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Positivity, plethysm and hyperbolicity of Siegel

varieties in positive characteristic

Thibault Alexandre

Abstract

We study hyperbolicity properties of the moduli space of polarized abelian varieties
(also known as the Siegel modular variety) in characteristic p. Our method uses the
plethysm operation for Schur functors as a key ingredient and requires a new positivity
notion for vector bundles in characteristic p called (ϕ, D)-ampleness. Generalizing what
was known for the Hodge line bundle, we also show that many automorphic vector
bundles on the Siegel modular variety are (ϕ, D)-ample.

1. Introduction

1.1 General picture

Let p be a prime number. This article is concerned with the interplay in characteristic p of the
following three topics: positivity of vector bundles in algebraic geometry, the plethysm operation
on Schur functors (and symmetric functions) and hyperbolicity properties of the moduli space
of polarized abelian varieties (also known as the Siegel modular variety). It is well-known that
positive vector bundles can be used to prove hyperbolicity results: a crucial new observation
in our work is a link between the plethysm operation and hyperbolicity properties of Siegel
varieties.

Hyperbolicity of Siegel varieties

Plethysm operationPositivity of vector bundles

1.2 History and motivation

1.2.1 Hyperbolicity over a number field. One of the most celebrated results in Diophantine
geometry is the following.
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T. Alexandre

Theorem [Fal83]. Consider a geometrically integral smooth projective curve C over a number
field K/Q. The following three assertions are equivalent.

(1) For all finite extension F/K, the set of F -rational points of C is finite.

(2) Every holomorphic map C→Can
C

is constant.

(3) The canonical bundle ωC is big, equivalently the genus g of C satisfies g≥ 2.

A curve satisfying these assertions is called hyperbolic and generalizing hyperbolicity to
higher-dimensional varieties is an open problem. One might be tempted to consider the
following three definitions of hyperbolicity which are conjectured to be equivalent [Lan86,
Conjecture 5.6/5.8].

Definition. Let X denote a projective variety over a number field K/Q:

(1) X is arithmetically hyperbolic if for all finite extension F/K, the set of F -rational points
of X is finite;

(2) X is Brody hyperbolic if every holomorphic map C→Xan
C

is constant;

(3) X is algebraically hyperbolic1 if every integral subvariety V of XC is of general type, i.e.
there exists a desingularization Ṽ → V such that ωṼ is big.

What can be said about the algebraic hyperbolicity of the moduli space Ag,N → SpecQ
of g-dimensional polarized abelian varieties with a full level N -structure? Since this moduli
space is not proper, we should replace condition (3) with the condition that all subvarieties are
of log general type. We recall that a variety V is of log general type if there exists a proper
desingularization V → Ṽ and a smooth projective variety W together with an open embedding
Ṽ ⊂W with D :=W � Ṽ a normal crossing divisor such that ωW (D) is big. The moduli space
Ag,N is known to be algebraically hyperbolic [Zuo00, Bru18].

1.2.2 Algebraic hyperbolicity of Ag,N over a field of characteristic p. Let us replace the base
field K by k, an algebraically closed field of characteristic p. Since desingularization techniques
do not always exist in characteristic p, we restrict ourselves to smooth subvarieties. Assume that
p does not divide N and consider a smooth projective toroidal compactification Ator

g,N of the
Siegel modular variety over k and write D for its boundary as a normal crossing divisor. In
this context, we say that a smooth subvariety ι : V ↪→Ator

g,N such that ι−1D remains an effective

Cartier divisor is said of log general type with respect to D if the log canonical bundle ωV (ι
−1D)

is big.

Question (Characteristic p). Is Ator
g,N algebraically hyperbolic over k? In other words, is every

subvariety

ι : V ↪→Ator
g,N ,

such that ι−1D is well defined, of log general type with respect to D?

The answer to this question is, in fact, negative. In [Mor81], Moret-Bailly constructed a non-
isotrivial family A→ P1 of principally polarized supersingular abelian surfaces with a full level
N -structure over the projective line over Fp. This family yields a closed immersion P1 →A2,N

which contradicts the hyperbolicity of Ator
2,N . The main objective of this article is to investigate

the failure of hyperbolicity of Siegel varieties in positive characteristic.

1The terminology algebraically hyperbolic is also used by Demailly and many others such as Rousseau and Riedl
for another notion of hyperbolicity.
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Positivity, plethysm and hyperbolicity of Siegel varieties

1.3 Our main result

From now on, the letter k will denote an algebraically closed field of characteristic p. To simplify
our notation we will denote by Sh the Siegel variety of genus g over k (instead of Ag,N ) and
Dred the boundary of a smooth projective toroidal compactification Shtor. Motivated by the
Green–Griffiths–Lang conjecture (8.8), it is natural to expect that there is some exceptional
locus E ⊂ Shtor such that for any smooth subvariety V not contained in the boundary, V is of
log general type if and only if V �E. Our main result about the hyperbolicity of the Siegel
varieties is the following.

Theorem 1 (Corollary 8.7). Assume that p≥ g2 + 3g+ 1. Any subvariety ι : V ↪→ Shtor of
codimension ≤g− 1 satisfying the following:

(1) V is smooth;

(2) ι−1Dred is a normal crossing divisor;

is of log general type with respect to D.

This indicates that the hypothetical exceptional locus E ⊂ Shtor has a codimension strictly
larger than g− 1 and we believe it has exactly codimension g.

Remark .

(1) Theorem 1 is actually a corollary of Theorem 4 which is stated at the end of the
introduction.

(2) For simplicity, we have restricted ourselves to smooth subvarieties but Theorem 1 should
also hold for non-smooth subvarieties if we use the definition of the logarithmic Kodaira
dimension of a variety in positive characteristic which appears in [Abr94, p. 46] and [Luo87,
Luo88] and we adapt our arguments using, for example, [Abr94, Lemma 5, p. 46] in the
proof of our Lemma 8.3.

(3) When g= 1 and p= 2 or 3, there exist families of non-isotrivial elliptic curves over
the multiplicative group Gm. Specifically, consider the families y2 = x3 + x2 − t in char-
acteristic 3 and y2 + xy= x3 + t in characteristic 2 where t∈Gm. In both cases, the
j-invariant is j = 1/t, so the curves are non-isotrivial. Since Gm is a smooth curve not
of log general type, these examples show that the bound p≥ g2 + 3g+ 1= 5 in Theorem 1
is sharp when g= 1. For g > 1, it is not known whether counterexamples exist when
p < g2 + 3g+ 1.

(4) The codimension assumption in Theorem 1 indicates that the Siegel modular variety Shtor

exhibits an intermediate form of pseudo-hyperbolicity, as suggested by the intermediate
Lang conjectures (see [Lan86]). These conjectures predict that varieties of general type
should not contain ‘large’ subvarieties that are not of general type. Our result aligns
with this expectation by showing that any smooth subvariety of codimension ≤ g− 1
intersecting the boundary normally is of log general type.

1.4 A new positivity notion for vector bundles in characteristic p

In order to prove Theorem 1, we introduce and study a positivity notion for vector bundles which
is weaker than ampleness but stronger that nefness and bigness. Assume that X is a projective
scheme over k and D is an effective Cartier divisor on X. Since this positivity notion involves
the relative Frobenius map ϕ :X→X(p), we have decided to call it (ϕ, D)-ampleness.
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Definition. A vector bundle E over X is said to be (ϕ, D)-ample if there is an integer r0 ≥ 1
such that for all integers r≥ r0, the vector bundle E(pr)(−D) := (ϕr)∗(ϕr)∗ E ⊗OX(−D) is ample.

Our main motivation comes from the fact that the Hodge line bundle ω := det Ω is not always
ample on a toroidal compactification Shtor but it is nef and big with exceptional locus2 contained
in the boundary Dred. In fact, we even know that ω is (ϕ, D)-ample for some effective Cartier
divisor D whose associated reduced divisor is the boundary Dred. Compared with nefness and
bigness for vector bundles, we show that (ϕ, D)-ampleness behaves well as it is stable under
direct sum, extension,3 quotient, tensor product, tensor roots, pullback by finite morphism and
it satisfies descent along finite surjective morphism. Inspired by a result of Mourougane [Mou97,
Théorème 1] over C about the ampleness of the adjoint bundle π∗(L⊗ωY/X) where π : Y →X is a
surjective morphism and L is an ample line bundle on Y , we prove similar results in characteristic
p when π is a flag bundle.

More precisely, let G denote a connected split reductive algebraic group over k. Fix a Borel
pair (B, T ) of G and write ρ for the half-sum of positive roots of G. Let E be a G-torsor over X
and π : Y →X the flag bundle that parametrizes B-reduction of E. Recall that we can associate
a line bundle Lλ on Y to each character λ of T . We prove the following.

Theorem 2 (Theorems 6.4 and 6.5). If L2λ+2ρ is ample (respectively, (ϕ, π−1D)-ample) on Y ,
then π∗ Lλ is an ample (respectively, (ϕ, D)-ample) vector bundle on X.

Note that since ωY/X =L−2ρ, our result can be seen as a characteristic p version of the result
of Mourougane.

1.5 Positivity of automorphic vector bundles on the Siegel variety

We explain a direct application of Theorem 2 to automorphic vector bundles defined over the
Siegel variety. Recall that the Hodge bundle is a rank g vector bundle over the Siegel variety
which is defined as Ω= e∗Ω1

A/ Sh where e is the neutral section of the universal abelian scheme
f :A→ Sh. Use π : Y → Sh to denote the flag bundle which parametrizes complete filtration of
Ω. Recall that for every character λ of the standard maximal torus of GLg, we have an associated
line bundle Lλ on Y and a costandard automorphic vector bundle ∇(λ) over the Siegel variety
which is isomorphic to π∗ Lλ. All these objets can be extended to a toroidal compactification
Shtor. Following the idea of [BGKS], we know by [Ale24, Theorem 5.11] that certain line bundles
Lλ are (ϕ, D)-ample on Y where D is some fixed4 effective Cartier divisor whose associated
reduced divisor is the boundary Dred.

We denote by G5 the symplectic group Sp2g over k, W the Weyl group of G, P ⊂G the
parabolic that stabilizes the Hodge filtration on the first de Rham cohomology of A→ Sh, Δ⊂
Φ+ ⊂Φ the set of (simple, positive) roots of G, I ⊂Δ the type of P , L the Levi subgroup of P ,
Φ+
L ⊂ΦL the set of (positive) roots of L and ρL = 1/2

∑
α∈Φ+

L
α. The following result is a direct

application of Theorem 2.

Theorem 3 (Theorem 7.20). Let λ be a dominant character of T . If γ := 2λ+ 2ρL is:

2Following [Kee99], the exceptional locus of a nef line bundle L is the closure, with reduced structure, of the union
of all subvarieties V such that L|V is not big.
3Under a regular hypothesis on X.
4It depends on the choice of a polarization function on the polyhedral cone decomposition of a toroidal
compactification.
5It is not the same G as in § 1.4.
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Positivity, plethysm and hyperbolicity of Siegel varieties

(1) orbitally p-close, i.e.

max
α∈Φ,w∈W,〈γ,α∨〉�=0

∣∣∣∣〈γ, wα∨〉
〈γ, α∨〉

∣∣∣∣≤ p− 1;

(2) Z∅-ample, i.e.

〈γ, α∨〉> 0 for all α∈ I and 〈γ, α∨〉< 0 for all α∈Φ+\Φ+
L ;

then the automorphic vector bundle ∇(λ) is (ϕ, D)-ample on Shtor.

Remark . Positivity results for automorphic vector bundles were only known for line bundles
which corresponds to the case where λ is positive parallel, i.e. ∇(λ) is a positive power of the
Hodge line bundle ω=det Ω=∇(−1, . . . ,−1).

1.6 Schur functor and the plethysm operation

Schur functors are certain endofunctors

S : FinVectk →FinVectk

of the abelian category of finite-dimensional k-vector spaces that generalize the constructions of
exterior powers and symmetric powers of a vector space. Schur functors are indexed by integer
partition or Young diagrams and they can be defined on the category of finite locally free
modules over a scheme. We are interested in these functors because if λ= (k1 ≥ · · · ≥ kg ≥ 0)
is a G-dominant character, we can identify it with a Young diagram where the ith-row has ki
columns and we get an isomorphism

SλΩ=∇(−w0λ),

where w0 ∈W is the longest element of the Coxeter groupW . The strategy to prove Theorem 1 is
to show that the bundle SλΩ

1
Shtor(logDred) is (ϕ, D)-ample for specific choices of λ. Since (ϕ, D)-

ampleness is stable by quotients, pullback by finite morphisms and Sλ respects surjections, the
(ϕ, D)-ampleness of SλΩ

1
Shtor(logDred) implies that the quotient

ι∗SλΩ1
Shtor(logDred)� SλΩ

1
V (log ι

−1Dred)

is also (ϕ, ι−1D)-ample for any smooth subvariety ι : V ↪→ Shtor such that ι−1Dred is well-defined
as a normal crossing divisor. It follows from the general theory of Schur functors that the bundle
SλΩ

1
V (log ι

−1Dred) is non-zero exactly when the dimension of V is larger than the number of
parts (also called the height ht(λ)) of λ. In this case, the determinant of SλΩ

1
V (log ι

−1Dred) is
a tensor power of ωV (ι

−1Dred) and the (ϕ, D)-ampleness of SλΩ
1
Shtor(logDred) implies that V is

of log general type with respect to Dred. By the Kodaira–Spencer isomorphism

ρKS : Sym
2 Ω ∼−→Ω1

Shtor(logDred),

we are reduced to studying the composition of Schur functors Sλ ◦ Sym2.
The correct category to study Schur functors in characteristic p such as Sλ is the category

of strictly polynomial functors Pol introduced by Friedlander and Suslin in [FS97]. A strictly
polynomial functor T : FinVectk →FinVectk over a field k is polynomial in the sense that for
any finite-dimensional k-vector spaces V,W , the map

TV,W : Homk(V,W )→Homk(T (V ), T (W ))

is a scheme morphism where we have enriched Homk(V,W ) and Homk(T (V ), T (W )) with their
natural scheme structure. Equipped with the classical tensor product ⊗, the category of strictly
polynomial functors is a symmetric monoidal category whose Grothendieck group K0(Pol) is the
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ring R of symmetric functions. A key feature of Pol is that the functor composition ◦ defines a
second (non-symmetric) monoidal structure on it. Recall that R possesses a natural basis {sλ}λ
indexed by the set of integer partition where each sλ is the class of the Schur functor Sλ. Over
C, it is well-known that Pol is semi-simple; in particular, the composition of two Schur functors
of partition λ and μ can be split as a direct sum of Schur functors

Sλ ◦ Sμ =
⊕
η

S
⊕cηλ,μ
η ,

where the coefficient cηλ,μ are given by the decomposition of sλ ◦ sμ in the basis {sλ}λ of R. The

problem of determining the coefficients cηλ,μ is known as plethysm. Over a field of characteris-
tic p, semi-simplicity of Pol fails but we may ask whether the composition Sλ ◦ Sμ admits at
least a filtration where the graded pieces are isomorphic to Schur functors Sη. Unfortunately,
Boffi [Bof91] and Touzé [Tou13, Corollary 6.10.] have found counter-examples to the existence of
such filtrations. For example, the plethysm Λ2 ◦Λ2 over F2 does not admit any such filtration.
We avoid these counter-examples with a technical restriction on the prime p.

Proposition (Proposition 3.16). Let λ and μ be partitions of size |λ| and |μ|. If p≥ 2|λ| − 1,
the strict polynomial functor Sλ ◦ Sμ admits a finite filtration

0 = Tn � Tn−1 � · · ·� T 0 = Sλ ◦ Sμ
by strict polynomial functors of degree |λ||μ| where the graded pieces are Schur functors.

