G(M )) from a pointed PHS in Pdef,∗(M/A,G(M )) and vice versa. We
check that via these constructions the cocycles in the image of Z1

def (B/A,G(B))
under the map of Lemma 3.4 corresponds to Pdef,∗(B/A,G(B)), that is, cocycles
whose definability parameters come from B correspond exactly to pointed PHSs
which have a B-point as their basepoint.

Lemma 3.8. An A-definable pointed PHS (X,p) for G with p ∈ X (B) gives rise to
a cocycle ϕ : Aut(M/A) → G(M ) which has the B-point p ∈ X (B) as its definability
parameter.

Proof. As p ∈ X (B), �(p) ∈ X (B). We define ϕ by sending � ∈ Aut(B/A) to
the unique g� ∈ G(B) such that�(p) = pg� . The cocycle condition is easily checked.
Let Γ(�)(x̄, z̄, ȳ) define the graph of the definable action � : X ×G → X . Let
h(x̄, ȳ) = z̄ be the definable function whose graph is Γ(�)(x̄, z̄, ȳ). Then h(x̄, ȳ)
together with the parameter p witnesses the definability condition. �

Let ϕ : Aut(M/A) → G(M ) be a definable cocycle witnessed by an A-definable
function h and definability parameter ā from B. Note that as B ⊆M and M is
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THE SHORT EXACT SEQUENCE IN DEFINABLE GALOIS COHOMOLOGY 9

atomic over A, the type tp(ā/A) is isolated and is then given by an A-definable set
Z defined by a formula �(x̄). The following facts are from [2].

Fact 3.9. Let b̄ and c̄ be tuples from M having the same type as ā over A. Then
h(ā, c̄) = h(ā, b̄)h(b̄, c̄).

Fact 3.10. Let (ā1, g1) and (ā2, g2) be elements from Y (M ) := Z(M ) ×G(M ).
The binary relation defined by h(ā1, ā2)g2 = g1 is an A-definable equivalence relation
on this set. We will denote the equivalence relation by E.

Lemma 3.11. The definable cocycle ϕ, with definability parameter contained in B,
gives rise to a pointed PHS for G whose basepoint is a B-point.

Proof. By EI, the quotient of Y = Z ×G by E, is again an A-definable set X.
It is clear that G acts A-definably on the right on Y by multiplication on the right

on the G-coordinate. It is easy to see that this action preserves the classes of the
equivalence relation and so descends to an action on X : if g ∈ G , h(ā1, ā2)g2 = g1

iff h(ā1, ā2)g2g = g1g. Similarly, because G is a right torsor for itself, the action
is regular: Let (ā1, g1) and (ā2, g2) be elements of Y. As h(ā1, ā2), g1 and g2 are
elements of G, there is a unique element g ∈ G such that h(ā1, ā2)g2g = g1. That
is, g is the unique element such that (ā1, g1)E(ā2, g2g). We have shown that X is an
A-definable PHS for G.

Finally, the specified basepoint of X is the E-class of (ā, e) which lives in dcleq(B).
Note by EI and assumptions, dcleq(B) = dcl(B) = B . �

Before proving Proposition 3.7 we discuss the correspondence of Proposition 1.1.
Cocycles ϕ : Aut(M/A) → G(M ) correspond to isomorphism classes of pointed
PHSs for G. Cohomology classes of cocycles correspond to isomorphism classes of
PHSs for G, that is, cohomologous cocycles correspond to pointed PHSs which are
isomorphic as PHSs but not as pointed PHSs: There is an A-definable G-equivariant
bijection between the PHSs which is not neccesarily basepoint preserving.

Proof of Proposition 3.7. By Lemma 3.2, H1(B/A,G(B)) injects into the
cohomology set H1(M/A,G(M )). The image of this map is exactly the set of
cohomology classes containing a cocycle with definability parameter contained in B.

