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Embedding the intrinsic symmetry of a flow system in training its machine learning
algorithms has become a significant trend in the recent surge of their application in fluid
mechanics. This paper leverages the geometric symmetry of a four-roll mill (FRM) to
enhance its training efficiency. Stabilising and precisely controlling droplet trajectories
in an FRM is challenging due to the unstable nature of the extensional flow with a
saddle point. Extending the work of Vona & Lauga (Phys. Rev. E, vol. 104(5), 2021,
p. 055108), this study applies deep reinforcement learning (DRL) to effectively guide a
displaced droplet to the centre of the FRM. Through direct numerical simulations, we
explore the applicability of DRL in controlling FRM flow with moderate inertial effects,
i.e. Reynolds number ∼O(1), a nonlinear regime previously unexplored. The FRM’s
geometric symmetry allows control policies trained in one of the eight sub-quadrants
to be extended to the entire domain, reducing training costs. Our results indicate that
the DRL-based control method can successfully guide a displaced droplet to the target
centre with robust performance across various starting positions, even from substantially
far distances. The work also highlights potential directions for future research, particularly
focusing on efficiently addressing the delay effects in flow response caused by inertia.
This study presents new advances in controlling droplet trajectories in more nonlinear and
complex situations, with potential applications to other nonlinear flows. The geometric
symmetry used in this cutting-edge reinforcement learning approach can also be applied
to other control methods.
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1. Introduction
In the seminal work by Taylor (1934), a two-dimensional fluid system, now termed four-
roll mill (FRM), was designed to analyse the deformation of drops and the formation of
emulsions. In this set-up, four identical cylinders submerged in a viscous liquid are driven
by electric motors. By adjusting the rotational speeds of the rollers, the flow can vary from
purely extensional to shear-dominated to purely rotational. The attributes of FRM have
made it popular in various applications. For example, the four-roll mill or similar device
has been used to generate controlled extensional flows, facilitating the study of droplet
deformation and suspension dynamics in microfluidic environments (Hudson et al. 2004;
Lee et al. 2007), allowing for precise manipulation of cells, particles and drops, which
is essential for applications in material science and chemical engineering (Rumscheidt &
Mason 1961; Bentley & Leal 1986b). The FRM has also been instrumental in studying
the behaviour of polymer solutions under various flow conditions. By adjusting the flow
type and rate, researchers can investigate polymer chain stretching and orientation, which
are critical for optimising industrial processes like extrusion and moulding. Relevant works
include Fuller & Leal (1981), Feng & Leal (1997) and Mackley (2010). Notably, Bentley &
Leal (1986a) designed a computer-controlled FRM that is capable of producing arbitrary
linear flow fields. An automated control mechanism was proposed to stabilise droplets in
the centre of the flow cell. Higdon (1993) systematically investigated the extensional and
rotational rates under different combinations of characteristic length ratios in a square box
based on a two-dimensional simulation. For detailed reviews of the application of FRM
in fluid mechanics, see Rallison (1984) and Stone (1994). More recently, Vona & Lauga
(2021) used reinforcement learning (RL) to search for an optimal control policy that can
drive a droplet to the centre via modulation of roller speeds at vanishingly small Reynolds
number Re.

