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DISCRETE PRODUCT SYSTEMS WITH TWISTED UNITS

MARCELO LACA

The spectral C*-algebra of the discrete product systems of H.T. Dinh is shown to
be a twisted semigroup crossed product whenever the product system has a twisted
unit. The covariant representations of the corresponding dynamical system are al-
ways faithful, implying the simplicity of these crossed products; an application of a
recent theorem of G.J. Murphy gives their nuclearity. Furthermore, a semigroup of
endomorphisms of B(H) having an intertwining projective semigroup of isometries
can be extended to a group of automorphisms of a larger Type I factor.

INTRODUCTION

Discrete product systems and their C*-algebras were introduced by Dinh in [4] in
connection with discrete semigroups of endomorphisms of type I factors; the theory was
further developed in [5, 6] and a few basic facts are listed in Section 1.

Dinh showed that in general the C*-algebra of a product system is simple [4] and,
assuming the existence of a unit, that it is a full corner in a classical crossed product,
from which nuclearity follows, [6]. The key fact behind his proof of simplicity is the
existence of a dual action. This, together with some quite technical results concerning
the fixed point algebra, makes it possible to follow an argument similar to Cuntz's [3].

Since the known examples of product systems have twisted units, it is natural to ask
whether their C*-algebras are twisted semigroup crossed products in some sense. With
this question in mind we give in Section 2 a brief introduction to twisted semigroup
crossed products developed around a universal property for covariant representations
along the lines of [10, 11, 1, 8], and then state a twisted version of a theorem about
faithful representations of semigroup crossed products [2, 1].

In Section 3 we show how, assuming the existence of a twisted unit, the spectral
C*-algebra of a semigroup of endomorphisms of B(H) can be seen as a semigroup
crossed product. The hard bits of the argument involving the fixed point algebra of the
dual action are actually independent of the existence of units and are borrowed from
Dinh's work. The main point here is to make the crossed product structure explicit in
the hope that it will lead to a better understanding of the role of units in a discrete
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product system. As applications of the twisted crossed product structure of the spectral
C*-algebras, we derive their simplicity from the material in Section 5 and nuclearity
from a recent theorem of Murphy.

Another consequence of the existence of twisted units is obtained in Section 4 where
a dilation theorem of Phillips and Raeburn [9, Theorem 2.1] (see also [7, Corollary
2.4]) is used to extend a semigroup of endomorphisms of B(H) having an intertwining
projective semigroup of isometries to a group of automorphisms of a Type I factor,
generalising [5, Theorem 3.1].

The author would like to thank Hung Dinh for generously sharing his insight on
discrete product systems.

1. DISCRETE PRODUCT SYSTEMS

Let F + denote the positive cone of a countable discrete subgroup F of K. An
abstract discrete product system over F+ is the disjoint union of a family of separable
Hilbert spaces {Et : t G F + } on which there is an associative, bilinear multiplication
(x,y) G Eg x Et •—> xy G E,+t which acts like tensoring in the sense that

(i) E,Et spans a dense subset of E,+t, and
(ii) (xx',yy') = (x,y)(x',y') whenever x,y G Et and x',y' G Eti.

This establishes a natural Hilbert space isomorphism between E, (8> Et and E,+t •

A discrete product system is concrete if it consists of operators in B{H) with
operator multiplication and inner product given by T*S = {S,T)I for S,T G Et C
B(H). In this case,

t _ ( Et-. if a ^ t,

[ E*_t otherwise.

A representation of a discrete product system E on a Hilbert space 27 is a map
<£:£-> B(H) such that

(i) <j>{xy) = <f>{x)<j){y) for x £ E, and y G Et.

(ii) (x,y)I = <j>(y)*<t>(x) when x,y £ Et.

This is enough to imply that <f> is linear and, in fact, isometric on each fiber Et. Hence

4>(E) is a concrete product system isomorphic to E.