By Lemmas 3.6 and 3.9, cocycles with definability parameters contained in B
correspond exactly with pointed PHSs for G whose basepoint is a B-point. From the
preceding discussion, cocycles which are cohomologous to cocycles with definability
parameters from B correspond to pointed PHSs which are isomorphic as PHSs (but
not neccesarily as pointed PHS) to PHSs which have a B-point as basepoint, and so
themselves must contain a B-point.

We have shown that Pdef(B/A,G(B)), the pointed set of isomorphism classes of
PHSs whose representatives contain a B-point, is isomorphic as a pointed set to
H1

def (B/A,G(B)). �
We conclude this section by giving an alternative definition of a definable cocycle

from Aut(B/A) to G(B) using notions introduced in [3] and remark on the various
definitions of cocycles appearing in the literature.

Recall from [3] that a setY ⊆ Aut(M/A) is called definable if there is an A-formula
ϕ(x̄, ȳ) and a tuple b̄ from M such that

Y = {� ∈ Aut(M/A) :M |= ϕ(b̄, �(b̄))}.
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10 DAVID MERETZKY

Furthermore, let X be an A-definable set. We say that Λ, a subset of Aut(M/A) ×
X (M ), is definable if there is an A-formula ϕ(x̄, ȳ, z̄) and a tuple b̄ from M such
that

Λ = {(�, c̄) ∈ Aut(M/A) × X (M ) :M |= ϕ(b̄, �(b̄), c̄))}.
The following statement is [3, Lemma 3.5]. It gives either an alternative definition

or a characterization of definable cocycles: Let ϕ be a function from Aut(M/A) to
G. Then there is an A-definable function h(x̄, ȳ) and a tuple b̄ from M such that for
all � ∈ Aut(M/A)ϕ(�) = h(b̄, �(b̄)) if and only if the graph of ϕ is definable in the
above sense.

We now give a similar statement in the setting of a normal extension. In [3], the
following definitions (or a slight variation of them depending on the version) are
given.

Definition 3.12. A setY ⊆ Aut(B/A) is called definable if there is an A-formula
ϕ(x̄, ȳ) and a tuple b̄ from B such that

Y = {� ∈ Aut(B/A) :M |= ϕ(b̄, �(b̄))}.
Furthermore, let X be an A-definable set. We say that Λ, a subset of Aut(B/A) ×
X (M ), is definable if there is an A-formula ϕ(x̄, ȳ, z̄) and a tuple b̄ from B such
that

Λ = {(�, c̄) ∈ Aut(B/A) × X (M ) :M |= ϕ(b̄, �(b̄), c̄))}.
This gives an alternative characterization of the cocycles introduced in the

beginning of this section.

Lemma 3.13. Let ϕ be a function from Aut(B/A) to G(B). Then there is an A-
definable function h(x̄, ȳ) and a tuple b̄ from B such that for all � ∈ Aut(B/A)ϕ(�) =
h(b̄, �(b̄)) if and only if the graph ofϕ is definable in the sense of the previous definition.

We adapt the proof of Lemma 3.5 of [3].

Proof. Suppose that for ϕ : Aut(B/A) → G(B), there is a tuple b̄ from B and
definable function h(x̄, ȳ) = z̄ such that for all � ∈ Aut(B/A), ϕ(�) = h(b̄, �(b̄)).
Let Γ(h)(x̄, ȳ, z̄) be the graph of h. Now, (�, g) ∈ Γ(ϕ), the graph of ϕ, iff ϕ(�) =
g iff M |= h(b̄, �(b̄)) = g. So the graph of ϕ is definable via Γ(h)(x̄, ȳ, z̄) and
parameter b̄.

Suppose now that ϕ : Aut(B/A) → G(B) is a function whose graph is definable
via an A-formula �(x̄, ȳ, z̄) and parameter b̄ from B so that

Γ(ϕ) = {(�, g) ∈ Aut(B/A) ×G(M ) :M |= �(b̄, �(b̄), g)}.

Let �(x̄) isolate the type tp(b̄/A) and let Z be the associated definable set of
realizations of this type. We want to produce a definable function from h : Z2 → G
satisfying the definability condition of Definition 3.3 (ii).