Given the unique importance of FRM in both academic research and real-world
applications, it is of great interest to explore the accurate and robust control of the droplet
in the FRM. Previous papers by Bentley & Leal (1986a) and Vona & Lauga (2021) have
laid a solid foundation. Based on these works, this study aims to extend the FRM control
in the following two key aspects. First, we will consider moderate inertial effects with
Re ∼O(1) in the FRM, a case seldom studied in the control of FRM. The effect of inertia
on the control results will be elucidated in our task and this will help understand how the
nonlinearity can be controlled in FRM. Second, we will leverage the geometric symmetry
in FRM to facilitate the training and testing of the control policy. To the best of our
knowledge, past works have not used the geometric symmetry in controlling the flow in
FRM. Embedding and using intrinsic symmetry in machine learning algorithms represents
a significant trend in the recent development (van der Pol et al. 2020; Otto et al. 2023).
With these improvements, our work aims to further test the applicability of deep RL (DRL)
in guiding a droplet to the centre of the FRM using a direct numerical simulation method.
The reasons for choosing the DRL as the control method are twofold. First, Bentley &
Leal (1986a) demonstrated that a linear PID-type controller failed to stabilise a droplet,
which will drift exponentially away from the stagnation point if uncontrolled. A PID-type
controller regulates a process by combining proportional, integral and derivative actions,
reacting to errors and correcting past offsets in a linear manner. Its inability to control the
extensional flow is likely due to the inherently linear nature of the controller, which may be
insufficient for managing the complex, nonlinear dynamics of such a flow system. Second,
DRL has been applied successfully in controlling nonlinear flows (Rabault et al. 2019). It
also represents the state of the art in the application of machine learning algorithms in con-
trolling the unstable extensional flow in FRM, as first explored by Vona & Lauga (2021).
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In the following, we will first introduce the flow problem and explain the numerical
methods in § 2. The results will then be discussed and compared with those of Vona &
Lauga (2021) in § 3. The section also explains the advantage of leveraging the geometric
symmetry in the FRM and discusses the effect of inertia. In § 4, we conclude the work with
some discussions. Five appendices provide additional information on the delay in flow
response due to inertia, effect of thermal noise, global policy regarding different initial
conditions, hyperparameter fine-tuning and effects of different state definitions. Our code
will be shared online upon the acceptance of the work.

2. Problem formulation and numerical methods

2.1. Direct numerical simulation and validation
The diagram in figure 1(a) depicts the two-dimensional (2-D) four-roll mill (FRM)
instrument filled with a Newtonian fluid. The Cartesian coordinate originates from the
centre of a square domain with side length 2l. The domain is divided into eight sub-
quadrants, which will be discussed in the section on the geometric symmetry. Positioned
at (±b, ±b) are four rollers, each with a radius a. The rollers are indexed (1) to (4),
corresponding to the first to the fourth quadrants, respectively. The baseline rotation
rate of the rollers is denoted by ±Ω , with the positive (negative) sign representing
the anticlockwise (clockwise) direction. To generate an extensional flow, the baseline
rotation rates of the rollers from (1) to (4) are designated as ωB = [+Ω, −Ω, +Ω, −Ω],
respectively. A droplet is initially positioned at (x0, y0) in Cartesian coordinate or (h0, α0)
in polar coordinate, where α0 denotes the initial angle between the droplet and the
negative x-axis and h0 is the initial radial distance. The two coordinates are related by
x0 = −h0 cos(α0) and y0 = h0 sin(α0). Following Vona & Lauga (2021), we make an
assumption that the droplet is represented as a rigid fluid particle, meaning that it will not
deform. In addition, the passive droplet experiences no external forces and its movement
will not affect the flow field.

Although flow with Re ∼O(1) can be approximated as Stokes flow, to faithfully
capture the inertial effect, we solve the 2-D dimensionless incompressible Navier–Stokes
equations, contrary to the linear framework adopted previously (Bentley & Leal 1986a;
Vona & Lauga 2021),

∂u
∂t

+ u · ∇u = −∇ p + 1
Re

∇2u, ∇ · u = 0, (2.1)

where u = (u, v)T denotes the velocity, p the pressure and Re = bΩa/ν, where ν is
kinematic viscosity. Our length scale is b, velocity scale is Ωa, time scale is b/Ωa and
pressure scale is ρΩ2a2. When Re is small, the convective terms can be neglected and
analytical solutions exist for the induced Stokes flow, as adopted by Vona & Lauga (2021).
In our study, however, we will retain all the terms even though the Reynolds number is
small. This will facilitate the investigation of the (weak) inertial effect. Specifically, we
will consider Re = 10−9, 0.4, 2 and 3. According to the data of Bentley & Leal (1986a),
it is possible to realise these Reynolds numbers in experiments by adjusting the roller
rotation rate and choosing a proper fluid. For simplicity, the descriptions in this section
will be based on the representative case Re = 0.4, as they remain the same for the other
cases unless otherwise noted.