If 7 : F + —• end(jB(27)) is a representation of F + by *-endomorphisms of B(H)

then

Et = {Te B{H) : TA = jt(A)T for all A G B{H)}

is a concrete product system over F + , and every concrete product system over F +

arises this way. The endomorphisms can be retrieved from E by taking an orthonormal
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basis {V^}ngN for each Et and letting

Thus 7t is unital if and only if £)n V£Vf? = I, which happens if and only if
spans a dense subspace of H, in which case we say that E is essential. Since F + is
Archimedean, if 74 is unital for a single t ^ 0 then it is unital for every t £ F + .

DEFINITION: A function <r : T+ xF+ —> T is a multiplier on F+ if a(r, s)a{r + s,t) =
a(r, s + t)a(s,t) for r, s, t £ F+ .

A a-unit (or twisted unit) for -E is a nonzero cross-section w : V+ —» .E, Wt E Et,
such that iOaiut = o-(s,<)ti;s+t for s,< £ F + .

Since ||to,4.t|| = ||iu»|| ||wt||) ||tx̂ 11 is never zero and Vt = Wt/ \\ivt\\ is a normalised
twisted unit. In a concrete product system such units are the projective representations
of F+ by isometries Wt which intertwine the associated semigroup of endomorphisms,
that is, WtA = *ft{A)Wt- Dinh has constructed a product system in which the only
units are twisted by a [4].

A product system E over T+ generates a universal C*-algebra C*(E) such that
for any representation <j> of E, x t-» 4>(x) extends to a C*-algebra homomorphism of
C*(E) onto C*(4>(E)). C*{<I>(E)) is canonically independent of <£ because C*(E) is
simple [4].

2. TWISTED SEMIGROUP CROSSED PRODUCTS

Let F+ be a countable dense subsemigroup of K+, and suppose a : T+ x T+ —» T
is a multipher on F + . A twisted covariant representation of the semigroup dynamical
system (A,F+,a) with multiplier a- is a pair (TT, V) in which w is a unital repre-
sentation of the C*-algebra A, V is an isometric cr-representation of F + , that is,
V,Vt = a(s,t)V,+t, and the covariance condition 7r(ai(o)) = Vtir(a)Vf for 0 £ A and
t £ F+ is satisfied. When concerned only with twisted covariant pairs with a specific
multiplier a, we shall refer to the dynamical system as a twisted dynamical system and
denote it by (A,T+ ,a,a).

The crossed product of the system (A,T+ ,a,a) is defined in a manner similar to
the way in which the crossed product by a group action is defined in [10], by way of a
universal property with respect to twisted covariant pairs. If there exists at least one
nontrivial covariant pair for the system (A, F + , a , <T) , an essentially unique C*-algebra
A^aiCrT

+ can be constructed together with a unital homomorphism t^i : A —» j4>4aiOT+

and a twisted embedding of F + as isometries i r + : F + —» A x Q ) a F + such that

(1) (*Ai*r+) is a covariant pair for (A, F + , a, a),
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(2) for any other covariant pair (n,U) there is a representation TT X U of
A xa,<T r + such that n — (ir x U) o i& and U = (TT X U) O zr+ , and

(3) A Xat<7 F
+ is generated by IA(-A) and ir+(F+) as a C*-algebra.

The details are similar to those for the untwisted case [1]: the difficulty resides in
showing that a given system actually has covariant representations. This is the case in
Section 3 because covariant pairs for the dynamical system correspond to representa-
tions of a product system, which are known to exist by [4, Section 3].

Faithful representations of the twisted crossed product can be characterised as in
Theorem 1.2 of [1]; the same proof works because the multiplier cancels out in all the
crucial places.

THEOREM 2 . 1 . Let a be a multiplier on F + , and suppose (TT, V) is a covariant
representation for the twisted system (A,T+ ,a,<r) such that

(i) 7r is faithful, and
(ii) for all finite subsets F of F+' and all choices of ax<y £ A,

x€F

Then TT X V is a faithful representation of A xa,a F
+.