Let b̄′ realize the type of b̄ over A. By the strong �-homogeneity of M over A
and normality of B, there is an automorphism � ∈ Aut(B/A) with �(b̄) = b̄′. Let
g = ϕ(�). Then by the definability of the graph of ϕ, M |= �(b̄, �(b̄), g) and so
M |= �(b̄, b̄′, g). So for any realization b̄′ of tp(b̄/A) there is at least one g ∈ G(B)
withM |= �(b̄, b̄′, g). Also, let g, g ′ ∈ G(M ) such that for some b̄′ realizing tp(b̄/A)
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THE SHORT EXACT SEQUENCE IN DEFINABLE GALOIS COHOMOLOGY 11

we have M |= �(b̄, b̄′, g) and M |= �(b̄, b̄′, g ′). Again, via strong �-homogeneity
and normality let �(b̄) = b̄′. ThenM |= �(b̄, �(b̄), g) andM |= �(b̄, �(b̄), g ′). By
the definability of ϕ we have (�, g) ∈ Γ(ϕ) and (�, g ′) ∈ Γ(ϕ) and since ϕ is a
function, g = g ′. So there is exactly one g ∈ G(M ) such that M |= �(b̄, b̄′, ḡ) for
any realization of tp(b̄/A). We therefore have that

M |= ∀ȳ ∃=1z̄ �(ȳ) ∧ �(b̄, ȳ, z̄).

Also as �(x̄) isolates the type of b̄, we have

M |= ∀x̄ ∀ȳ ∃=1z̄ �(ȳ) ∧ �(x̄) ∧ �(x̄, ȳ, z̄).

So �(ȳ) ∧ �(x̄) ∧ �(x̄, ȳ, z̄) is the graph of the desired definable function h :
Z2 → G with parameter b̄ from B satisfying the definability condition of
Definition 3.3 (ii). �

Remark 3.14. Concerning the various definitions of cocycles:
1. In the algebraic setting of [5], cocycles are defined to be continuous. If

Aut(M/A) is given the usual structure of a topological group where a
neighborhood base of the identity is the set of stabilizers of finite tuples
from M, and G(M ) is given the discrete topology, then continuity of a
cocycle ϕ is equivalent the cocycle condition together with the data of an
Aut(M/A)-invariant function h(x̄, ȳ) and a tuple ā from M such that for any
� ∈ Aut(M/A), ϕ(�) = h(ā, �(ā)). This observation is contained implicitly in
[2, Lemma 2.6]. This gives some motivation for the definition of a definable
cocycle.

InACF0, forM = acl(A) the function h(x̄, ȳ) is Aut(M/A)-invariant if and
only if it is A-definable so “invariant” and definable cocycles coincide. That is,
at the level of cocycles, Z1

def in the setting of ACF0 and Z1 coincide.
2. Kolchin’s constrained cohomology is defined in terms of what he calls

constrained cocycles, satisfy a generalization of the continuity condition.
He shows that these are closely connected to another set of cocycles called
differential rational cocycles whose definition is closer to the definability data
definition. The key point, see [2, Remark 2.8(ii)], is that despite the fact that the
set of constrained cocycles defined by Kolchin, Z1

Δ, is a priori slightly different
than the set of definable cocycles specialized to the theory DCF0, Z1

def , the
resulting sets of cohomology classes both classify differential algebraic PHSs
and so H 1

def for the theory DCF0 and H 1
Δ are equivalent i.e., isomorphic as

pointed sets.
3. We also remark that Kolchin suppresses the set of rational points on the

coefficients in his notation, writing H 1
Δ(L/K,G) instead of H 1

Δ(L/K,G(L))
for example.

§4. The short exact sequence in definable Galois cohomology. In this section we
show that a short exact sequence of automorphism groups arising from a normal
intermediate extension of parameters induces a short exact sequence in definable
Galois cohomology.