1.7 Plethysm and hyperbolicity

Since (ϕ, D)-ampleness is stable under extension, we can use Proposition 3.16 to see that
SλΩ

1
Shtor(logDred) is (ϕ, D)-ample if the graded pieces ∇(η) that appears in the plethysm

Sλ ◦ Sym2 are (ϕ, D)-ample. It is worth pointing out that plethysm computations are really
hard and there is no known general combinatorial rule to express the coefficient cηλ,μ.

6 Moreover,
determining effectively whether an automorphic bundle ∇(η) is (ϕ, D)-ample with Theorem 3
is also challenging as it involves the orbitally p-closeness condition. It is known since [Wil09,
Lemma 7] that the plethysm Λk ◦ Sym2 belongs to one of the few cases where a general formula
is known. With this formula and an upper bound of the orbitally p-closeness condition, we were
able to show the following result.

Theorem 4 (Theorem 8.6). Assume that p≥ g2 + 3g+ 1. For all k≥ g(g− 1)/2 + 1, the bundle
Λk Sym2 Ω=Ωk

Shtor(logDred) is (ϕ, D)-ample.

In the case g ∈ {2, 3}, we also prove that this bound on k is optimal, which is some evidence
that the hypothetical exceptional locus E ⊂ Shtor has codimension g.

1.8 Organization of the paper

In § 2, we recall some general results on algebraic representations of reductive groups in char-
acteristic p. In § 3, we study the plethysm operation for Schur functors in characteristic p. In
§ 4, we introduce and study the main properties of (ϕ, D)-ample vector bundles. In particular,
we prove many stability properties that are summarized in Table 1. In § 5, we recall the flag

6At the beginning, we used a computer to find integer partitions λ such that each automorphic bundle appearing
in the plethysm Sλ ◦ Sym2 is (ϕ, D)-ample (see Appendix B). Starting with g= 2, we have found that surfaces in
the Siegel threefold are of log general type. For each g ∈ {2, 3, 4}, the computer was able to find a partition λ of
height equal to dim Sh−(g− 1) such that Sλ ◦ Sym2 Ω is (ϕ, D)-ample. For g= 5, the plethysm computation was
too long to conclude and it became clear that we needed a different method.
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bundle construction associated to a general G-torsor. In § 6, we prove that the adjoint bundle
of an ample (respectively, (ϕ, D)-ample) line bundle along a complete flag bundle, is an ample
(respectively, (ϕ, D)-ample) vector bundle. In § 7, we apply our result on the positivity of adjoint
bundles to the case of automorphic vector bundles over the Siegel variety. In particular, Figure 1
illustrate our ampleness result in the case g= 2. In § 8, we finish the proof of our main theorem
about the partial hyperbolicity of the Siegel modular variety in characteristic p.

2. Representations of algebraic groups

Recall that k is an algebraically closed field of characteristic p. In this section, we recall some
well-known results about algebraic representations of reductive groups over k that can be found
in [Jan03]. Let G be a connected split reductive algebraic group over k. We choose a Borel pair
(B, T ) of G, i.e. a Borel subgroup B ⊂G together with a maximal torus T ⊂G defined over k.
Denote by (X∗,Φ, X∗,Φ∨) the root datum of G where X∗ is the group of characters of T , X∗ is
the group of cocharacters of T , Φ is the set of roots of G, Φ∨ is the set of coroots of G and

〈·, ·〉 :X∗ ×X∗ →Z

is the perfect pairing between the characters and the cocharacters of T . To any root α∈Φ, there
is an associated coroot α∨ such that 〈α, α∨〉= 2. This choice of (B, T ) determines a set of positive
roots Φ+ and a set of simple roots Δ⊂Φ+. To simplify the statement of Proposition 7.15, we
follow a non-standard convention for the positive roots by declaring α∈Φ to be positive if the
root group U−α is contained in B. A character λ∈X∗ is said to be G-dominant (or simply
dominant if there is no ambiguity on the group G) if 〈λ, α∨〉 ≥ 0 for all α∈Φ+. We denote by ρ
the half-sum of the positive roots. We denote by W the Weyl group of G, l :W →N its length
function and w0 its longest element. Consider a collection I ⊂Δ of simple roots. We denote by ΦI

(respectively, Φ+
I ) the set of roots (respectively, positive roots) obtained as Z-linear combination

of roots in I. We denote by WI ⊂W the subgroup generated by the reflections sα where α∈ I
and IW ⊂W the set of minimal length representatives of WI\W . We denote by ϕ :G→G(p)

the relative Frobenius morphism of G where G(p) =G×k,σ k is the pullback along the Frobenius
map σ : k→ k of k. Since any split reductive group is a base change of a split reductive group
over Z, the reductive group G is isomorphic to G(p). For any G-module M , we define M (pr) as
the same module M with a G-action twisted by ϕr.

Denote by Repk(G) the category of algebraic representations of G on finite-dimensional k-
vector spaces. We use interchangeably the term G-module to denote any representation V ∈
Repk(G). It is well-known that this category is not semi-simple but we can still define some
interesting highest weight representations.

Proposition 2.1 [Jan03, Part II, § 2.4]. For any dominant T -character λ, there is a unique
simple G-module of highest weight λ that we denote by L(λ).

Definition 2.2 [Jan03, Part I, § 5.8]. For any character λ of T , we denote by Lλ the line bundle
on the flag variety G/B defined as the B-quotient of the vector bundle G×k A1 →G where B
acts on G×k A1 by

(g, x)b= (gb−1, λ(b−1)x),

and where λ is extended by zero on the unipotent radical of B.

Recall Kempf’s vanishing theorem.
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Proposition 2.3 [Jan03, Part II, § 4.5]. Let λ be a dominant character. We have

H i(G/B,Lλ) = 0

for every integer i > 0.

Definition 2.4 [Jan03, Part II, § 2]. Let λ be a character of T . The costandard G-module ∇(λ)
of highest weight λ is defined as the global section group H0(G/B,Lλ) where G acts through
left translation. The standard G-module Δ(λ) of highest weight λ is defined as ∇(−w0λ)

∨ where
∨ denotes the linear dual in Repk(G).

Proposition 2.5 [Jan03, Part II, § 2.6]. The G-modules ∇(λ) and Δ(λ) are non-zero exactly
when λ is dominant. Moreover, their highest T -weight is λ.

It follows directly from their definition that ∇(λ) and Δ(λ) have the same weights but they
are usually not simple and not isomorphic. We give a condition on the size of the highest weight
of a standard/costandard module to be simple.

Proposition 2.6 [Jan03, Part II, § 5.6]. If λ is a p-small character, i.e.

∀α∈Φ+, 〈λ+ ρ, α∨〉 ≤ p,

then we have isomorphisms

∇(λ) =Δ(λ) =L(λ).

Remark 2.7. If λ is p-small and μ≤ λ, then μ is also p-small.

In positive characteristic, there is a very special algebraic representation called the Steinberg
representation Str. The Steinberg representation is a self-dual simple G-module whose highest
weight is never p-small.

Definition 2.8 [Jan03, Part II, § 3.18]. Assume p �= 2 or ρ∈X∗(T ). For each r≥ 1, we define
the Steinberg module as

Str :=∇((pr − 1)ρ).

Proposition 2.9 [Jan03, Part II, § 3.19]. We have isomorphisms

∇((pr − 1)ρ) =Δ((pr − 1)ρ) =L((pr − 1)ρ).

In particular, Str is a simple G-module.

We come to the main proposition that justifies our interest in the Steinberg representation.

Proposition 2.10 [Jan03, Part 2, Chapter 3, § 19]. Let λ be a character and r≥ 1 an integer.
For all i≥ 0, we have an isomorphism of G-modules

H i(G/B,L(pr−1)ρ ⊗Lprλ) = Str ⊗H i(G/B,Lλ)
(pr).

We recall the notion of ∇-filtration and Δ-filtration.

Definition 2.11. Let V be a G-module. A ∇-filtration is a filtration of V where each graded
piece is a costandard module. A Δ-filtration is a filtration of V where each graded piece is a
standard module.

Remark 2.12. The category Repk(G) has the structure of a highest weight category.7 Within
this framework, tilting modules are defined as modules that admits both a ∇- and a Δ-filtration.

7An introduction to this framework is given in [Ric16].
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Positivity, plethysm and hyperbolicity of Siegel varieties

The following proposition, due to Mathieu, states the existence of a ∇-filtration for the tensor
product ∇(λ)⊗∇(μ) of costandard modules.

Proposition 2.13 [Mat90, Theorem 1]. Consider two dominant characters λ, μ in X∗(T ). Then
the tensor product ∇(λ)⊗∇(μ) admits a ∇-filtration (V i)i≥0 with graded pieces

V i/V i+1 �∇(λ+ μi),

where (μi)i is a certain subcollection of weights of ∇(μ).

Remark 2.14.

(1) Not all the weights μ′ ≤ μ of ∇(μ) such that λ+ μ′ is dominant will appear in the
∇-filtration.

(2) By duality, we deduce that tensor products of standard modules Δ(λ)⊗Δ(μ) admit a
Δ-filtration.

Corollary 2.15. Consider two G-modules V and W. If V and W admit a ∇-filtration, then
V ⊗W admits also a ∇-filtration.

The following cohomological criterion is very useful to detect when a G-module possesses a
∇-filtration.

Proposition 2.16 (Donkyn criterion). Consider a G-module V. The following assertions are
equivalent:

(1) V admits a ∇-filtration;

(2) for any dominant character λ and i > 0, ExtiG(Δ(λ), V ) = 0;

(3) for any dominant character λ, Ext1G(Δ(λ), V ) = 0.

Proof. See [Jan03, Part II, § 4.16].

Corollary 2.17. Consider two G-modules V and W. If V admits a ∇-filtration and W is a
direct factor of V, then W admits a ∇-filtration.

3. Plethysm for Schur functors in positive characteristic

3.1 Over the complex numbers

Classically, Schur functors are certain endofunctors

S : FinVectC →FinVectC

of the abelian category of finite-dimensional complex vector spaces. The first example is given
by the nth-symmetric power Symn which sends a vector space V to the space of Sn-coinvariants
(V ⊗n)Sn

where Sn acts on V ⊗n by permuting the factors. A second example is given by the
nth-exterior power Λn which sends a vector space V to the space of Sn-coinvariants (V ⊗n)Sn

where an element σ ∈Sn acts on V ⊗n by antisymmetrization

σ(v1 ⊗ · · · ⊗ vn) = ε(σ)(vσ(1) ⊗ · · · ⊗ vσ(n)).
8

8This definition is not correct over a field of characteristic p if p≥ n. We should instead consider a quotient by
the ideal generated by tensors of the form x1 ⊗ · · · ⊗ xn where xi = xj for some i �= j.
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In general, we consider a finite-dimensional representation π of the symmetric group Sn for some
integer n≥ 1 and we define the Schur functor

Sπ : FinVectC →FinVectC

associated to π as

Sπ(V ) = (V ⊗n ⊗ π)Sn
,

where Sn acts via permutation on the first factor. It is well-known that irreducible represen-
tations π of Sn are in bijection with partitions λ= (λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0) of n. This bijection
is made explicit by sending a partition λ of n to the Specht module Spλ of shape λ. We call
Sλ = SSpλ

, the Schur functor of weight λ. It is well-known that for any two partitions λ and μ,
we have a direct sum decomposition

Sλ ◦ Sμ �
⊕
η

S
⊕cηλ,μ
η (1)

in the category of endofunctors of FinVectC. The problem of determining the coefficients cηλ,μ is

called plethysm.9

Example 3.1. There is no known combinatorial rule for computing the coefficients cηλ,μ. To
illustrate how difficult the plethysm problem is, we give the following examples:

(1) S(2,1) ◦ S(1,1) = S(2,1,1,1,1) ⊕ S(2,2,1,1) ⊕ S(3,2,1);

(2) the composition S(4,2) ◦ S(3,1) involves 1, 238 different partitions η with a maximum multi-
plicity cηλ,μ of 8408; counted with multiplicity, there are 958,705 endofunctors in the direct
sum;

(3) the composition S(3,2,1) ◦ S(4,2) involves 11,938 different partitions η with a maximum mul-
tiplicity cηλ,μ of 9,496,674; counted with multiplicity, there are 4,966,079,903 endofunctors
in the direct sum.

3.2 Strict polynomial functors

In their founder article [FS97], Friedlander and Suslin introduced the category of strict polyno-
mial functors Pol over k. This functor category is well-behaved compared with the category of
endofunctors of FinVectk. In particular, when n≥ d, they prove an equivalence of categories

Pold � S(n, d)−Mod

between the category Pold of strict polynomial functors homogeneous of degree d and the category
of modules over the Schur algebra S(n, d).10 If V, W are finite-dimensional vector spaces over k,
we denote by Hompol(V,W ) the abelian group of scheme morphisms over k between V and W .
To clarify, we have Hompol(V,W ) = Sym∗(V ∨)⊗k W and elements of Hompol(V,W ) are called
polynomial maps between V and W.

9The term ‘plethysm’ was suggested to Littlewood by M. L. Clark after the Greek word plethysmos, or πληθυσμoς,
which means ‘multiplication’ in modern Greek (though apparently the meaning goes back to ancient Greek). The
related term plethys in Greek means ‘a big number’ or ‘a throng’, and this, in turn, comes from the Greek verb
plethein, which means ‘to be full’, ‘to increase’, ‘to fill’, etc.
10Let An = k[Matn] denote the Hopf algebra freely generated by the k-vector space Matn of n× n matrices where
the non-commutative comultiplication is induced by the matrix multiplication on Matn. Let A(n, d)⊂An denote
the subalgebra of homogeneous polynomials of degree d. The Schur algebra S(n, d) is then defined as the linear
dual of A(n, d).
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Definition 3.2 [FS97, Definition 2.1]. A strict polynomial functor

T : FinVectk →FinVectk

is a pair of functions, the first of which assigns to each V ∈FinVectk a vector space T (V )∈
FinVectk and the second assigns a polynomial map

TV,W ∈Hompol(Homk(V,W ),Homk(T (V ), T (W )))

to each V,W . These two functions should satisfy the usual conditions of the definition of a
functor:

(1) for any vector space V ∈FinVectk, we have TV,V (idV ) = idT (V );

(2) for any U, V,W , the following diagram of polynomial maps commutes.

Homk(V,W )×Homk(U, V ) Homk(U,W )

Homk(T (V ), T (W ))×Homk(T (U), T (V )) Homk(T (U), T (W ))

TV,W×TU,V TU,W

Let T : FinVectk →FinVectk be a strict polynomial functor. We say that T is homogeneous of
degree d if for all vector spaces V,W , the polynomial map

TV,W ∈Hompol(Homk(V,W ),Homk(T (V ), T (W )))

has degree d. We denote by Pol the category of strict polynomial functors of finite degree where
the morphism are morphism between the underlying functors.

Proposition 3.3 [FS97, Proposition 2.6]. The category of strict polynomial functors (of finite
degree) decomposes

Pol=
⊕
d≥ 0

Pold,

where Pold is the full subcategory of Pol consisting of strict polynomial functors homoge-
neous of degree d. In particular, there are no extension between two strict polynomial functors
homogeneous of different degrees.

Example 3.4. We give some simple example of strict polynomial functors.

(1) The nth-tensor power (·)⊗n which sends a k-vector space V to V ⊗n is homogeneous of
degree n.

(2) The nth-symmetric power Symn which sends a k-vector space V to the space of Sn-
coinvariants (V ⊗n)Sn

where Sn acts on V ⊗n by permuting the factors is homogeneous of
degree n.

(3) The nth-divided power Γn which sends a k-vector space V to the space of Sn-invariants
(V ⊗n)Sn where Sn acts on V ⊗n by permuting the factors is homogeneous of degree n.