3. THE TWISTED SYSTEM (FE,r+,a,i

Let E be a discrete product system over F + . The maps

3t. :B(E.)-+B{Et)SiB(E.)<

where s ^ t and It-, denotes the identity operator on Et-a, form a system of unital
embeddings which is coherent because of the associativity of multiplication on E. Thus
the product system gives a directed system of C*-algebras, each one isomorphic to
B(Et). The direct limit of this system will be denoted by Boo. Since each embedding
is injective, each B{Et) embeds as a subalgebra Bt of Boo- The corresponding copy of
the compact operators JC(Et) in Boo will be denoted by K.t- Following [4, Definition
2.6], we define a C*-algebra

Ĵ K.t C B».— span

Since F + is countable, TB is an AF algebra, generated by the 'rank-one' elements
Rxy = (,y)x for x,y £ Et at each level t G F + .
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From now on we assume that E has a normalised twisted unit v, with multiplier

a G Z 2 (F+ ,T) , that is, for each t G F+ there exists vt G Et, with ||t>«|| = 1 and

v,vt = £r(a,t)v,+t for a,t G F + .

Denote by e, the rank-one projection Rv,,v. for s G F + , and define 'tensoring on

the left by e. ' b y (e, <g> •) : X G B{Et) •-» e. ® X G B(JS,+«), using the identification of

E.+t with E,®Et.
Since for every s,t G F+ tensoring on the left by e, commutes with tensoring on

the right by It, we obtain the following commutative diagram:

B(£P) > B(Et) > • B o o

(3.1) je.®- le,®- o .

®A-r ®J
B{E,+r) > B(BJ+«) > -Boo

which gives an endomorphism a, of B^ for each s G F + . Since K G ACf implies
a,(/if) G /C, ® /Ct = £,+t, a, restricts to an endomorphism of TB- In particular,
o-t{Rxyy) = -RvtSiVty a n d OLQ is the identity.

The semigroup property for {a«},6r+ reduces to e, ® e< = e,+«, which can be
proved by applying the left hand side to an elementary tensor / % g with / G E, and

{e. ® et){f ® g) = (f,v,){g,vt)(y,®vt) = {f ®g,v.®vt)v.

and then using multiplication on E instead of tensor products to obtain

(fg,v,vt)v.vt = (fg,a{a,t)v.+t)<r(s,t)v,+t = e.+t(fg).

The following two propositions establish the relation between covariant representations
of the twisted semigroup dynamical system (^£,r+,a,ff) and representations of the
product system E.

PROPOSITION 3 . 1 . Suppose E is a product system over F+ with a. normalised
a-unit v. If (f> : E —> B(H) is a representation of E on a Hilbert space H, then there
exists a covariant representation (i>)V^) of (.77E,r+,a,a) on H such that for each
t G F + , V^>t = <f>(vt) and 7r^(i2IiB) = <f>{x)4>(y)* for x,y G Et. Moreover, the pair

(n<p, V$) satisfies conditions (i) and (ii) of Theorem 2.1.

PROOF: The elements Rx,y — {•>y)x for x,y G Et span a dense subspace of
K.(Et). The map 7r̂  defined by ir<ti{Rx,y) = ^(2)^(3/)* is multiplicative and contractive
on linear combinations [4, Proposition 2.10], so it extends to a representation of TE-
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It is clear that V^it — <f>(vt) defines a <r-representation of F + by isometries on H, and
it suffices to show covariance on the rank-one generators at each level;

T<t,{<*.(Rz,y)) = 7T«(e, ® Rx,y) = ^{Rv.^v.y) = <t>{vMx)<t>{v.y)*

Since TE — span\JfCt, in order to show that 7r̂  is faithful it suffices to show that
t

n

it is faithful on each of the subalgebras span |J Kt. where ti < t2 < ... < tn (by
n

convention assume K.Q = CI). The ideals of span U Ktj are nested and the smallest

one is Ktn , [4, Lemma 2.14]. Taking RXfX with 0 ^ x 6 Etn shows that TT̂  does not