We will retain the same assumptions on M, A, T, and G from the previous
sections. Our statement here is slightly more general than that of the introduction;

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.8
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.56, on 26 Jun 2025 at 18:21:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.8
https://www.cambridge.org/core


12 DAVID MERETZKY

we generalize M in the earlier statement to an additional intermediate normal
extension C.

Let A ⊆ B ⊆ C ⊆M with B and C normal in M, dcleq-closed, such that every
elementary permutation of either B or C fixing A lifts to an automorphism of M
and such that M is atomic and strongly �-homogeneous over both B and C.

Definition 4.1. Let � ∈ Aut(C/A). Let ϕ ∈ Z1
def(C/B,G(C )) be a defin-

able cocycle. Let (P, p) be a pointed definable PHS representing a class in
Pdef,∗(C/B,G(B)). We define the transform of ϕ by �, denoted �(ϕ), to be the
map

�(ϕ)(�) := �(ϕ(�–1��))

for � ∈ Aut(B/C ). We define the the transform of (P, p) by �, denoted �(P, p) to
be the definable pointed PHS (�(P), �(p)).

Lemma 4.2. The transform induces a well defined action of Aut(B/A) on both
H1

def(C/B,G(C )) and Pdef (C/B,G(C )) such that the isomorphism between them is
equivariant with respect to this action.

Proof. Let (P, p) represent an isomorphism class in Pdef,∗(C/B,G(B)). Let � ∈
Aut(C/A). By the normality of B, �(P) is still a B-definable PHS for G containing
a B-point �(p).

Let (Q, q) be B-definably isomorphic as a pointed PHS to (P, p) via Φ. Then
again by normality, �(Φ) is a B-definable PHS isomorphism between (�(Q), �(q))
and (�(P), �(p)) so the transform is well defined on Pdef,∗(C/B,G(B)).

Let (P, p) correspond to a definable cocycle ϕ ∈ Z1
def (C/B,G(C )) via Lemma

3.8. We show that the transform of the cocycle ϕ by � is the cocycle corresponding
to the transform of (P, p). Let � ∈ Aut(C/B). Recall that �(p) is the base point of
�(P), so applying � we obtain

�(�(p)) = �(�–1(�(�(p)))) = �(�–1��(p))

= �(pϕ(�–1��))

= �(p)�(ϕ(�–1��))

= �(p)�(ϕ)(�).

So the cocycle corresponding to �(P, p) is exactly the transform �(ϕ). It is also
then clear that the transform by � ∈ Aut(C/A) depends only on its action on B and
therefore descends to an action of Aut(B/A).

A short computation shows that ifϕ and� inZ1
def (C/B,G(C )) are cohomologous

via g ∈ G(C ), then �(ϕ) and �(�) in Z1
def (C/B,G(C )) are cohomologous via

�(g) ∈ G(C ): Let ϕ(�) = g–1�(�)�(g). Then

�(ϕ)(�) = �(ϕ(�–1��))

= �(g–1�(�–1��)�–1��(g)))

= �(g–1)�(�(�–1��)��(g)

= �(g–1)�(�)(�)�(�(g)).
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THE SHORT EXACT SEQUENCE IN DEFINABLE GALOIS COHOMOLOGY 13

So Aut(B/A) acts via the transform on H1
def (C/B,G(C )) and Pdef (C/B,G(C ))

equivariantly with respect to the isomorphism between them. �

Theorem 4.3. The short exact sequence

1 → Aut(C/B) → Aut(C/A) → Aut(B/A) → 1

induces a short exact sequence in definable Galois cohomology

1 → H1
def(B/A,G(B)) → H1

def(C/A,G(C )) → H1
def(C/B,G(C ))Aut(B/A).

Proof. Let ϕ be a definable cocycle from Aut(B/A) to G(B) with definability
data h and a. Let 
 : Aut(C/A) → Aut(B/A) be the quotient map. As in the proof of
Lemma 3.2, we define a map fromZ1

def (B/A,G(B)) toZ1
def (C/A,G(C )) by sending

ϕ to ϕ ◦ 
. Now ϕ ◦ 
 is still a cocycle witnessed by the same definability data. Since

 is surjective, this map on cocycles is injective. Let ϕ1 and ϕ2 in Z1

def (B/A,G(B))
be cohomologous as witnessed by g ∈ G(B). AsG(B) ⊆ G(C ), the same element g
witnesses thatϕ1 ◦ 
 andϕ2 ◦ 
 are cohomologous. So the map on cocycles descends
to a well defined map on cohomology which we call 
1.