(4) The nth-exterior power Λn which sends a vector space V to the quotient space V ⊗n/I
where I is the ideal generated by elements x1 ⊗ · · · ⊗ xn such that xi = xj for some i �= j
is homogeneous of degree n.

(5) If char(k) = p, the Frobenius twist (·)(p) which sends a k-vector space V to its pullback
V ⊗k,σ k by the Frobenius map σ : k→ k is homogeneous of degree p.

Remark 3.5. The functors Symn and Γn are isomorphic over a field of characteristic 0 but not
over a field of characteristic p > 0 when n≥ p.
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Following [ABW82], we now define Schur functors and Weyl functors that are indexed by
partitions λ as strict polynomial functors.

Definition 3.6. Given a partition λ= (k1 ≥ k2 ≥ · · · ≥ kr > 0), we write |λ|=
∑r

i=1 kr for its
size of λ and ht(λ) = r for its height.

Definition 3.7. We represent a partition λ= (k1 ≥ k2 ≥ · · · ≥ kr > 0) with a diagram containing
r rows and such that for each i, the ith row contains ki columns. Such a representation is called
a Young diagram.

Example 3.8. The Young diagram of the partition λ= (4, 2, 1) is as follows.

Its size is 7 and its height is 3.

Definition 3.9. Given a partition λ= (k1 ≥ k2 ≥ · · · ≥ kr > 0), we define its conjugate partition
λ′ = (k′1 ≥ k′2 ≥ · · · ≥ k′s > 0) as the partition where k′i is the number of terms of kj that are greater
or equal to i. Note that λ and λ′ have the same size. Any integer l between 1 and |λ| determines
a unique position (i, j) in the Young diagram of λ such that l= k1 + · · · ki−1 + j. Then, we define
a permutation on |λ|-letters σλ ∈S|λ| by setting

σλ(l) = k′1 + · · · k′i−1 + j.

Note that we have σλ′ = σ−1
λ .

Example 3.10. The conjugate partition of λ= (8, 4, 2)

λ = 1 2 3 4 5 6 7 8
9 10 11 12
13 14

is λ′ = (3, 3, 2, 2, 1, 1, 1, 1),

λ′ = 1 2 3
4 5 6
7 8
9 10
11
12
13
14

and we have

σλ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 4 7 9 11 12 13 14 2 5 8 10 3 6

)
.

Definition 3.11. Let λ= (k1 ≥ k2 ≥ · · · ≥ kr > 0) denote a partition, λ′ = (k′1 ≥ k′2 ≥ · · · ≥ k′s >
0) its conjugate partition and V a finite-dimensional vector space over k. We define SλV as the
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Positivity, plethysm and hyperbolicity of Siegel varieties

image of the map⊗
1≤j≤s Λk′

jV V ⊗|λ| V ⊗|λ| ⊗
1≤i≤r Symki VΔ⊗s σλ ∇⊗r

where Δ : ΛlV → V ⊗l is the comultiplication given by

Δ(v1 ∧ · · · ∧ vl) =
∑
σ∈Sl

ε(σ)vσ(1) ⊗ · · · ⊗ vσ(l),

∇ : V ⊗l → Syml V is the multiplication given by

∇(v1 ⊗ · · · ⊗ vl) = v1 · · · vl,
and σλ : V

⊗|λ| → V ⊗|λ| is given by

σλ(v1 ⊗ · · · v|λ|) = vσλ(1) ⊗ · · · ⊗ vσλ(|λ|).

We define WλV as the image of the map⊗
1≤i≤r ΓkiV V ⊗|λ| V ⊗|λ| ⊗

1≤j≤s Λk′
jVΔ⊗r σλ′ ∇⊗s

where∇ : V ⊗l →ΛlV is the canonical quotient map and Δ : ΓlV → V ⊗l is the canonical inclusion.
Note that we consider both the exterior and the symmetric algebras as Hopf algebras. These
construction are functorial in V and define strict polynomial functors Sλ and Wλ that are
homogeneous of degree |λ|.

Example 3.12. We give the following examples.

(1) If λ= (n), then Sλ =Symn and Wλ =Γn.

(2) If λ= (1, . . . , 1) is a partition of n, then Sλ =Wλ =Λn.

Proposition 3.13. Let λ be a partition of d and V ∈FinVectk. We have an isomorphism

Sλ(V )∨ =Wλ(V
∨),

which is functorial in V.

Proof. Follows from the fact that Symn(V )∨ =Γn(V ∨) and Λn(V )∨ =Λn(V ∨).

We state the main result of this section.

Proposition 3.14 [FS97, Lemma 3.4]. Let d≥ 1 be an integer and V a vector space of
dimension n. If n≥ d, the evaluation functor at V

evV : Pol Repk(GL(V ))

T T (V )

restricts to an equivalence of category between Pold and the category Repk(GL(V ))Pold of polyno-
mial11 representations of GL(V ) where Gm acts by z �→ zd. Moreover, through this equivalence,
the Schur functor Sλ maps to the costandard module ∇(λ) and the Weyl functor Wλ maps to
the standard module Δ(λ) where we see λ= (k1, . . . , kr) as a character of the standard maximal

11Recall that a rational representation M of GL(V ) is polynomial if its action of the algebraic group GL(V )
extends to an action of the algebraic monoid End(V ).
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torus of GL(V )

λ :

⎛
⎜⎝t1 . . .

tn

⎞
⎟⎠ �→ tk1

1 · · · tkr
r .

Remark 3.15. All the results of this section are valid if we replace FinVectk with the category
Loc(X) of locally free sheaves of finite rank over a k-scheme X.

3.3 A plethysm in positive characteristic under additional hypothesis

Take two Schur functors Sλ and Sμ as strict polynomial functors over k and consider the compo-
sition Sλ ◦ Sμ. It is a strict polynomial functor homogeneous of degree |λ| |μ|. Since the category
of algebraic representation of GLn is not semi-simple, we have no reason to hope for a decom-
position of Sλ ◦ Sμ as a direct sum of Schur functors. One might hope, that there exists at least
a filtration of Sλ ◦ Sμ where the graded pieces are Schur functors. Unfortunately, Boffi [Bof91]
and Touzé [Tou13, Corollary 6.10.] have found counter-examples to the existence of such filtra-
tions for plethysm of the form Symk ◦ Symd, Λk ◦ Symd and Symk ◦Λd with d≥ 3 and p|k. More
precisely, Touzé has found an obstruction to the existence of such filtration that lives in the
p-torsion of the homology of the Eilenberg–Mac Lane space K(Z, d). In this section, we prove
the following existence result.

Proposition 3.16. Let λ and μ be partitions. If p≥ 2|λ| − 1, the strict polynomial functor
Sλ ◦ Sμ admits a finite filtration

0 = Tn � Tn−1 � · · ·� T 0 = Sλ ◦ Sμ
by strict polynomial functors of degree |λ||μ| where the graded pieces are Schur functors.

We start with the following lemma.

Lemma 3.17. If p≥ 2|λ| − 1, then Sλ is a direct summand of (·)⊗|λ| in Pol|λ|.

Remark 3.18. If Sλ =Λn, then it is enough to ask that p > n.

Proof. Write λ= (k1 ≥ · · · ≥ kr > 0). By Proposition 3.14, it is enough to prove that SλV is a
direct summand of V ⊗|λ| in the category of GL(V )-modules for one k-vector space of dimension
greater than |λ|. Consider a vector space V of dimension n. Note that the surjection

∇⊗r : V ⊗|λ| → Symλ V :=
⊗
1≤i≤r

Symki V

admits a section when p >maxi ki = k1. Indeed, we define it as s= s1 ⊗ · · · ⊗ sr where

si(v1v2 · · · vr) =
1

ki!

∑
σ∈Ski

vσ(1) ⊗ · · · ⊗ vσ(ki).

By definition, SλV is a sub-GL(V )-module of Symλ V and we would like to find a condition on
p that guarantees it is also a direct summand. The following exact sequence of GL(V )-modules

0 SλV Symλ V Symλ V/SλV 0

is split if we can show that Ext1GL(V )(Sym
λ V/SλV, SλV ) vanishes. Let λ̃ denote the character

(|λ|, 0, . . . , 0) of the standard maximal torus of GL(V ). Since Symλ V is of highest weight λ̃, the
GL(V )-modules SλV and Symλ V/SλV are filtered by simple modules L(ν) with ν ≤ λ̃. Under
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the assumption that λ̃ is p-small, Proposition 2.6 implies that we have isomorphisms

L(ν) =∇(ν) =Δ(ν)

for all characters ν satisfying ν ≤ λ̃. Since Ext1GL(V )(Sym
λ V/SλV, SλV ) is the limit of a spectral

sequence involving Ext groups

Ext1GL(V )(L(ν), L(ν
′)) = Ext1GL(V )(Δ(ν),∇(ν ′)),

that vanishes by Proposition 2.16, Ext1GL(V )(Sym
λ V/SλV, SλV ) must vanish. In conclusion, we

have the desired splitting, provided that λ̃ is p-small, i.e.

p≥ max
α∈Φ+

〈λ̃+ ρ, α∨〉= max
1≤i<j≤n

〈λ̃+ ρ, εi − εj〉

= max
1≤i<j≤n

〈(
|λ|+ n− 1

2
,
n− 3

2
, . . . ,−n− 1

2

)
, εi − εj

〉
= |λ|+ n− 1.

Since our argument is valid only when n≥ |λ|, we get the bound p≥ 2|λ| − 1.

Proof of Proposition 3.16. By Proposition 3.14, it is enough to show that Sλ ◦ Sμ(V ) admits a
∇-filtration as a GL(V )-module where V is one vector space of dimension greater that |λ| |μ|.
Consider a vector space V of dimension n≥ |λ| |μ|. By Lemma 3.17, Sλ(SμV ) is a direct summand
of (SμV )⊗|λ| as GL(SμV )-modules. After restriction to the category of GL(V )-modules through
the map GL(V )→GL(SμV ) induced by Sμ, Sλ(SμV ) is again a direct summand of (SμV )⊗|λ|.
By Corollary 2.15, the GL(V )-module (SμV )⊗|λ| admits a ∇-filtration. By Corollary 2.17, the
GL(V )-module Sλ ◦ Sμ(V ) admits a ∇-filtration.

Remark 3.19. Under the assumption of Proposition 3.16, the partitions (counted with multi-
plicity) of the Schur functors appearing in the graded pieces of the filtration of Sλ ◦ Sμ are the
same as that appearing in the decomposition (1) over the complex numbers. This is just a con-
sequence of the Z-linearity of the ∇(λ) in the space X∗(T )W of W -invariants characters, but
we reprove it directly. First note that the weights of the GL(V )-module Sλ ◦ Sμ(V ) where V is
a vector space of dimension ≥ |λ| |μ| do not depend on the characteristic of the base field of V .
Then, we are left to check that a direct sumM =

⊕
λ ∇(λ)⊕cλ of costandard modules is uniquely

determined by its characters ch(M) =
∑

η dηη. We prove it with a descending induction on the
number of distinct factors of M . Consider the highest weight η0 appearing in the sum ch(M).
Clearly, ∇(η0) is a direct factor of the module M because η0 cannot appear in the weights of a
costandard module ∇(λ) with λ< η0. Moreover, the multiplicity of ∇(η0) in M is exactly dη0

and we can pursue the induction with M ′ =
⊕

λ<η0
∇(λ)⊕cλ .

4. Positive vector bundles

In the positive characteristic, Hartshorne has defined in [Har66] two non-equivalent notions of
ampleness for vector bundles. The first notion is simply called ampleness, the second, strictly
stronger, is called p-ampleness. Furthermore, Kleiman has defined in [Kle69] a third notion, again
strictly stronger, called cohomological p-ampleness. For the convenience of the reader, we recall
some well-known results about globally generated sheaves and ampleness notions in positive
characteristic.

In § 4.3, we consider an effective Cartier divisor D and we define a positivity notion for
vector bundles called (ϕ, D)-ampleness. In the case of line bundles, this notion is equivalent to
being nef and big with D as exceptional divisor. Let X be a projective scheme over k. We write
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ϕ :X→X(p) for the relative geometric Frobenius of X. If F is a sheaf on X and r≥ 1 is an
integer, we write F (pr) := (ϕr)∗(ϕr)∗ F . We endow the finite-dimensional R-vector space A1(X)
of 1-cycles on X modulo linear equivalence with a norm ‖·‖. If C is a projective curve and E is
a vector bundle on C, we denote by δ(E) the minimum of the degrees of quotient line bundles
of E .

4.1 Globally generated sheaves

Definition 4.1. We say that a coherent sheaf F is globally generated at x∈X if the canonical
map

H0(X,F)⊗k OX →F
is surjective at x∈X. We say F is globally generated over U ⊂X if it is globally generated at
x for all x∈U .

The following lemma is well-known.

Lemma 4.2. Let x be a point of X. We have the following assertions.

(1) The direct sum of two globally generated sheaves at x is globally generated at x.

(2) Let F →F ′ be a morphism of coherent sheaves which is surjective at x. If F is globally
generated at x, then so is F ′.

(3) The tensor product of two globally generated sheaves at x is globally generated at x.

(4) The pullback of a globally generated sheaf at x is globally generated at x.

Proof. Left to the reader.

4.2 Ample bundles

Definition 4.3. We say that a line bundle L over X is ample if the following equivalent
propositions are satisfied.

(1) For all coherent sheaf F on X, there is an integer n0 such that F ⊗L⊗n is globally
generated for all n≥ n0.

(2) For all coherent sheaf F on X, there is an integer n0 such that the cohomology groups
H i(X,F ⊗L⊗n) vanishes for all i > 0, n≥ n0.

(3) For any subvariety V ⊂X, we have

c1(L)dim V · [V ]> 0

in the Chow ring of X.

Proof. For the equivalence of the definitions, see [Har66, Prop 1.1/1.2/1.4].

From now on, we fix an ample line bundle OX(1) on X and we write F(m) instead of
F ⊗OX(1)⊗m for any coherent sheaf F on X and integer m. We recall the definition of relative
ample line bundles.

Definition 4.4. Let Y be a projective scheme over a base scheme S. Write f : Y → S for the
structure morphism. We say that a line bundle L on Y is f -ample if the following equivalent
propositions are satisfied.

(1) For all coherent sheaf F on Y , there is an integer n0 such that the adjunction morphism
f∗f∗(F ⊗L⊗n)→F ⊗L⊗n is surjective for all n≥ n0.
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Positivity, plethysm and hyperbolicity of Siegel varieties

(2) For all coherent sheaf F on Y , there is an integer n0 such that the higher direct image
sheaves Rif∗(F ⊗L⊗n) vanishes for all i > 0, n≥ n0.

Proof. For the equivalence of the definitions, see [Laz04b, Theorem 1.7.6] or [Sta21,
Lemma 02O1].

Definition 4.5 [Har66]. We say that a vector bundle E over X is ample if the universal line
bundle O(1) is ample on the projective bundle P(E). Note that the universal line bundle O(1)
is equal to the associated line bundle Lλ with λ= (1, 0, . . . , 0) for the canonical isomorphism
X∗(T )�Zn where T is the standard maximal torus of GLn.

Proposition 4.6. Let E be a vector bundle on X. The following assertions are equivalent.

(1) The vector bundle E is ample on X.

(2) For all coherent sheaf F on X, there is an integer n0 such that F ⊗ Symn E is globally
generated for all n≥ n0.

(3) For all coherent sheaf F on X, there is an integer n0 such that the cohomology groups
H i(X,F ⊗ Symn E) vanishes for all i > 0, n≥ n0.

(4) There exists a real number ε > 0 such that for all finite morphism g :C→X where C is a
curve, we have

δ(g∗ E)≥ ε‖g∗C‖.
Recall that δ(g∗ E) is the minimum of the degrees of quotient line bundles of g∗ E and ‖·‖
denotes a norm on A1(X), the k-vector space of 1-cycles modulo linear equivalence.