vanish on Ktn •

Let x,y G Et\ ii s ^ t the operator

is in 4>{E,-t)*4>{E,-t), hence it is a scalar, while if s < t, it is in <j>(Et-,)<f>(Et-,)*. In
any case V*ir^,(!FE)Va C T:^{TE) and condition (ii) becomes

n

^.7T,^(ai) + 7T0(oo) + j
t = - l » = 1

for ai G ^ E and << 6 F + for i = 0 ,±l ,±2, . . . ,dtzn. This key fact is proved in
[4, Proposition 2.16] by constructing a projection Q (denoted 7tn(-P) there) with the
familiar two properties:

||Qir(ao)Q|| = |Koo)|| and Qv{ai)Vt.Q = 0 if U ̂  0,

which make Cuntz's argument work. u

PROPOSITION 3 . 2 . Suppose E is a product system over F+ with a normalised
cr-unit v. If (ir, V) is a covariant pair for (^rB,F+,a)a-) then

extends to a representation of E such that 7r = TTQ and V — VQ.

PROOF: If / e E. and g £ Et, then

, , , ) ^ - v;ir(R.tdlRf,vt)vt
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and

,v.vt)V.Vt = n(Rf,v. )TT (*(S, t)R..g,v.+t )tr[a, t)V.+t

Thus 4> is a representation of E.

By definition, (j>(vt) = n(RvtlVt)Vt = ir(at(I))Vt, which by covariance equals
VtIVt*Vt = Vt. For f,g€Et,

f,g) = <Kf)4>(9)* = *(Rf,vt)VtVt*iv(Rg,vt)* = n(Rf<VtRvt<vtRVt,g) = ir(Rf,g),

hence (7r^,V^) = (7r,F). D

THEOREM 3 . 3 . If E is a product system over T+ having a a-unit then C*(E)
is isomorphic to TE »a,tr T+, hence nuclear and simple.

PROOF: By the corresponding universal properties, the bijection between repre-
sentations of E and covariant representations of {J-E,T+ ,a,<r) gives an isomorphism
between C*(E) and TE ^a,a T+. Since every covariant representation arises as in
Proposition 3.1, every representation of TE xia^F"1" is faithful, hence C*(E) is simple.
For nuclearity it suffices to observe that since the endomorphisms a, are injective and
the algebra TE is AF, the system (TE,T+,a,<r) satisfies the hypothesis of [8, Theorem
3.1]. D

Although O.S(J-E) is hereditary for every s £ S, we are unable to use [8, Theorem
4.2] to conclude the faithfulness of every covariant pair because it is not clear how to
construct a dual action at the level of the represented crossed product. Thus the key
reference to [4, Proposition 2.16] in the proof of Proposition 3.1 seems unavoidable.
Furthermore, [8, Theorem 5.2] does not apply to the present situation because TE
contains copies of the compact operators, and cannot have a faithful tracial state.

4. MINIMAL AUTOMORPHIC EXTENSIONS

Dinh proved in [5] that a semigroup of endomorphisms of a type I factor with an
intertwining semigroup of isometries can be extended in a minimal way to a group of
automorphisms of a larger type I factor M . His proof uses the intertwining isometries
to construct a directed system of Hilbert spaces whose inductive limit is the Hilbert
space on which M acts naturally.

The goal of this section is to derive a relatively short proof of a more general
result from a dilation theorem for projective isometric representations of semigroups [9,
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7]. The extra generality is obtained by requiring the existence of only an intertwining
projective representation of the semigroup by isometries, and by observing that the
argument works for the normal cancellative semigroups discussed in [7].

A cancellative semigroup S is normal if xS = Sx for every x £ S, in which case it
can be embedded as a generating subsemigroup of a group G in an essentially unique
way. Denning x >- y to mean x £ Sy gives a partial directed preorder on G which is
invariant under multiplication by elements of 5, [7, Remark 1.2].