Let ϕ1 and ϕ2 be cocycles from Aut(B/A) to G(B) with definability data h1,
ā1 and h2, ā2 respectively. Suppose that ϕ1 ◦ 
 and ϕ2 ◦ 
 are cohomologous via
g ∈ G(C ). So for all � ∈ Aut(C/A) and moreover for all � ∈ Aut(M/A),

g–1h1(ā1, �(ā1))�(g) = h2(ā2, �(ā2)).

As ā1 and ā2 lie in B, when � ∈ Aut(M/B), h1(ā1, �(ā1)) = e and h2(ā2, �(ā2)) = e,
and then g–1�(g) = e. Thus g is fixed under all automorphisms of M fixing B. As M
is atomic and strongly�-homogeneous over B, we have g ∈ dcl(B). As dcl(B) = B ,
we have that g ∈ G(B). Then g witnesses that ϕ1 and ϕ2 are cohomologous. Thus
the induced map on cohomology, 
1, is injective.

Let  : Aut(C/B) → Aut(C/A) be the inclusion map. Precomposition by  gives
a map of cocycles from Z1

def (C/A,G(C )) → Z1
def (C/B,G(C )) which induces a

well defined map on cohomology 1: The same definability data witnesses that
precomposition gives a map of definable cocycles and the same element of G(C )
witnesses the cohomology relation on the restriction of the cocycle. Note that for
cocycles in Z1

def (C/A,G(C )), precomposition by  is equivalent to restriction to
Aut(C/B).

We now show that the image of 1 is contained in the fixed points of the action
of Aut(B/A) on H1

def(C/B,G(C )) via the transform. Let � ∈ Aut(C/A) be a lift of
some �̂ ∈ Aut(B/A). Letϕ ∈ Z1

def(C/A,G(C )), we show that the transform �(ϕ ◦ )
is cohomologous to ϕ ◦ . Let � ∈ Aut(C/B). Then

�(ϕ ◦ )(�) = �(ϕ(�–1��))

= �(ϕ(�–1))�(�–1(ϕ(�)�(ϕ(�))))

= �(ϕ(�–1)ϕ(�)�(ϕ(�)))

= g–1ϕ(�)�(g)

where g = ϕ(�) ∈ G(C ). So the cocycles �(ϕ ◦ ) and ϕ ◦  are cohomologous via
ϕ(�). Hence the image of 1 is contained in H1

def(C/B,G(C ))Aut(B/A). Note that we
really need a class in the image: If ϕ were an arbitrary cocycle in Z1

def (C/B,G(B))
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14 DAVID MERETZKY

then while it is true that �–1�� ∈ Aut(C/B), � is not necessarily in Aut(C/B) and
so we could not conclude that ϕ(�–1��) = ϕ(�–1)�–1(ϕ(�)�(ϕ(�))) needed for the
second equality of the computation.

Choose a cohomology class from H1
def(C/A,G(C )) in the image of 
1. By

definition this class has a representative cocycle ϕ such that ϕ = � ◦ 
 where
� ∈ Z1

def (B/A,G(B)). Then ϕ ◦  = � ◦ 
 ◦  which is the constant cocycle. Since 1

is a well defined map on cohomology, the image of the original class must be trivial
i.e., cohomologous to the constant cocycle. So the image of 
1 is contained in the
kernel of 1.

We now check that the kernel of 1 is contained in the image of 
1: Choose a
cohomology class from H1

def(C/A,G(C )) in the kernel of 1. The first claim is that
this class must contain a representative mapping to the constant cocycle: If ϕ′ is
a representative of a class in the kernel of 1 then there is a g ∈ G(C ) such that
∀� ∈ Aut(C/B), ϕ′(�) = g–1�(g). But then gϕ′�(g–1) is another representative of
the class of ϕ′ which maps to the constant cocycle.