Proof. See [Har66, Proposition 3.2/3.3] for a complete proof of

(1)⇔ (2)⇔ (3).

For (1)⇔ (4), this numerical criterion is due to Barton [Bar71].

Proposition 4.7. We have the following assertions

(1) Let E and E ′ be two ample vector bundles on X. Then E ⊕ E ′ is ample.

(2) Consider an extension of vector bundles on X

0 E1 E E2 0

where E1 and E2 are ample. Then E is ample.

(3) Let E and E ′ be two vector bundles on X such that E is ample and E ′ is globally generated
over X. Then the tensor product E ⊗ E ′ is an ample vector bundle.

(4) Let E → E ′ be a surjective morphism of OX -modules between two vector bundles. If E is
ample, then so is E ′.

(5) The tensor product of ample vector bundles over X is ample.

Proof. See [Har66, Proposition 2.2/Corollary 2.5] for assertions (1), (3) and (4), [Har66,
Corollary 3.4] for assertion (4) and [Bar71, Theorem 3.3] for assertion (5).

Proposition 4.8. If E is a vector bundle such that E⊗n is ample for some n≥ 1, then E is also
ample.

Proof. Assume that E⊗n is ample. As a quotient of E⊗n, Symn E is ample and we conclude with
[Har66, Proposition 2.4].
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Proposition 4.9. Let f : Y →X be a finite morphism of projective schemes and E be an ample
vector bundle on X. If E is ample on X, then f∗ E is ample on Y . If, furthermore, f is assumed
surjective, then the converse holds.

Proof. See [Laz04a, Proposition 1.2.9] and [Laz04a, Corollary 1.2.24].

Corollary 4.10. Let E be a vector bundle and r≥ 1 an integer. Then E is ample if and only
if E(pr) is ample.

Proof. Since the Frobenius map is finite surjective, it follows from the previous proposition.

Definition 4.11 [Har66]. We say that a vector bundle E on X is p-ample if for all coherent
sheaf F on X, there is an integer r0 such that F ⊗ E(pr) is globally generated for all r≥ r0.

Lemma 4.12. For any coherent sheaf F and m≥ 0 large enough, we can write F as a quotient
of OX(−m)⊕s for a suitable s≥ 1.

Proof. Choose m≥ 0 large enough such that F(m) is globally generated over X. We get a
surjective morphism

O⊕s
X →F(m)

for some s≥ 1 and then we tensor by OX(−m).

Proposition 4.13. In the Definition 4.11, we can restrict ourselves to coherent sheaves of the
form F =OX(−m) for all m≥ 0 large enough.

Proof. We use Lemma 4.12 to write F as a quotient of OX(−m)⊕s for a suitable s≥ 1. Take n
large enough such that OX(−m)⊗E (pr) is globally generated. Since the quotient of a globally
generated sheaf is globally generated, we get that F ⊗ E(pr) is globally generated.

Proposition 4.14. If E is p-ample on X, then E is ample.

Proof. Choose n large enough such that E(pn)(−1) is globally generated. We deduce that E(pn)

is quotient of OX(1)⊕s for a suitable s≥ 1. By assertion (3) of Proposition 4.7, E(pn) is ample
and by Corollary 4.10, E is ample.

Remark 4.15. The converse to the previous proposition is false in general (see [Gie71] for a
counter-example). However, in the special case where E is a line bundle or X is curve, it holds
by [Har66, Proposition 7.3].

Proposition 4.16. We have the following assertions.

(1) Let E and E ′ be two p-ample vector bundles on X. Then E ⊕ E ′ is p-ample.

(2) Let E and E ′ be two vector bundles onX such that E is p-ample and E ′ is globally generated
over X. Then, the tensor product E ⊗ E ′ is a p-ample vector bundle.

(3) Let E → E ′ be a surjective morphism of OX -modules between two vector bundles. If E is
p-ample, then E ′ is also p-ample.

(4) The tensor product of p-ample vector bundles over X is p-ample.

Proof. See [Har66, Proposition 6.4/Corollary 6.7] for assertions (1), (2) and (4). Hartshorne does
not state assertion (3), so we give a proof. Let F be a coherent sheaf and r0 ≥ 1 be an integer
such that F ⊗ E(pr) is globally generated for all r≥ r0. For all r≥ r0, the surjective morphism
E → E ′ induces a surjective morphism of OX -modules

F ⊗ E(pr) →F ⊗(E ′)(p
r)
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and from assertion (2) of Lemma 4.2, the module F ⊗(E ′)(p
r)

is globally generated
over X.

There is no known cohomological criterion for p-ampleness. However, Kleiman has defined in
[Kle69] the strictly12 stronger notion of cohomological p-ampleness.

Definition 4.17. We say that a vector bundle E on X is cohomologically p-ample if for all
coherent sheaves F onX, there is an integer r0 such that the cohomology groupsH i(X,F ⊗ E(pr))
vanishes for all i > 0, r≥ r0.

Proposition 4.18. If E is cohomologically p-ample on X, then E is p-ample.

Proof. See [Kle69, Proposition 9].

To the best of the authors’ knowledge, the following statements do not appear in the literature
so we state them and provide a proof.

Lemma 4.19. A direct sum of cohomologically p-ample vector bundle is cohomologically
p-ample.

Proof. The proof follows directly from the isomorphism

H i(X,F ⊗(E ⊕ E ′)(p
r)) =H i(X,F ⊗ E(pr))⊕H i(X,F ⊗E ′(pr)

).

Lemma 4.20. Let f : Y →X be a finite morphism of projective schemes and E be a cohomolog-
ically p-ample vector bundle on X. Then f∗ E is cohomologically p-ample on Y .

Proof. Let F be a coherent sheaf on Y . Since f is finite, the Leray spectral sequence degenerates
at page 2 and we have isomorphisms

H i(X, f∗(F ⊗f∗ E(pr))) =H i(Y,F ⊗f∗ E(pr))

for all i≥ 0 and r≥ 0. Since f is finite, the pushforward f∗ F is a coherent OX -module and the
projection formula implies that

f∗(F ⊗f∗ E(pr)) = f∗ F ⊗ E(pr) .

Since E is cohomologically p-ample on X, there is an integer r0 ≥ 1 such that

H i(X, f∗ F ⊗ E(pr)) = 0=H i(Y,F ⊗(f∗ E)(pr))

for all i > 0 and r≥ r0. In particular, f∗ E is cohomologically p-ample on Y .

4.3 The (ϕ, D)-ample bundles

If D is a Cartier divisor, we write OX(D) for the associated line bundle. If F is a coherent
sheaf on X, then we simply write F(D) instead of F ⊗OX(D). We consider an effective Cartier
divisor D on X and we define the notion of (ϕ, D)-ampleness for vector bundles over X.

Definition 4.21. Let E be a vector bundle over X. We say that E is (ϕ, D)-ample if there is
an integer r0 ≥ 1 such that for all integer r≥ r0, the vector bundle E (pr)(−D) is ample.

In the case of line bundles, (ϕ, D)-ampleness has the following characterization.

Proposition 4.22. Let L be a line bundle over X. Then L is (ϕ, D)-ample if and only if L is
nef and there is an integer n0 ≥ 1 such that L⊗n0(−D) is ample.

Proof. Note that L(pr) =L⊗pr

for all r≥ 0. Assume that r0 ≥ 1 is an integer such that L⊗pr

(−D)
is ample for all r≥ r0. If L was not nef, we could find a subcurve C ⊂X such that the intersection

12See again [Gie71] for an example of p-ample vector bundle that is not cohomologically p-ample.
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product

c1(L) · [C]
is negative. It would imply that the intersection product

c1(L⊗pr

(−D)) · [C] = pr (c1(L) · [C])︸ ︷︷ ︸
<0

−D · [C]

is negative for some r≥ r0 large enough, which contradicts the ampleness of L⊗pr

(−D). Inversely,
we assume that L is nef and there exists an integer n0 ≥ 1 such that L⊗n0(−D) is ample. Let r
be an integer such that

r≥ logp n0

and consider

L(pr)(−D) =L⊗pr

(−D) =L⊗n0(−D)⊗L⊗pr−n0 ,

which is ample as the tensor product of an ample line bundle with a nef line bundle.

Remark 4.23. In the case of line bundles we will drop the ϕ from the notation and simply say
that the line bundle is D-ample.

Proposition 4.24. Let L be a line bundle over X. The following propositions are equivalent:

(1) L is nef and big;

(2) there exists an effective Cartier divisor H on X, such that L is H-ample.

Proof. Assume that there exists an effective Cartier divisor H on X such that L is H-ample. We
have seen in Proposition 4.22 that L is nef and there is an integer n0 ≥ 1 such that L⊗n0(−H)
is ample. Moreover, since we can write L⊗n0 as a tensor product

L⊗n0 =L⊗n0(−H)⊗OX(H)

of an ample line bundle with an effective line bundle, L is big. We are left to show the implication
(1)⇒ (2). Since L is big, there exists an integer n0 ≥ 1 and an ample line bundle A such that
L⊗n0 ⊗A−1 =OX(H) with H an effective divisor. In particular, the line bundle L⊗n0(−H) is
ample. We conclude with Proposition 4.22.

We prove some stability properties of (ϕ, D)-ample vector bundles. We first prove the
following easy lemma.

Lemma 4.25. Let C be a projective curve and E be a vector bundle on C. Recall that δ(E)
denotes the minimum of degrees of quotient line bundles of E . Then, we have the following.

(1) If L is a line bundle on C, then δ(E ⊗L) = δ(E) + deg L.
(2) If f :C ′ →C is a finite morphism of degree d with C ′ a projective curve, then dδ(E)≥

δ(f∗ E).

Proof of Lemma 4.25. For condition (1), take a line bundle E �L′ such that δ(E) = deg L′. If
we tensor it by L, we get δ(E ⊗L)≤ deg L′ +deg L= δ(E) + deg L. The same argument applied
to E ⊗L−1 shows the reverse inequality. For condition (2), take a line bundle E �L′ such that

δ(E) = deg L′. The pullback f∗ induces a quotient map f∗ E � f∗ L′ =L′⊗d
which shows that

δ(f∗ E)≤ d deg L′ = dδ(E).

Proposition 4.26. Let E be a vector bundle onX and n≥ 1 an integer. The following assertions
are equivalent:
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Positivity, plethysm and hyperbolicity of Siegel varieties

(1) E is (ϕ, D)-ample;

(2) E is (ϕ, nD)-ample.

Proof. Assume that E is (ϕ, D)-ample and consider r0 ≥ 1 such that

E(pr)(−D)

is ample for all r≥ r0. By Barton’s numerical criterion of ampleness recalled in assertion (4) of
Proposition 4.6, for all r≥ r0, we have a real number εr > 0 such that for all finite morphism
g :C→X where C is a smooth projective curve over k, we have

δ(g∗ E (pr)(−D))≥ εr‖g∗C‖,
which is equivalent to

δ(g∗ E(pr))−D ·C ≥ εr‖g∗C‖,
where D ·C is the degree of the line bundle g∗ OX(D) =OX(D)|C (it is also equal to the
intersection number of D with C). If D ·C ≤ 0, then

δ(g∗ E(pr)(−nD)) = δ(g∗ E(pr))−D ·C − (n− 1)D ·C
≥ δ(g∗ E(pr))−D ·C
≥ εr‖g∗C‖,

for all r≥ r0. If D ·C > 0, we take r1 ≥ r0 such that r1 ≥ r0 + logp(n) and let r≥ r1 be an integer.

Since E(pr)(−D) is ample, the bundle

(E (pr0)(−D))(p
r−r0) = E(pr)(−pr−r0D)

is ample and we have

δ(g∗ E(pr)(−pr−r0D))≥ ε′r‖g∗C‖
for some real number ε′r > 0. Thus,

δ(g∗ E(pr)(−nD)) = δ(g∗ E(pr)(−pr−r0D)) + (pr−r0 − n)D ·C
≥ δ(g∗ E(pr)(−pr−r0D))

≥ ε′r‖g∗C‖.
In conclusion, we have

δ(g∗ E(pr)(−nD))≥min(εr, ε
′
r)‖g∗C‖

for all r≥ r1 and all g :C→X, which means that E is (ϕ, nD)-ample. Inversely, consider an
integer r0 ≥ 1 such that for all r≥ r0, we have a real number εr > 0 such that for all finite
morphisms g :C→X where C is a smooth projective curve over k, we have

δ(g∗ E(pr))− nD ·C ≥ εr‖g∗C‖.
If D ·C ≥ 0, we have

δ(g∗ E(pr)(−D)) = δ(g∗ E(pr)(−nD)) + (n− 1)D ·C
≥ δ(g∗ E(pr)(−nD))

≥ εr‖g∗C‖
for all r≥ r0. Consider an integer r1 ≥ r0 + logp n. If D ·C < 0, we have

pr−r0δ(g∗ E(pr0 )(−D))≥ δ(g∗ E (pr)(−pr−r0D))
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≥ δ(g∗ E(pr)(−nD)) + (n− pr−r0)D ·C
≥ δ(g∗ E(pr)(−nD))

≥ εr‖g∗C‖
for all r≥ r1. In conclusion, we have

δ(g∗ E(pr)(−D))≥ εr
pr−r0

‖g∗C‖

for all r≥ r1 and all g :C→X, which means that E is (ϕ, D)-ample.

Proposition 4.27. Let E and E ′ be two (ϕ, D)-ample vector bundle on X. Then, E ⊕ E ′ is
(ϕ, D)-ample.

Proof. Let r0 ≥ 1 be an integer such that for all r≥ r0, the bundles E(pr)(−D) and (E ′)(p
r)
(−D)

are ample. For all r≥ r0, we have

(E ⊕ E ′)(p
r)(−D) = E(pr)(−D)⊕ (E ′)(p

r)
(−D),

which is ample by assertion (1) of Proposition 4.7.

Proposition 4.28. Consider an extension of vector bundles on X

0 1 2 0

where E1 and E2 are (ϕ, D)-ample and assume that X is regular over k. Then E is (ϕ, D)-ample.

Proof. On a regular scheme, the Frobenius morphism is flat by [Kun69] or [Sta21, Lemma 0EC0].
As a consequence, we have an integer r0 ≥ 1 and an exact sequence

0 (E1)(p
r)(−D) (E)(p

r)(−D) (E2)(p
r)(−D) 0

of vector bundles on X where (E1)
(pr)(−D) and (E2)

(pr)(−D) are ample for all r≥ r0. We
conclude with assertion (2) of Proposition 4.7.

Proposition 4.29. Let E → E ′ be a surjective morphism of OX -modules between two vector
bundles. If E is (ϕ, D)-ample, then E ′ is also (ϕ, D)-ample.

Proof. Let r0 ≥ 1 be an integer such that for all r≥ r0, the bundle E(pr)(−D) is ample. For all
r≥ r0, the surjective morphism E → E ′ induces a surjection

E(pr)(−D)→ (E ′)(p
r)
(−D)

and we conclude with assertion (3) of Proposition 4.7.

Proposition 4.30. The tensor product of (ϕ, D)-ample vector bundles is (ϕ, D)-ample.

Proof. Let r0 ≥ 1 be an integer such that for all r≥ r0, the bundles E(pr)(−D) and (E ′)(p
r)
(−D)

are ample. For all r≥ r0, we have

(E ⊗ E ′)(p
r)(−2D) = E(pr)(−D)⊗ (E ′)(p

r)
(−D)

which is ample by assertion (5) of Proposition 4.7. It shows that E ⊗ E ′ is (ϕ, 2D)-ample and we
conclude with Proposition 4.26.

Proposition 4.31. If E is a vector bundle such that E⊗n is (ϕ, D)-ample for some n≥ 1, then
E is also (ϕ, D)-ample.
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Table 1. Main properties of the different positivity notions, from the strongest to the weakest.