THEOREM 4 . 1 . Let S be a countable normal subsemigroup generating the group
G and suppose a is a representation of S by unital endomorphisms of B(H), with H
separable, such that

a,(T)V, = V,T, forseS, T£ B{H),

for some projective isometric representation V of S with multiplier a £ Z2(S, T).
Then there are a separable Hilbert space 7i, a representation 5 of G by auto-

morphisms of B{Ti) and a unitai embedding ip of B(H) as a subfactor of B(H), such
that

(i) a extends a , in the sense that a, leaves <p(B(H)) invariant and a3otp =
(p o a, for s £ S, and

(ii) the extension is minimal, in the sense that ( [j ax<p(B(H))) = B(7i).
x€G

PROOF: The intertwining family of isometries {V, : s 6 5} satisfies the hypothesis
of Theorem 2.1 and Corollary 2.4 of [7], thus, retaining the notation from there, there
exists a Hilbert space "H and a dilation of the isometries from H to a projective unitary
representation U of G on H, whose multiplier extends a. Define automorphisms of
B{H) by ax(A) = UXAU* for A € B{H). It all reduces to denning the right embedding
of B(H) into B{H).

From the proof of [7, Theorem 2.1], recall that 7i is the completion of the pre-
Hilbert space Ho of functions / : 5 —> H for which there is some element s £ S, called
admissible for / , such that

f(y) - "iy*-1, ')Vv.-r (/(-)) for y £ sS,

under the pre-inner product denned by {f,g) = (f(s),g(s)) for s admissible for both
/ and g. For A £ B(H) and / in Ho let

(<p(A)f)(s) - a.(A)f(s), s £ S.

The following computation shows that <p(A)f is in HQ as well, by showing that any
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value of s admissible for / turns out to be admissible for <f(A)f,

(<p(A)f)(y) = ay(A)f(y) = ay(A)a(y3-\

The third equality holds because of the intertwining property of V. By the definition of
the inner product on Ho, {<p(A)f,<p(A)f)n = {a.(A)f(s),a.(A)f(3))H ^ \\A\\2 \\f\\2 ,

where s is any admissible value for / . Thus ||<p(.A)|| ̂  ||A|| and <p(A) extends uniquely
to all of H.. Routine computations, which depend on a, being a unital *-endomorphism
for each s £ 5 , show that <p is in fact a unital representation of B(H) on 7i. Since 7i
is separable, ip is an embedding of B(H) as a subfactor of B(H).

To check that a, is an extension of a, for every s G 5 , let / € HQ and s,t 6 S
and compute

= <r(t, s) (<p(A)f) (ts) = <r(t, s)au(A)f(ts)

= at(a.(A))(U.f)(t) = (<p(

This proves that a,(<p(A)) = (p(a,(A)) for every s 6 5 and A S B(H).
The embedding £ i-> £ of H in 7i defined by £(s) = V,£ is compatible with tp in

that <p(T)£(3) = a,(T)V,t - V.Ti = T£ for every T G B(H).
To prove (ii) we shall show that every unit vector g £ "H is cyclic for the action of

\J5x(<p(B(H))) onH.

Suppose £ is an arbitrary nonzero element of H and e > 0. Choose a unit vector
/ G Ho with | |/ - y|| < e/ ||£||. Let s be admissible for / , thus ||/(«)|| = ||/|| = 1 and
denote by T the rank-one operator (•,/(«))£ on H, so Tf(s) - £ and ||T|| = ||^||. By
the last paragraph in the proof of [7, Theorem 2.1], / = U*f{a) and

= u:<p(T)u,u:f(3) = u:<p{T)f{8) = CT;T/(*) = u*.i,

hence
H^MT))* - U:t\\ < \\<p(T)\\ \\g - /|| < e.

Thus the closure of U.gs"71(¥'(^(^)))5 contains U»es^»^> w n i c n by [7, Theorem
2.1 (ii)] is dense in H. Therefore \JX ax(tp(B(H))) consists of scalars only. D

Since the dilation Hilbert space H constructed in Theorem 4.1 generalises the
direct limit considered in [5] to the case in which the embeddings are twisted by a
2-cocycle, one may view "H as the 'direct limit of a twisted system' of Hilbert spaces.
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