Let ϕ be a representative of our cohomology class in the kernel of 1 such that
ϕ ◦  is the constant cocycle. The cocycle ϕ is a map from Aut(C/A) to G(C ) which
sends the subgroup Aut(C/B) to the identity of G(C ).

We now show that the definability data for ϕ can be re-chosen so that the
parameter comes from B: Let h(x̄, ȳ), ā be the original definability data for ϕ.
Let Z be the A-definable set tp(ā/A); recall that M is isolated over A. From h(x̄, ȳ)
and ā, we can produce, as in Lemma 3.11, a pointed PHS for G whose underlying
definable set is (Z ×G)/E where E is the A-definable equivalence relation defined by
(ā, g)E(ā′, g ′) if h(ā, ā′)g ′ = g. The basepoint of this PHS is the E-class (a, e)/E
which furnishes new definability data for ϕ as in Lemma 3.8.

Now, let � ∈ Aut(C/B). Then �((ā, e)/E) = (ā, e)/E as h(ā, �(ā))e = e. So
(ā, e)/E is fixed pointwise by the action of Aut(C/B), so (ā, e)/E ∈ B .

We may now assume that ϕ has definability parameter ā coming from B. As
in the proof of Lemma 3.4, the definability condition ϕ(�) = h(ā, �(ā)) shows
ϕ(�) ∈ dcl(ā, �(ā)) and so by the normality of B and the fact that dcl(B) = B ,
the image of ϕ is contained in G(B). As the definability parameter is contained
in B, ϕ descends to a well defined map ϕ̃ from Aut(B/A) to G(B), and moreover
ϕ̃ ◦ 
 = ϕ. We show that ϕ̃ still satisfies the cocycle condition: Let �, � ∈ Aut(C/A)
and �̃, �̃ ∈ Aut(B/A) with 
(�) = �̃ and 
(�) = �̃

ϕ̃(�̃�̃) = ϕ(��)

= ϕ(�)�(ϕ(�))

= ϕ̃(�̃)�̃(ϕ̃(�̃))

where the last equality holds because the image of ϕ is contained in B. The same
definability data for ϕ shows that ϕ̃ is a definable cocycle. The class of ϕ is then the
image of the class of ϕ̃ under 
1. �
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referee for suggesting the inclusion of an adaptation of Serre’s transform action on
the final term of the short exact sequence.

REFERENCES

[1] E. R. Kolchin, Differential Algebraic Groups, Academic Press, Orlando, FL, 1985.
[2] A. Pillay, Remarks on Galois cohomology and definability. Journal of Symbolic Logic, vol. 62

(1997), no. 2, pp. 487–492.
[3] ———, Automorphism groups of prime models, and invariant measures, preprint, 2024,

arXiv:2405.11878 [math.LO].
[4] O. L. Sánchez, D. Meretzky, and A. Pillay, More on Galois cohomology, definability, and

differential algebraic groups. The Journal of Symbolic Logic, vol. 89 (2024), no. 2, pp. 496–515.
[5] J.-P. Serre, Galois Cohomology, Lecture Notes in Mathematics, vol. 5, Springer, Berlin, 1979.
[6] K. Tent and M. Ziegler, A Course in Model Theory, Lecture Notes in Logic, vol. 40, Cambridge

University Press, Cambridge, 2012.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NOTRE DAME

NOTRE DAME, IN 46556
USA

E-mail: dmeretzk@nd.edu

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.8
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.56, on 26 Jun 2025 at 18:21:46, subject to the Cambridge Core terms of use, available at

https://arxiv.org/abs/2405.11878
mailto:dmeretzk@nd.edu
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.8
https://www.cambridge.org/core

	1 Introduction and preliminaries
	2 Normal extensions
	3 Definable Galois cohomology for normal extensions
	4 The short exact sequence in definable Galois cohomology