Cohomologically
p-ample p-ample Ample (ϕ, D)-ample

Stability of direct sum 4.19 4.16 4.7 4.27
Stability of extension ? ? 4.7 4.28 (X regular)
Stability of quotient ? 4.16 4.7 4.29
Stability of tensor product ? 4.16 4.7 4.30
Stability of tensor roots ? ? 4.8 4.31
Stability of pullback by 4.20 ? 4.9 4.32 (f−1D defined)

finite morphism
Descent along finite ? ? 4.9 4.32

surjective morphism

Proof. Assume that E⊗n is (ϕ, D)-ample. By Proposition 4.26, E⊗n is also (ϕ, nD)-ample. Let

r0 ≥ 1 be an integer such that for all r≥ r0, the bundle (E⊗n)
(pr)

(−nD) is ample. For all r≥ r0,
the bundle

(E(pr)(−D))
⊗n

= (E⊗n)
(pr)

(−nD)

is ample. Thus, the bundle E(pr)(−D) is ample for all r≥ r0 by Proposition 4.8.

Proposition 4.32. Let f : Y →X be a finite morphism of projective schemes such that the
pullback f−1D is defined as an effective Cartier divisor of Y 13 and E be a (ϕ, D)-ample bundle
on X. Then f∗ E is (ϕ, f−1D)-ample on Y . If, furthermore, f is assumed surjective, then the
converse holds.

Proof. Let r0 ≥ 1 be an integer such that for all r≥ r0, the bundle E (pr)(−D) is ample. For all
r≥ r0, the bundle

f∗(E(pr)(−D)) = (f∗ E)(pr)(−f−1D)

is ample by Proposition 4.9. If f is assumed surjective, the converse holds by Proposition 4.9
again.

Table 1 summarizes the different stability properties of ampleness, p-ampleness, cohomolog-
ical p-ampleness and (ϕ, D)-ampleness.

We explain the relationship between (ϕ, D)-ampleness and other positivity notions.

Proposition 4.33. Let E be a vector bundle on X. Then,

E is L-big

E is ample E is (ϕ, D)-ample E is nef

E(pr) is V -big for some r ≥ 1

Proof. The first implication follows directly from [Bar71, Proposition 3.1]. Now, assume that
E is (ϕ, D)-ample and consider the universal line bundle O(1) on the projective bundle P(E).
We have a surjective map π∗ E →O(1) and since (ϕ, D)-ampleness is stable under quotient by
Proposition 4.29, O(1) is, in particular, nef and big by Proposition 4.24. It shows that E is nef
and L-big. Take r≥ 1 such that E(pr)(−D) is ample. We deduce that there is an integer n≥ 1

13By [Sta21, Lemma 02OO], it is the case when f(x) /∈D for any weakly associated point x of X or when f is flat.
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such that

Symn(E (pr)(−D))⊗OX(−1) = Symn(E (pr))(−nD)⊗OX(−1)

is globally generated. Since Symn(E (pr))⊗OX(−1) can be expressed as a tensor product of a
globally generated vector bundle with OX(nD), it is globally generated on the complementary
open subset of the support of D. It implies that the augmented base locus of E(pr) is not equal
to X, i.e. that E(pr) is V -big.

5. Flag bundle associated to a G-torsor

5.1 Higher direct image

In this subsection only, π : Y →X is a general scheme morphism. We recall some generalities
about cohomology and higher direct image.

Proposition 5.1. For any OY -module F , there is a spectral sequence starting at page 2:

Ei,j
2 =H i(X,Riπ∗(F))⇒H i+j(Y,F).

Proof. See [Sta21, Lemma 01F2].

We recall the projection formula.

Proposition 5.2. Let F be a OY -module, E a locally free OX -module of finite rank and i≥ 0
an integer. The natural map

Riπ∗ F ⊗OX
E →Riπ∗(F ⊗OY

π∗ E)
is an isomorphism.

Proof. See [Sta21, Lemma 01E8].

We recall the following lemma that appears also in [Ale24].

Lemma 5.3. Consider two Artin stacks X and Y over k and a proper representable morphism
π :Y →X . Consider a coherent sheaf F over Y which is flat over X and such that for any
geometric point x : SpecK→X fitting in a cartesian diagram

Yx := Y ×X ,x Spec K Y

Spec K X
πx

i

π

x

the complex R(πx)∗F|Yx
is concentrated in degree 0. Then, the complex Rπ∗F is also

concentrated in degree 0.

Proof. See [Ale24, Lemma 3.19].

5.2 G-torsors

In this subsection, k can be an algebraically closed field of any characteristic, G is a connected
split reductive group over k, P ⊂G is a parabolic subgroup and X is a k-scheme. If Y is a scheme,
we denote by Mod(OY ) the abelian category of OY -module on Y and Loc(OY )⊂Mod(OY ) the
fully faithful additive subcategory of locally free OY -module of finite rank.
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Positivity, plethysm and hyperbolicity of Siegel varieties

Definition 5.4. Let E be a G-torsor over X. We define the flag bundle of type P of E to be the
scheme FP (E) over X that represents the functor whose S-points are P -reduction of E ×X S
over S.

Definition 5.5. Let V be an algebraic representation of G and E a G-torsor over X. We define
the contracted product of E and V over G to be the representable quotient X-scheme

V ×G E := V ×k E/G,

where V is the k-vector space scheme associated to V and G acts on functorial points by
g(v, e) = (gv, ge). Note that the structure of k-vector space on V endows V ×G E with a structure
of vector bundle of rank dimk V over X.

Definition 5.6. Let E be a G-torsor over X. We define a functor

W : Rep(G)→ Loc(OX)

through the formula

W(V ) = V ×G E,

where V is an algebraic representation of G.

Definition 5.7. Let E be a G-torsor over X and π :FP (E)→X the flag bundle of type P of
E. We define a functor

L : Rep(P )→ Loc(OFP (E))

through the formula

L(V ) = V ×P H,

where V is an algebraic representation of P and H is the universal P -torsor on FP (E).

Remark 5.8. If λ∈X∗(P ) is a character of P , we simply write Lλ for the associated line bun-
dle on FP (E). We also write Wλ for the vector bundle associated to the G-representation
H0(G/P,Lλ) =∇(λ). We simply denote by Str the image of the Steinberg module by W.

Proposition 5.9. The functor W and L are monoidal and exact.

Proof. This is a general result on associated sheaves [Jan03, Part 1, Chapter 5].

Proposition 5.10. Let E be a G-torsor over X. Then, the following diagram commutes where
IndGP : Repk(P )→Repk(G) and ResGP : Repk(G)→Repk(P ) are the induction and restriction
functors.

Rep(P ) Loc(OFP (E))

Rep(G) Loc(OX)

Rep(P ) Loc(OFP (E))

L

IndG
P π∗

W

ResG
P π∗

L

Moreover, if λ is a dominant character of P , then Rπ∗Lλ is isomorphic to Wλ concentrated in
degree 0.

Proof. The commutativity of the lower square follows directly from the definitions. We focus on
the commutativity of the upper square. Consider a representation V of P . We have a cartesian
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T. Alexandre

diagram

FP (E) �P\∗�

X �G\∗�
π

ζP

π̃

ζ

where the map ζ is induced by E, the map ζP is induced by the universal P -reduction of E
on FP (E) and the vertical arrow π̃ between the classifying stacks is induced by the inclusion
P ⊂G. Denote by L̃(V ) the vector bundle on the classifying stack of P associated to V and
W̃(V ) the vector bundle on the classifying stack of G associated to the G-module IndGP (V ). It
follows directly from the definitions that⎧⎪⎨

⎪⎩
π̃∗L̃(V ) = W̃(V ),

ζ∗P L̃(V ) =L(V ),

ζ∗W̃(V ) =W(V ),

as sheaves on the stack �G\∗�. Since ζ is a flat morphism of algebraic stacks, the base change
theorem in the derived category of quasi-coherent sheaves over X tells us that the map

ζ∗ ◦Rπ̃∗L̃(V ) ∼−→Rπ∗ ◦ ζ∗P L̃(V ) (2)

is an isomorphism. Taking global sections in (2) yields the following isomorphism over X.

W(V ) = ζ∗π̃∗L̃(V ) π∗L(V )�

Now assume that λ is P -dominant. By Kempf’s vanishing theorem from Proposition 2.3 combined
with Lemma 5.3, we deduce {

Rπ∗Lλ = π∗Lλ,

Rπ̃∗Lλ = π̃∗Lλ,

and we get an isomorphism

Rπ∗Lλ �Wλ[0].

Proposition 5.11. Let λ be a character. For all r≥ 1, we have isomorphisms

π∗(Lpr(λ+ρ)−ρ) = Str ⊗W(pr)
λ .

Proof. This is a direct consequence of Propositions 2.10 and 5.10.

Proposition 5.12. Let PI be a standard parabolic subgroup of G of type I. Let E be a G-torsor
over X and π :FPI

(E)→X the flag bundle of type PI of X. We have an isomorphism

Ωtop
FPI

(E)/X �L−2ρI
,

where top denotes the relative dimension of π and ρI =
1
2

∑
α∈Φ+

I
α.

Proof. From the cartesian diagram

FPI
(E) �PI\∗�

X �G\∗�
π

ζ̃

π̃

ζ
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Positivity, plethysm and hyperbolicity of Siegel varieties

we deduce an isomorphism ζ̃∗Ω1
π̃ =Ω1

π. We know that

Ω1
π̃ �L(Lie(G)/ Lie(PI)

∨),

hence

Ωtop
π̃ �L(Λtop Lie(G)/ Lie(PI)

∨).

The weights of the T -action on Lie(G)/ Lie(PI) are the roots −Φ+
I , so Λtop Lie(G)/ Lie(PI) is a

one-dimensional module of weight −2ρI and by taking the linear dual, we get an isomorphism
Ωtop
π = ζ̃∗Ωtop

π̃ =L−2ρI
.

6. Pushforward of positive line bundles

Recall that k is an algebraically closed field of characteristic p. Let X be a projective scheme
over k and D an effective Cartier divisor on X. Let E be a G-torsor and write π : Y →X for the
flag bundle of type B of E as defined in Definition 5.4. We also write D for the Cartier divisor
π−1(D) on Y . Recall that we have fixed an ample line bundle OX(1) on X and that we write
F(m) instead of F ⊗OX(1)⊗m for any coherent sheaf F on X and integer m. We start this
section with some preliminary results.

Lemma 6.1. Consider a finite surjective morphism g :G′ →G of algebraic groups with central
kernel. Then there exists a projective scheme X ′ and a finite surjective morphism f :X ′ →X
such that the pullback of the G-torsor f∗E reduces to a G′-torsor on X ′.

Proof. Let us denote by BG= �Spec k/G� and BG′ = �Spec k/G′� the classifying stacks of G
and G′. The G-torsor E on X corresponds to a map bE :X→BG and g :G′ →G induces a map
bg :BG

′ →BG on the classifying stacks. Let K denote the kernel of g. We consider a cartesian
product

X ′

X BG′

X BG

h

α◦h
α

β

bg

bE

in the category of Artin stacks over k and the objective is now to prove that there exists a
scheme X ′ over k and a morphism h :X ′ →X such that α ◦ h :X ′ →X is finite surjective. The
first step is to show that α is quasi-finite, proper14 and surjective. By base change along bE , it
is enough to show it for bg. Since K is central, we have a cartesian product

BK BG′

Spec k BG

bg

bG

where bG is the classifying map of the trivial G-torsor on Spec k. We claim the map BK→ Spec k
is proper, quasi-finite and surjective. The only non-trivial part is to show that BK→ Spec k is

14See [Ols16, § 10.1] for a reference on properness for non-representable morphisms of stacks.
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separated, i.e. that its diagonal is proper. We have a cartesian product

K Spec k

BK BK ×k BK

and since K is finite, the diagonal BK→BK ×k BK is also finite by faithfully flat descent. By
faithfully flat descent along bG, it implies that the map bg is quasi-finite, proper and surjective.
The second step is to find a finite surjective morphism h :X ′ →X approximating the Artin stack
X . By [Ryd15, Theorem B], we have to check that the diagonal of α :X →X is quasi-finite and
separated. By base change and faithfully flat descent, it follows from the fact that the diagonal
of BK→ Spec k is finite. Combining the two steps, the composition α ◦ h is finite surjective.

We give a sufficient cohomological condition for a vector bundle to be ample.

Proposition 6.2. Let E be a vector bundle overX. Let λ∈X∗ be a character. If for all coherent
sheafs F , there is an integer r0 such that

H i(X,F ⊗ Str ⊗W(pr)
λ ) = 0

for all i > 0 and r≥ r0, then Wλ is ample.

Proof. We consider a coherent sheaf F =OX(−m) with m≥ 0 and we write

Gr =Str ⊗W(pr)
λ ⊗OX(−m).

Let x∈X be a closed point. From our hypothesis, there is an integer r0 such that

H1(X, Gr0 ⊗Ix) = 0,

where Ix is the ideal sheaf defining the closed point x. From the long exact sequence of
cohomology associated to the exact sequence

0 Gr0 ⊗ Ix Gr0 Gr0 ⊗ k(x) 0

we deduce that the map

H0(X, Gr0)→H0(X, Gr0 ⊗ k(x))

is surjective. In other words, Gr0 is globally generated at x. It implies there exists an open U
containing x such that Gr0 is globally generated over U . Since Str0 is self dual, there is a canonical
surjective map

St⊗2
r0 →OX .

Since the tensor product of globally generated sheaves over U is again globally generated over
U , we deduce that

G⊗2
r0 =St⊗2

r0 ⊗(W⊗2
λ )

(pr0 ) ⊗OX(−2m)

is a globally generated over U . Since the quotient of a globally generated sheaf over U is globally
generated over U , we know that

(W⊗2
λ )

(pr0 )
(−2m)

is globally generated sheaf over U . Now, let r≥ r0 be an integer. From the equality

(W⊗2
λ )

(pr)
(−2pr−r0m) = ((W⊗2

λ )
(pr0 )

(−2m))
(pr−r0)

,

284

https://doi.org/10.1112/S0010437X24007607
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.196, on 30 Jul 2025 at 23:30:07, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X24007607
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Positivity, plethysm and hyperbolicity of Siegel varieties

we deduce that (W⊗2
λ )

(pr)
(−2pr−r0m) is globally generated over U . Now take r1 large enough to

have OX((2pr1−r0 − 1)m) globally generated. We deduce that

(W⊗2
λ )

(pr)
(−2pr−r0m)⊗OX((2pr−r0 − 1)m) = (W⊗2

λ )
(pr)

(−m)

is globally generated over U for all r≥ r1. SinceX is quasi-compact, we can find an integer r2 ≥ r1

such that (W⊗2
λ )

(pr)
(−m) is globally generated over X for all r≥ r2. We use Proposition 4.13 to

deduce that W⊗2
λ is p-ample. By Proposition 4.14 and 4.8, it implies that Wλ is ample.

We give a sufficient cohomological condition for a vector bundle to be (ϕ, D)-ample.

Proposition 6.3. Let E be a vector bundle over X. Let λ∈X∗(T ) be a character. If there exists
an effective Cartier divisor D and an integer r0 ≥ 1 such that for all r≥ r0 and all coherent sheaf
F over X, there is an integer r1 ≥ 1 such that for all r′ ≥ r1 and i > 0, we have

H i(X,F ⊗ Str+r′ ⊗W(pr+r′ )
λ (−pr′D)) = 0,

then Wλ is (ϕ, D)-ample.

Proof. Using Propositions 4.13 and 4.14, it is sufficient to see that there exists integers n≥ 1 and

r0 ≥ 1 such that for all r≥ r0, the bundle W(pr)
λ (−nD) is p-ample. In other words, it is sufficient

to see that there exists integers n≥ 1 and r0 ≥ 1 such that for all r≥ r0 and all m≥ 1, there
exists r1 ≥ 1, such that for all r′ ≥ r1, the bundle

W(pr+r′ )
λ (−pr′nD)(−m)

is globally generated over X. By hypothesis, we have a Cartier divisor D and r0 ≥ 1 an integer.
Consider two integers r≥ r0, m≥ 0 and write

Gr′ =Str+r′ ⊗W(pr+r′)
λ (−pr′D)⊗OX(−m).

Let x∈X be a closed point. By hypothesis, we have an integer r1 ≥ 1 such that

H1(X, Gr1 ⊗Ix) = 0,

where Ix is the ideal sheaf defining the closed point x. From the long exact sequence of
cohomology associated to the exact sequence

0 Gr1 ⊗ Ix Gr1 Gr1 ⊗ k(x) 0

we deduce that the map

H0(X, Gr1)→H0(X, Gr1 ⊗ k(x))

is surjective. In other words, Gr1 is globally generated at x. It implies there exists an open U
containing x such that Gr1 is globally generated over U . Since the Steinberg module is self-dual,
there is a canonical surjective map

St⊗2
r+r1 →OX .

Since the tensor product of globally generated sheaves over U is again globally generated over
U , we deduce that

G⊗2
r1 =St⊗2

r+r1 ⊗(W⊗2
λ )

(pr+r1 )
(−2pr1D)⊗OX(−2m)

is globally generated over U . Since the quotient of a globally generated sheaf over U is globally
generated over U , we know that

(W⊗2
λ )

(pr+r1)
(−2pr1D)⊗OX(−2m)
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is a globally generated sheaf over U . From the equality

((W⊗2
λ )

(pr+r1)
(−2pr1D)(−2m))

(pr′−r1 )
= (W⊗2

λ )
(pr+r′)

(−2pr
′
D)(−2pr

′−r1m),

we deduce that (W⊗2
λ )

(pr+r′)
(−2pr

′
D)(−2pr

′−r1m) is globally generated over U . Now take r2 ≥ r1
large enough to have OX((2pr

′−r1 − 1)m) globally generated for all r′ ≥ r2. We deduce that

(W⊗2
λ )

(pr+r′)
(−2pr

′
D)(−2pr

′−r1m)⊗OX((2pr
′−r1 − 1)m)

= (W⊗2
λ )

(pr+r′ )
(−2pr

′
D)(−m)

is globally generated over U for all r′ ≥ r2. Since X is quasi-compact, we can find an integer

r3 ≥ r2 such that (W⊗2
λ )

(pr+r′ )
(−2pr

′
D)(−m) is globally generated over X for all r′ ≥ r3. In

conclusion, we have proven that W⊗2
λ is (ϕ, 2D)-ample, which is equivalent to (ϕ, D)-ample by

Proposition 4.26. Then, we use Proposition 4.31 to deduce that Wλ is (ϕ, D)-ample.

Theorem 6.4. Let λ∈X∗(T ) be character. If L2λ+2ρ is ample on Y , then Wλ is ample on X.

Proof. Consider a semi-simple cover of G (the existence is proved in [Jan03]), i.e. a finite sur-
jective morphism h :G′ →G of reductive groups with central kernel such that G′ =Gsc × T1 is a
product of a semi-simple simply connected group Gsc with a torus T1. Since ampleness can be
tested after a pullback by a finite surjective morphism by Proposition 4.9, we can use Lemma 6.1
to assume that ρ is a genuine character. Assume that Lλ+ρ is ample and consider a coherent
sheaf F on X. We have a Leray spectral sequence starting at the second page

Ei,j
2 =H i(X,F ⊗Rjπ∗(L⊗pr

λ+ρ ⊗L−ρ))⇒H i+j(Y, π∗ F ⊗L⊗pr

λ+ρ ⊗L−ρ).

Since Lλ+ρ is ample on Y , it is also π-ample and we have

Rjπ∗(L⊗pr

λ+ρ ⊗L−ρ) = 0

for all j > 0 and r large enough. We deduce that the spectral sequence degenerates at page 2
and we get isomorphisms

H i(X,F ⊗π∗(L⊗pr

λ+ρ ⊗L−ρ)) =H i(Y, π∗ F ⊗L⊗pr

λ+ρ ⊗L−ρ)

for all i≥ 0 and r large enough. Moreover, since Lλ+ρ is ample, the right-hand side vanishes for
i > 0 and r large enough. From Proposition 2.10, we know that

π∗(Lpr(λ+ρ)−ρ) = Str ⊗W(pr)
λ

and from Proposition 6.2, we deduce that Wλ is ample.

Theorem 6.5. Let λ∈X∗(T ) be character. If L2λ+2ρ is D-ample over Y , then Wλ is (ϕ, D)-
ample on X.

Proof. Since (ϕ, D)-ampleness can be tested after a pullback by a finite surjective morphism
by Proposition 4.32, we use the same trick as in Theorem 6.4 to assume that ρ is a genuine
character. Consider r0 ≥ 1 large enough such that L⊗pr

λ+ρ(−D) is ample for all r≥ r0. Let F be a

coherent sheaf on X and r≥ r0 integer. For all integers r
′ ≥ 1, we have a Leray spectral sequence

starting at the second page

Ei,j
2 =H i(X,F ⊗Rjπ∗(L⊗pr+r′

λ+ρ (−pr′D)⊗L−ρ))

⇒H i+j(Y, π∗ F ⊗L⊗pr+r′

λ+ρ (−pr′D)⊗L−ρ).
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Since L⊗pr

λ+ρ(−D) is π-ample, there is a r1 ≥ 1 large enough such that

Rjπ∗(L⊗pr+r′

λ+ρ (−pr′D)⊗L−ρ) =Rjπ∗((L⊗pr

λ+ρ(−D))⊗pr′ ⊗L−ρ) = 0

for all j > 0 and r′ ≥ r1. We deduce that the spectral sequence degenerates at page 2 and we get
isomorphisms

H i(X,F ⊗π∗(L⊗pr+r′

λ+ρ (−pr′D)⊗L−ρ)) =H i(Y, π∗ F ⊗L⊗pr+r′

λ+ρ (−pr′D)⊗L−ρ)

for all i≥ 0 and r′ ≥ r1. Since L⊗pr

λ+ρ(−D) is ample on Y , there exists r2 ≥ r1 such that we have

H i(Y, π∗ F ⊗(L⊗pr

λ+ρ(−D))⊗pr′ ⊗L−ρ) = 0

for all i > 0 and r′ ≥ r2. From Proposition 2.10, we know that

π∗(Lpr+r′ (λ+ρ)−ρ(−pr
′
D)) = Str+r′ ⊗W(pr+r′ )

λ (−pr′D),

which implies that

H i(X,F ⊗ Str+r′ ⊗W(pr+r′ )
λ (−pr′D)) = 0

for all r′ ≥ r2. We deduce with the technical Proposition 6.3 that Wλ is (ϕ, D)-ample.

7. Positivity of automorphic vector bundles on the Siegel variety

In this section, we prove that certain automorphic bundles on the Siegel modular variety are
(ϕ, D)-ample for some effective Cartier divisor D.

7.1 Recollection on Siegel modular varieties

We start by recalling some well-known results from [FC90] on Siegel modular varieties and their
toroidal compactifications. We denote by SchR the category of schemes over a ring R.

Definition 7.1. Let V be the Z-module Z2g endowed with the standard non-degenerate
symplectic pairing

ψ : V × V Z

(x, y) txJy

where

J =

(
0 Ig

−Ig 0

)
.

We denote by Sp2g the algebraic group over Z of 2g× 2g matrices M that preserve the
symplectic pairing ψ, i.e. such that

tMJM = J.

Definition 7.2 [FC90]. Let N be a positive integer such that p �N . Recall that k is an alge-
braically closed field of characteristic p. Consider the fibered category in groupoids Ag,N on Schk
whose S-points are groupoids with the following.

– Objects: (A, λ, ψN ) where A→ S is abelian scheme over S of relative dimension g, λ :A→A∨

is a principal polarization and

ψN :A[N ] ∼−→ (Z /N Z)2
S
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is a basis over S of the N -torsion of A.
– Morphisms: A morphism (A, λ, ψN )→ (A′, λ′, ψ′

N ) is a scheme morphism α :A→A′ over S
such that the diagram

A A′

A∨ A′∨

α

λ λ′

α∨

is commutative and the pullback of ψN by α is ψ′
N .

Proposition 7.3 [FC90]. For any integer N ≥ 3 such that p �N , the fibered category in
groupoids Ag,N is representable by a smooth integral quasi-projective scheme over k.

Notation 7.4. We denote by G the base change of the algebraic group Sp2g over k. We fix a
genus g≥ 1 and a level N ≥ 3 such that p �N . We denote simply by Sh the Siegel modular variety
Ag,N . Let μ be the following minuscule cocharacter of G.

μ : Gm G

z

(
zIg 0
0 z−1Ig

)
.

We denote by P+ := Pμ and P := P−μ the associated opposite parabolic subgroups with common
Levi subgroup L=GLg over k. We denote by B ⊂ P the Borel of upper triangular matrices in
G=Sp2g over k. We denote by ΦL (respectively, Φ+

L ) the corresponding roots of L (respectively,
positive roots of L).

Definition 7.5 [FC90]. As a fine moduli space, the Siegel variety Sh is endowed with a universal
principally polarized abelian scheme of relative dimension g

A Sh
f

e

where e : Sh→A is the neutral section. Recall the following associated objects on Sh.

(1) We denote by H1
dR :=R1f∗(Ω•

A/ Sh) the de Rham cohomology vector bundle of rank 2g
over Sh.

(2) We denote by Ω= e∗Ω1
A/ Sh the Hodge vector bundle of rank g over Sh.

Note that the Weil paring and the principal polarization on the universal abelian scheme f :
A→ Sh induce a symplectic pairing of the same type as ψ on H1

dR. In other words, the de Rham
cohomology is equivalent to the data of a G-torsor on Sh.

Proposition 7.6 [DI87]. The Hodge–de Rham spectral sequence

Ei,j
1 =Rjf∗(Ωi

A/ Sh)⇒Ri+jf∗(Ω•
A/ Sh)

degenerates at page 1 which proves the existence of the Hodge–de Rham filtration

0 Ω H1
dR R1f∗OA 0.

Moreover, the Hodge bundle Ω is totally isotropic for the symplectic pairing on H1
dR which

implies that the Hodge–de Rham filtration is equivalent to the data of a P -reduction of the
G-torsor H1

dR on the Siegel variety.
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In the next definition, we recall the main properties of toroidal compactifications of Siegel
varieties.

Definition 7.7 [FC90, Chapter 4], [Lan12, Th. 2.15]. Let C denote the cone of all positive
semi-definite symmetric bilinear forms on X∗ ⊗Z R with radicals defined over Q. Following the
definitions [FC90, Chapter 4, Definition 2.2/2.3], we consider a smooth GL(X∗)-admissible
decomposition Σ= {σα}α in polyhedral cones of C. Following Definition [FC90, Chapter 4,
Definition 2.4], we assume furthermore that Σ admits a GL(X∗(T ))-equivariant polarization
function. The existence of a polyhedral cone decomposition Σ satisfying these assumptions is
ensured by [AMRT10] and [KKMS73]. Denote by Shtor the toroidal compactification of the Siegel
variety associated to Σ. It follows from the assumptions on Σ that Shtor is a smooth projective
scheme over k satisfying the following assertions.

(1) The boundary Dred =Shtor − Sh with its reduced structure is an effective Cartier divisor
with normal crossings.

(2) The universal abelian scheme f :A→ Sh extends to a semi-abelian scheme f tor :Ator →
Shtor.

(3) The sheaf Ωtor := e∗Ω1
Ator/ Shtor,Σ is a vector bundle of rank g that extends the Hodge bundle

Ω to Shtor,Σ.

(4) By [FC90, Chapter 4] or [Lan12, Th. 2.15, (2)] there exists a log-smooth projective com-
pactification f̄ tor : Ātor → Shtor of the semi-abelian scheme f tor :Ator → Shtor and we again
denote by Dred the divisor with normal crossings Ātor −A.

(5) By [FC90, Chapter 4] or [Lan12, Th. 2.15, (3)], the log-de Rham cohomology

H1
log− dR :=R1(f̄ tor)∗Ω̄

•̄
Ator/ Shtor ,

where Ω̄•̄
Ator/ Shtor is the complex of log-differentials

Ω̄i
Ātor/ Shtor =ΛiΩ̄1

Ātor/ Shtor

=ΛiΩ1
Ātor(logDred)/(f̄

tor)
∗
Ω1
Shtor(logDred),

is a Sp2g-torsor that extends the de Rham cohomology H1
dR to Shtor.

(6) The logarithmic Hodge–de Rham spectral sequence

Ei,j
1 =Rj(f̄ tor)∗Ω̄

i
Ātor/ Shtor ⇒Hi

log− dR :=Ri(f̄ tor)∗Ω̄
•̄
Ator/ Shtor

degenerates at page 1, which proves the existence of a P -reduction of the Sp2g-torsor

H1
log− dR extending the Hodge–de Rham filtration to Shtor.

The Hodge line bundle ω=det Ωtor is usually not ample on the Siegel variety Shtor but it satis-
fies a weaker positivity result we explain. We recall the definition of the minimal compactification
of the Siegel variety.

Definition 7.8 [FC90, Chapter V]. The minimal compactification Shmin of the Siegel variety
Sh is defined as the scheme

Proj(⊕n≥0H
0(Shtor, ω⊗n)),

where ω=det Ωtor is the Hodge line bundle.

Proposition 7.9 [Mor85, Chapter IX, Theorem 2.1, p. 208]. The Hodge line bundle ω is semi-
ample on Shtor, i.e. there exists an integer m≥ 1 such that w⊗m is globally generated over
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Shtor. In particular, the Hodge line bundle descends to an ample line bundle on the minimal
compactification.

Proposition 7.10 [FC90, Chapter V, Theorem 5.8]. The toroidal compactification Shtor is the
normalization of the blow-up of Shmin

ν : Shtor → Shmin

along a coherent sheaf of ideals I of OShmin .

In particular, the pullback ν∗I is of the form OShtor(−D) where D is an effective Cartier divi-
sor whose associated reduced Cartier divisor is the boundary Dred. It follows from the ampleness
of ω on Shmin and the ν-ampleness of OShtor(−D) that there exists η0 > 0 such that ω⊗η(−D) is
ample for every η≥ η0. In other words, we have the following result.

Corollary 7.11. The Hodge line bundle ω=det Ωtor is D-ample on the toroidal compactifi-
cation Shtor.

Remark 7.12. The effective Cartier divisor D appearing in the corollary obviously depends on
the choice of the GL(X∗)-equivariant polarization function on the decomposition in polyhedral
cones Σ.

7.2 Automorphic vector bundles

We define the automorphic vector bundles over the Siegel variety. We choose an intermediary
parabolic subgroup P0 ⊂ P of type I0 ⊂ I ⊂Δ and we denote by P0,L := P0 ∩L⊂L the parabolic
subgroup of L.

Definition 7.13. We define the flag bundle π : Y tor
I0

→ Shtor of type I0 as the flag bundle
FP0,L

(Ωtor) (as in Definition 5.4) of type P0,L of the L-torsor Ωtor.

Definition 7.14. From Definitions 5.6 and 5.7, we have functors

W : Rep(L)→ Loc(OShtor),

L : Rep(P0,L)→ Loc(OY tor
I0

),

and we call any vector bundle in the essential image of these functors an automorphic bun-
dle. Moreover, if λ is a character of P0, we denote by ∇(λ) the automorphic vector bundle
W(IndLP0,L

λ) on Shtor and Lλ the automorphic line bundle L(λ) on Y tor
I0

. With our conventions

the module IndLP0,L
λ is isomorphic to the costandard representation of highest weight w0w0,Lλ.

Corollary 7.15. Let λ be a dominant character of P0. We have an isomorphism of vector
bundles

Rπ∗ Lλ =∇(λ)[0].

Proof. The proof is a direct consequence of Proposition 5.10.

Example 7.16. We have the following special cases.

(1) If λ= (0, . . . , 0,−1), then ∇(λ) =Ωtor;

(2) If λ= (0, . . . , 0,−n) with n≥ 1, then ∇(λ) = Symn Ωtor.

(3) If λ= (−1, . . . ,−1), then ∇(λ) = ΛgΩtor = ω.

We recall the Kodaira–Spencer isomorphism.
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Positivity, plethysm and hyperbolicity of Siegel varieties

Proposition 7.17 [FC90, Chapter 3, § 9]. The Kodaira–Spencer map on the toroidal compact-
ification of the Siegel variety

ρKS : Sym
2 Ωtor ∼−→Ω1

Shtor(logD)

is an isomorphism between the automorphic bundle ∇(0, . . . , 0,−2) and the sheaf of logarithmic
1-differentials Ω1

Shtor(logD). Taking the determinant yields an isomorphism of line bundles

Ωd
Shtor(logD)�∇(−2ρL),

where d is the dimension of Shtor and

ρL =
1

2

∑
α∈Φ+\Φ+

L

α.

We recall a result on the D-ampleness of automorphic line bundles Lλ that admits generalized
Hasse invariants.

Definition 7.18. Let λ be a character of T . For every coroot such that 〈λ, α∨〉 �= 0, we set

Orb(λ, α∨) =
{
|〈λ, wα∨〉|
|〈λ, α∨〉| |w ∈W

}
and we say that λ is:

(1) orbitally p-close if maxα∈Φ Orb(λ, α∨)≤ p− 1;

(2) Z∅-ample if 〈λ, α∨〉> 0 for all α∈ I and 〈λ, α∨〉< 0 for all α∈Φ+\Φ+
L .

The following result is due to [BGKS].

Proposition 7.19 [Ale24, Theorem 5.11]. Let λ be a character of T . If λ is orbitally p-close
and ZB-ample, then Lλ is D-ample on Y tor.

We can now state and prove one of our main results.

Theorem 7.20. Let λ be a dominant character of T :

(1) if λ is a positive parallel weight, i.e. λ= k(1, . . . , 1) with k < 0; or

(2) if 2λ+ 2ρL is orbitally p-close and Z∅-ample;

then the automorphic vector bundle ∇(λ) is (ϕ, D)-ample on Shtor.

Proof. This a direct consequence from Theorem 6.5 and Proposition 7.19.

To illustrate our result when g= 2, we represent the weights λ= (k1, k2) such that the
automorphic bundle ∇(λ) is (ϕ, D)-ample on the Siegel threefold for different values of p in
Figure 1.

8. Hyperbolicity of the Siegel variety

8.1 The supersingular pencil of Moret-Bailly

Recall that k is an algebraically closed field of characteristic p. Denote by Shg the Siegel variety of
genus g and full level N ≥ 3 (with p �N) over k and Shtorg a smooth toroidal compactification with
boundary a normal crossing divisorDred. Recall thatD denotes the effective divisor supported on
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T. Alexandre

Figure 1 (colour online). The (ϕ, D)-ampleness of automorphic bundles ∇(λ) when g= 2.

the boundary that appears as the exceptional divisor of the blow-up from Shtorg to the minimal

compactification of Shg. In [Mor81], Moret-Bailly constructed a non-isotrivial family A→ P1
k

of principally polarized supersingular abelian surfaces over the projective line with a full level
N -structure. This family yields a closed immersion ι2 : P1

k ↪→ Sh2 whose image belongs to the
supersingular locus of the Siegel threefold. In particular, we already know that Shtorg is not
hyperbolic when g= 2. This family can be used to contradict the hyperbolicity of the Siegel
variety for all g≥ 2: take an abelian variety A0 of dimension g− 2 over k and consider the closed
immersion ι := ιA0

◦ ι2
P1

k Shtor
2

Shtor
g

ι

ι2

ιA0

where ιA0
sends an abelian surface A to the fibre product A×k A0. It also shows that the

logarithmic cotangent bundle Ω1
Shtor

g
(logDred) cannot be nef. Indeed, ι induces a surjective

morphism

ι∗Ω1
Shtor

g
(logDred)→Ω1

P
1

and if Ω1
Shtor(logDred) was nef, it would imply that Ω1

P
1 =OP

1(−1) is nef. In the rest of this
subsection, we study more closely the non-positivity of certain automorphic bundles. Our goal
is to show the following.

Proposition 8.1. Assume that g ∈ {2, 3}. Any automorphic bundle ∇(k1, . . . , kg) on Shtor

where k1 = 0 is not nef.

Remark 8.2. In particular, we recover that the bundle Ω1
Shtor(logDred) =∇(0, . . . , 0,−2) is not

nef. We believe that this result generalizes to every g≥ 2.
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Positivity, plethysm and hyperbolicity of Siegel varieties

Proof. Consider a dominant character λ of T and write I0 ⊂ I for the set of simple roots such
that 〈λ, α∨〉= 0. As a consequence, the line bundle Lλ on Y tor

I0
is relatively π-ample which implies

that we have a surjective map for some n≥ 1 large enough

π∗π∗ L⊗n
λ = π∗∇(nλ)→L⊗n

λ .

In particular, if ∇(λ) was nef, it would imply that ∇(λ)⊗n, hence ∇(nλ) and Lλ would be nef.
We are reduced to show the non-nefness of Lλ on Y tor

I0
, which can be tested on Y tor

∅ . We claim
that we can always find an Ekedahl–Oort (EO) stratum Y tor

I0,w
such that the following intersection

product is negative

c1(Lλ)
l(w) · [Y tor

I0
]< 0.

These intersection computations are done in Appendix A.

8.2 Understanding the failure of hyperbolicity in positive characteristic

We have seen that Ω1
Shtor(logDred) cannot be nef as we can always see P1 as a closed curve in

Shtor. Consider a partition λ with height ht(λ)≤ dim Shtor and denote by Sλ the corresponding
Schur functor

Sλ : Loc(OShtor)→ Loc(OShtor)

as a strict polynomial functor on the category of locally free modules of finite rank over Shtor.
We start with the following lemma.

Lemma 8.3. If SλΩ
1
Shtor(logDred) is (ϕ, D)-ample and ι : V ↪→ Shtor is any subvariety such that:

(1) V is smooth;

(2) ι−1Dred is a normal crossing divisor;

(3) dim V ≥ ht(λ);

then the logarithmic canonical bundle ωV (ι
−1Dred) is (ϕ, ι−1D)-ample. In particular, it is nef

and big with exceptional locus contained in the boundary and V is of log general type with
respect to D.

Proof. The surjective morphism

ι∗Ω1
Shtor(logDred)→Ω1

V (log ι
−1Dred)

induces a surjective morphism

ι∗SλΩ1
Shtor(logDred)→ SλΩ

1
V (log ι

−1Dred)

and by Proposition 4.32 and 4.29, we deduce that SλΩ
1
V (log ι

−1Dred) is (ϕ, ι
−1D)-ample. Since

ht(λ)≤ dim V , the bundle

det SλΩ
1
V (log ι

−1Dred) = (ωV (ι
−1Dred))

⊗(|λ| dim∇(λ))/g

is non-zero and (ϕ, ι−1D)-ample. We conclude with Proposition 4.31.

With this fundamental lemma in mind, the aim is to find partitions λ that ensure the (ϕ, D)-
ampleness of SλΩ

1
Shtor(logDred), which is isomorphic to Sλ Sym

2 Ωtor by the Kodaira–Spencer
isomorphism (Proposition 7.17). Recall that under the assumption p≥ 2|λ| − 1, the plethysm
Sλ ◦ Sym2 is filtered by Schur functors Sη by Proposition 3.16. This allows us to state the
following lemma.

Lemma 8.4. Let λ be a partition and assume that p≥ 2|λ| − 1. If Sλ ◦ Sym2 is filtered by Schur
functors Sη such that SηΩ

tor is (ϕ, D)-ample or zero, then SλΩ
1
Shtor(logDred) is (ϕ, D)-ample.
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Proof. Since Shtor is smooth, this is a direct consequence of Proposition 4.28.

Remark 8.5. If η has more than g parts, then SηΩ
tor = 0. Otherwise, SηΩ

tor =∇(w0w0,Lη).

By Theorem 7.20, we are reduced to find a partition λ such that all the partition η with
at most g parts appearing in the plethysm Sλ ◦ Sym2 are such that 2ρL + 2w0w0,Lη is orbitally
p-close and Z∅-ample. See Appendix B for some explicit plethysm computations in the cases
g= 2, 3, 4 which helped us to build some intuition about the general case.

8.2.1 The general case. Consider the Siegel variety Shtor of genus g over k. In this section,
we prove the following result.

Theorem 8.6. Assume that p≥ g2 + 3g+ 1. For all k≥ g(g− 1)/2 + 1, the bundle
Ωk
Shtor(logDred) is (ϕ, D)-ample.

Corollary 8.7. Assume that p≥ g2 + 3g+ 1. Any subvariety ι : V ↪→ Shtor of codimension ≤
g− 1 satisfying:

(1) V is smooth;

(2) ι−1Dred is a normal crossing divisor;

is of log general type with respect to D.

Recall the following conjecture.

Conjecture 8.8 (Green–Griffiths–Lang). Let X be an irreducible projective complex variety.
Denote by Exc(X) the Zariski closure of the union of the images of all non-constant holomorphic
maps C→X. Then X is of general type if and only if Exc(X) �=X.

Remark 8.9. The Green–Griffiths–Lang conjecture fails in positive characteristic. Specifically,
in characteristic p > 0, there exist unirational surfaces of general type. These surfaces are dom-
inated by the projective plane P2 via rational maps, yet they possess a big canonical bundle,
classifying them as surfaces of general type. This phenomenon contradicts the expectation from
the conjecture that varieties of general type should exhibit hyperbolic behavior and not admit
non-constant rational curves.

Motivated by the Green–Griffiths–Lang conjecture, we can formulate the following.

Conjecture 8.10. For p large enough, there is a closed subscheme E ⊂ Shtor such that for any
subvariety ι : V → Shtor satisfying:

(1) V is smooth;

(2) ι−1Dred is a normal crossing divisor;

V is of log general type if and only if V �E.

Theorem 8.6 indicates that such an exceptional locus E ⊂ Shtor should have codimension
> g− 1. We believe it has exactly codimension g.

Proof of Theorem 8.6. The strategy is to study a ∇-filtration of the kth-exterior power of the
bundle Ω1

Shtor(logDred) and check that all the graded pieces are (ϕ, D)-ample automorphic vector
bundles when p≥ g2 + 3g+ 1 and k≥ g(g+ 1)/2− (g− 1). By the Kodaira–Spencer isomor-
phism of Proposition 7.17, the bundle ΛkΩ1

Shtor(logDred) is isomorphic to W(Λk Sym2 stdGLg
).

By Proposition 3.16, the GLg-module Λk Sym2 stdGLg
has a∇-filtration when p > k and it implies
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Positivity, plethysm and hyperbolicity of Siegel varieties

that ΛkΩ1
Shtor(logDred) is filtered by automorphic bundles ∇(w0w0,Lλ) where the λ are the high-

est weights of the ∇-filtration of Λk Sym2 stdGLg
. As explained in Example 3.1, determining the

Schur functors appearing in a plethysm Sλ ◦ Sμ is often a hard task; however, the plethysm
Λk ◦ Sym2 belongs to the one of the few cases where a general formula is known. We start with
a notation.

Notation 8.11. Let k be a positive integer and λ a partition of k in r distinct parts. We denote by
2[λ] the partition of 2k whose main-diagonal hook lengths are 2λ1, . . . , 2λr, and whose ith-part
has length λi + i. For example, we have

2[(5, 3, 1)] = 10
6 →
↓ 2

= (6, 5, 4, 2, 1)

where the diagonal hook have lengths 10, 6, 2.

Lemma 8.12 [Wil09, Lemma 7]. Assume that p > k. Then the polynomial functor Λk ◦ Sym2

has a filtration where the graded pieces are the Schur functors S2[λ] where λ range over the set
of partitions of k in distinct parts.

Example 8.13. Consider the case k= 5. The partitions of 5 in distinct parts are (5), (4, 1) and
(3, 2). The plethysm Λ5 ◦ Sym2 is then filtered by the Schur functors S2[(5)] = S(6,14), S2[(4,1)] =
S(5,3,12) and S2[(3,2)] = S(4,4,2).

Since we evaluate this plethysm at the Hodge bundle Ωtor which has rank g, we can discard
the partitions 2[λ] of height strictly greater than g (for such partitions, the evaluation vanishes).
Since the height of 2[λ] is λ1, we want to study the (ϕ, D)-ampleness of the automorphic bundles

S2[λ]Ω
tor =W(∇(2[λ])) =∇(w0w0,L2[λ]),

where λ is partition of k in distinct parts with λ1 ≤ g. By Theorem 7.20, we know it is the case
when 2w0w0,L2[λ] + 2ρL is Z∅-ample and orbitally p-close. Even if the second condition is always
satisfied for p large enough, the first condition may not be satisfied as explained in Appendix B.2..
In Proposition 8.1, we have seen that automorphic bundles of the form∇(η) where η= (η1 ≥ · · · ≥
ηg) is a dominant character such that η1 = 0 are not nef, hence not (ϕ, D)-ample. Conversely, we
will see that any automorphic bundle ∇(η), where η is a dominant character such that η1 ≤−1,
is (ϕ, D)-ample if p is greater than a specific bound which depends on η. We start with the
following lemma.

Lemma 8.14. Consider two GLg-dominant character λ= (λ1 ≥ · · · ≥ λg ≥ 0) and μ= (μ≥ · · · ≥
μ≥ 0). The GLg-module ∇(λ)⊗∇(μ) is filtered by costandard modules ∇(η) such that ηg ≥
λg + μg and η1 ≤ λ1 + μ1.

Proof of Lemma. See Proposition 2.13 for the existence of the ∇-filtration. The tensor product
of two polynomial representation of GLg is still a polynomial representation. Apply it to ∇(λ−
(λgg))⊗∇(μ− (μgg)) where (λ

g
g) = (λg, . . . , λg) and (μgg) = (μg, . . . , μg) to get the first inequality.

The second inequality follows from the fact that λ+ μ is the highest weight of ∇(λ)⊗∇(μ).

Proposition 8.15. Let η= (η1 ≥ · · · ≥ ηg) be a dominant character such that η1 ≤−1. Then
the automorphic bundle ∇(η) is (ϕ, D)-ample if p≥ (g+ 1)|ηg|+ g.
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Proof of the proposition. By Proposition 4.31, it is enough to show that ∇(η)⊗n is (ϕ, D)-ample
for some n≥ 1. By Lemma 8.14, the bundle∇(η)⊗n is filtered by automorphic bundles of the form
∇(δ) where δ1 ≤ nη1 and δg ≥ nηg. To apply Theorem 7.20, we need to see that each 2δ + 2ρL
is Z∅-ample and orbitally p-close. We first focus on the Z∅-ampleness of γ := 2δ+ 2ρL. In other
words, we need to check that

γ = 2δ+ 2ρL = (2δ1, . . . , 2δg) + (g− 1, g− 3, . . . ,−(g− 1))

= (2δ1 + g− 1, . . . , 2δg − g+ 1)

is such that 0> 2δ1 + g− 1> 2δ2 + g− 3> · · ·> 2δg − g+ 1. The first inequality being the only
one non-trivial, it is enough to have n> (g− 1)/2 as it implies

2δ1 + g− 1≤ 2nη1 + g− 1

≤−2n+ g− 1

< 0.

For the orbitally p-closeness of γ = 2δ+ 2ρL, we have the following bound

max
α∈Φ,w∈W,〈γ,α∨〉�=0

∣∣∣∣〈γ, wα∨〉
〈γ, α∨〉

∣∣∣∣≤ max
1≤i≤j≤g

|γj |+ |γi|
2

≤ 2|γg|
2

≤ |2δg − (g− 1)|
≤ 2|δg|+ (g− 1)

≤ 2n|ηg|+ (g− 1) by Lemma 8.14

and we deduce that it is enough to have 2n|ηg|+ g≤ p. Combining it with the restriction n=
�(g− 1)/2�+ 1≤ (g+ 1)/2 which ensure the Z∅-ampleness of γ, we get

p≥ (g+ 1)|ηg|+ g.

With Proposition 8.15 in mind, recall that we want to prove that the bundle

∇(w0w0,L2[λ])

is (ϕ, D)-ample when λ is a partition of k in distinct parts such that ht(2[λ]) = λ1 ≤ g. If there
exists such a partition λ with λ1 ≤ g− 1, we will not be able to apply Proposition 8.15 to
w0w0,L2[λ] as the first term will be 0. To avoid these partitions, we prove the following lemma.

Lemma 8.16. Assume that p > k. All the automorphic bundles ∇(η) appearing as graded pieces
of the ∇-filtration of Λk Sym2 Ωtor satisfy η1 ≤−1 if and only if k≥ g(g− 1)/2 + 1.

Proof of lemma. Assume that k≥ g(g− 1)/2 + 1. We need to check that there exists no partition
λ of k in distinct parts such that ht(2[λ]) = λ1 ≤ g− 1. Consider a partition λ of k in r-distinct
parts. We have

g(g− 1)

2
+ 1≤ k= λ1 + λ2 + · · ·+ λr ≤

λ1(λ1 + 1)

2
,

which is possible only if λ1 ≥ g. Conversely, if k≤ g(g− 1)/2, it is not hard to find a partition λ
of k in distinct parts such that λ1 ≤ g− 1.

Since (2[λ])1 = λ1 + 1, we conclude with Proposition 8.15 which says that each automorphic
bundle ∇(w0w0,L2[λ]) where λ1 = g is (ϕ, D)-ample when

p≥ g2 + 3g+ 1= (g+ 1) |(w0w0,L2[λ])g|︸ ︷︷ ︸
=g+1

+g.
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A. Intersection computations on EO strata

We use the results of [WZ18] to do some computation on the Chow Q-algebra of the partial flag
bundle P(Ωtor). Recall that I denotes the type of the parabolic subgroup P = P−μ of Sp2g. Let
I0 denotes a subset of I and consider the morphisms

ζ : Shtor → Sp2g -Zip
μ

and

ζI0 : Y
tor
I0 → Sp2g -ZipFlag

μ,I0

as defined in [GK19a] and [GK19b]. For all w ∈ IW , we denote by Shtorw := ζ−1([w]) the EO stra-
tum of the Siegel variety where [w]⊂ Sp2g -Zip

μ is the corresponding substack. More generally,15

for all w ∈ I0W , we denote by Y tor
I0,w

:= ζ−1
I0

([w]) the EO stratum of the partial flag bundle of type

I0 ⊂ I where [w]⊂ Sp2g -ZipFlag
μ,I0 is the corresponding substack. The morphism ζI0 induces a

pullback map on the corresponding Chow Q-algebra

A•(Sp2g -ZipFlagμ,I0) A•(Y tor
I0

)
ζ∗I0

and we call the image of ζ∗I0 the tautological ring TI0 of Y tor
I0

. Clearly, the Chow Q-algebra of

Sp2g -ZipFlag
μ,I0 is generated by the cycle classes of the EO strata [w] for w ∈ I0W but we would

like another description relying on Chern classes of automorphic bundles. We have a morphism
of Q-vector spaces

c1 : X∗(T ) A1(Sp2g -ZipFlagμ,∅)

λ c1(Lλ)

which induces a morphism of Q-algebras S→A•(Sp2g -ZipFlag
μ,∅) where S =SymX∗(T ) is the

symmetric algebra of the characters of T . By [WZ18, Theorem 3], this map is surjective with
kernel generated by the W -invariant elements of degree > 0. We deduce a description of the
Chow Q-algebra of Sp2g -ZipFlag

μ,∅ as

S A•(Sp2g -ZipFlagμ,∅)

S/IS

where I is the augmentation ideal of theW -invariant elements of S. This ideal admits an explicit
description as the augmentation ideal of a polynomial algebra

I =Q[f1, . . . , fg]≥1, fi = x2i1 + · · ·+ x2ig .

In particular, the tautological ring T∅ is generated as a Q-algebra by the cycle classes of the

closed EO strata Y tor
∅,w and by the Chern classes of the automorphic line bundles c1(Lλ). The

goal is now to express [Y tor
∅,w ] as an element of S/IS and to compute intersection products of the

form

c1(Lλ)
l(w) · [Y tor

∅,w ].

15If I0 = I, then Y tor
I0 =Shtor.
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Following the strategy of [WZ18], we have implemented on Sage an algorithm which computes

[Y tor
∅,w ] as an element of S/IS. In order to be more explicit, we choose a system of positive roots

in a way to obtain

I = {ei − ei+1 | i= 1, . . . g− 1} ⊂Δ= {ei − ei+1 | i= 1, . . . g− 1} ∪ {2eg}.
The Weyl group W = Sg � (Z/2Z)g contains 2gg! elements we can write as a product of the

simple reflections s1, s2, . . . , sg associated to e1 − e2, . . . , eg−1 − eg, 2eg.

A.1. The case g = 2

We represent the Weyl group of Sp4 with a diagram

w0 = s2s1s2s1

w1 = s2s1s2 w′
1 = s1s2s1

w2 = s2s1 w′
2 = s1s2

w3 = s2 w′
3 = s1

e

where an arrow is drawn from w to w′ if w′ ≤w and l(w′) = l(w)− 1. Consider the line bundle
Lλ on Y tor

∅ = P(Ωtor) where λ= (k1, k2) and recall that LλΩ
=L(0,−1) =O(1). In the graded

algebra

T∅ =Q[x1, x2]/(x
2
1 + x22, x

2
1x

2
2),

we have the following formulas:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Y tor
∅,w0

] = 1,

[Y tor
∅,w1

] = x1 − px2,

[Y tor
∅,w′

1
] =−(p− 1)(x1 + x2),

[Y tor
∅,w2

] =−(p− 1)(px1 + x2)x1,

[Y tor
∅,w′

2
] = (p− 1)(px2 − x1)x1,

[Y tor
∅,w3

] = (p2 − 1)(px2 − x1)x
2
1,

[Y tor
∅,w′

3
] = (p2 + 1)(p− 1)(x31 + x32),

[Y tor
∅,e ] = (p4 − 1)x1x

3
2.

Since the cycle x1x
3
2 has positive degree and since we are only concerned with the sign of the

intersection products, we make the identification x1x
3
2 = 1 and we get the following intersection
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products: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(Lλ)
4 · [Y tor

∅,w0
] = (k1x1 + k2x2)

4 = 4(k1k
3
2 − k31k2),

c1(Lλ)
3 · [Y tor

∅,w1
] = (pk31 − 3pk1k

2
2 − 3k21k2 + k32),

c1(Lλ)
3 · [Y tor

∅,w′
1
] = (p− 1)(k31 + 3k21k2 − 3k1k

2
2 − k32),

c1(Lλ)
2 · [Y tor

∅,w2
] = (p− 1)(k21 − k22 + 2pk1k2),

c1(Lλ)
2 · [Y tor

∅,w′
2
] = (p− 1)(p(k22 − k21) + 2k1k2),

c1(Lλ) · [Y tor
∅,w3

] = (p2 − 1)(k2 − pk1),

c1(Lλ) · [Y tor
∅,w′

3
] = (p− 1)(p2 + 1)(k1 − k2).

If k1 = 0 and k2 < 0, then c1(Lλ) · [Y tor
∅,w3

] = (p2 − 1)k2 < 0, so Lλ is not nef.

A.2. The case g = 3

The degree 9 part of the graded algebra T∅ =Q[x1, x2, x3]/I is a Q-vector space of dimension 1
generated by x51x

3
2x3. We have

[Y tor
∅,e ] = (p9 − p8 + p7 + 2p4 − p3 + p2 − p+ 1)︸ ︷︷ ︸

>0

x51x
3
2x3

and since this polynomial in p is always positive, we may identify x51x
3
2x3 with 1. We have then

c1(LλΩ
) · [Y tor

∅,s3 ] =−p(p5(p− 1)− 1)< 0,

which shows that Ωtor, hence Ω1
Shtor(logDred) = Sym2 Ωtor, is not nef.

B. Plethysm computations

The plethysm computations are accessible at github.com/ThibaultAlexandre/positivity-of-
automorphic-bundles.

B.1. The case g = 2

The Hodge bundle Ωtor is locally free of rank 2 and Ω1
Shtor(logDred) = Sym2 Ωtor is locally free

of rank 3. Recall there is no need to assume that p≥ 2|λ| − 1 when taking the highest exterior
power. Under the assumption p≥ 2× 2− 1 = 3, we have⎧⎪⎨

⎪⎩
Λ3 Sym2 Ωtor =∇(−3,−3),

Λ2 Sym2 Ωtor =∇(−1,−3),

Sym2 Ωtor =∇(0,−2).

Clearly, the line bundle ∇(−3,−3) is D-ample for any p > 0 and ∇(0,−2) is never nef (hence,
never (ϕ, D)-ample) by Proposition 8.1. For ∇(−1,−3), we need to check whether (−1,−7) is
orbitally p-close and Z∅-ample. This condition is satisfied as soon as p≥ 11. By Lemma 8.3,
this shows that any (good) subsurface of the Siegel threefold is of log general type when p≥ 11.
Putting some extra effort, one can show that this result holds with p= 7 as well. When p≥
2× 4− 1 = 7, the bundle

S(2,2) ◦ Sym2 Ωtor
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is filtered by the automorphic vector bundles ∇(−2,−6) and ∇(−4,−4) which are (ϕ, D)-ample
when p≥ 7. We get the following result.

Proposition B.1. Assume that g= 2.

(1) If p≥ 11, then Λ2Ω1
Shtor(logDred) is (ϕ, D)-ample.

(2) If p= 7, then S(2,2)Ω
1
Shtor(logDred) is (ϕ, D)-ample.

Corollary B.2. Assume that g= 2 and p≥ 7. If ι : S ↪→ Shtor is a subvariety of dimension ≥2
such that:

(1) S is smooth;

(2) ι−1Dred is a normal crossing divisor;

then S is of log general type with respect to D.

B.2. The case g = 3

The Hodge bundle Ωtor is locally free of rank 3 and Ω1
Shtor(logDred) = Sym2 Ωtor is locally free

of rank 6. Under the assumption p≥ 2× 5− 1 = 9, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ6 Sym2 Ωtor =∇(−4,−4,−4),

Λ5 Sym2 Ωtor =∇(−2,−4,−4),

Λ4 Sym2 Ωtor =∇(−1,−3,−4),

Λ3 Sym2 Ωtor is filtered by ∇(−1,−1,−4),∇(0,−3,−3),

Λ2 Sym2 Ωtor =∇(0,−1,−3),

Sym2 Ωtor =∇(0, 0,−2).

We deduce that Λi Sym2 Ωtor is (ϕ, D)-ample for i= 5, 6 when p≥ 11. For i= 4, we do not know
if the bundle ∇(−1,−3,−4) is (ϕ, D)-ample since

2(−1,−3,−4) + 2ρ= (0,−6,−10)

is not Z∅-ample. This incites us to consider the plethysm

S(2,2,2,2) ◦ Sym2 Ωtor,

which is filtered by ∇(−2,−6,−8), ∇(−3,−6,−7), ∇(−4,−4,−8) and ∇(−4,−6,−6) when
p≥ 2× 8− 1 = 15. These automorphic bundles are (ϕ, D)-ample when p≥ 17 by Theorem 7.20.
It implies that S(2,2,2,2) ◦ Sym2 Ωtor is (ϕ, D)-ample when p≥ 17. We get the following result.

Proposition B.3. Assume that g= 3.

(1) If p≥ 11, then Λ5Ω1
Shtor(logDred) is (ϕ, D)-ample.

(2) If p≥ 17, then S(2,2,2,2)Ω
1
Shtor(logDred) is (ϕ, D)-ample.

Corollary B.4. Assume that g= 3 and p≥ 17. If ι : V ↪→ Shtor is a subvariety of dimension
≥ 4 such that:

(1) V is smooth;

(2) ι−1Dred is a normal crossing divisor;

then V is of log general type with respect to D.
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B.3. The case g = 4

The Hodge bundle Ωtor is locally free of rank 4 and Ω1
Shtor(logDred) = Sym2 Ωtor is locally free

of rank 10. Under the assumption p≥ 2× 9− 1 = 17, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ10 Sym2 Ωtor =∇(−5,−5,−5,−5),

Λ9 Sym2 Ωtor =∇(−3,−5,−5,−5),

Λ8 Sym2 Ωtor =∇(−2,−4,−5,−5),

Λ7 Sym2 Ωtor is filtered by ∇(−1,−4,−4,−5),∇(2,−2,−5,−5),

Λ6 Sym2 Ωtor is filtered by ∇(−1,−2,−4,−5),∇(0,−4,−4,−4),

Λ5 Sym2 Ωtor is filtered by ∇(−1,−1,−3,−5),∇(0,−2,−4,−4),

Λ4 Sym2 Ωtor is filtered by ∇(−1,−1,−1,−5),∇(0,−1,−3,−4),

Λ3 Sym2 Ωtor is filtered by ∇(−0,−1,−1,−4),∇(0,−0,−3,−3),

Λ2 Sym2 Ωtor =∇(−0,−0,−1,−3),

Sym2 Ωtor =∇(−0,−0,−0,−2).

We deduce that Λi Sym2 Ωtor is (ϕ, D)-ample for i= 8, 9, 10 when p≥ 17. It does not work for
i= 7 since the character

2(−1,−4,−4,−5) + 2ρ= (1,−7,−9,−13)

is not Z∅-ample. Under the assumption p≥ 2× 14− 1 = 27, the plethysm

S(27) ◦ Sym2 Ωtor

is filtered by the following list of automorphic bundles:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇(−2,−8,−8,−10),

∇(−3,−6,−9,−10),

∇(−3,−7,−9,−9),

∇(−3,−8,−8,−9),

∇(−4,−4,−10,−10),

∇(−4,−6,−8,−10),

∇(−4,−7,−8,−9),

∇(−4,−8,−8,−8),

∇(−5,−5,−9,−9),

∇(−5,−6,−8,−9),

∇(−5,−7,−7,−9),

∇(−6,−6,−6,−10),

∇(−6,−6,−8,−8),

∇(−7,−7,−7,−7),

which are all (ϕ, D)-ample when p≥ 31.

Proposition B.5. Assume that g= 4.

(1) If p≥ 17, then ΛiΩ1
Shtor(logDred) is (ϕ, D)-ample for i≥ 8.

(2) If p≥ 31, then S(27)Ω
1
Shtor(logDred) is (ϕ, D)-ample.
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Corollary B.6. Assume that g= 4 and p≥ 31. If ι : V ↪→ Shtor is a subvariety of dimension
≥ 7 such that:

(1) V is smooth;

(2) ι−1Dred is a normal crossing divisor;

then V is of log general type with respect to D.
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de Rham, Invent. Math. 89 (1987), 247–270.

Fal83 G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent.
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625–644.

Mor81 L. Moret-Bailly, Familles de courbes et de variétés abéliennes sur P1. II. Exemples,
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