The roller rotation is realised by imposing a velocity boundary condition on the rollers.
On the boundary of a square domain, we consider no-slip boundary conditions following
Higdon (1993). To solve (2.1), the open-source code Nek5000 based on the spectral
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Figure 1. (a) Schematic diagram of four-roll mill showing the control set-up for a droplet initially positioned in
the sub-quadrant iii. (b) The five initial positions of the droplet to be studied in the present work with different
h0 and α0. The blue shade encircles the initial positions considered by Vona & Lauga (2021). The definition
of the angle β in the reward definition (2.2) is also illustrated. (c) Validation of our DNS results (black solid
lines) against those (dashed lines) of Higdon (1993) at vanishingly small Re. The letters represent the cases of
different a/b and l/b as summarised in the table.

element method (Fischer, Lottes & Kerkemeier 2017) is used. We have verified the mesh
convergence of our FRM simulations, and chosen a mesh composed of 1436 elements
of the order 7 for a good balance between accuracy and computational cost. Regarding
time integration, the two-step backward differentiation scheme is adopted with a time step
	t = 10−3 time units.

The past works (Fuller et al. 1980; Fuller & Leal 1981; Higdon 1993) have identified
a/b and l/b as two principle design parameters for determining a proper approximation
of extensional flow in the FRM test region. We have validated our numerical simulations
at angular velocity amplitude of all rollers Ω = 1.6 rad s−1 within a range of a/b and
l/b against the results of Higdon (1993) at vanishingly small Re, as shown in figure 1(b).
More precisely, for the case B of a/b = 0.625 and l/b = 3.6, Higdon (1993) reported that
the extension rate at the origin under extensional flow is 0.7064 and the vorticity at the
origin under rotational flow is 0.8250. Our numerical results yield 0.7065 and 0.8250,
respectively. This case is chosen for the DRL control in our work.

2.2. Control set-up
Vona & Lauga (2021) assumed a rotlet solution of the flow induced by the rotation of
rollers in an idealised Stokes flow, where the drop could respond to the changes of roller
speed instantaneously. In their control set-up, they controlled the rotation rate of one roller
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with the other three rotating at a default angular velocity. However, in our simulations, we
discovered that adjusting only one roller is overly restrictive and inefficient in the finite-
Re regime due to the existence of non-negligible inertia. As a result, our focus shifted
to actuating two adjacent rollers closest to the initial position of the droplet. Note that
for the case of Re = 3, control using three rollers is necessary. For clarity, the following
explanation of the control set-up will focus on two rollers, with the expansion to three
rollers discussed later in § 3.3.2.

The chosen rollers will not change within a single control task. For example, given
ωB , for a droplet initially placed in the sub-quadrant iii, the two adjacent rollers
chosen to control its trajectory are roller (1) and roller (2), see figure 1(a). We will
modulate the baseline rotation rate of the roller closest to the droplet by multiplying it
with an adjustable signal a1(t) and similarly for that less close, multiply it by a2(t).
The DRL-controlled rotation rates of the rollers in this case then become ωi i i (t) =
[+a2(t)Ω, −a1(t)Ω, +Ω, −Ω]. The DRL algorithm aims to determine the signals
a1(t), a2(t) in time, to be elucidated shortly.

Five different initial positions of the droplet are considered, see figure 1(b). Among
them, four initial positions are located within the sub-quadrant iii with varying distances
to the origin and angles, i.e. [h0, α0] = [0.1

√
2, 60◦ or 80◦], [0.05

√
2, 60◦ or 80◦].

Vona & Lauga (2021) confined the initial positions of the drops in the region of
x ∈ (−0.05, 0.05), y ∈ (−0.05, 0.05) (they normalised the length in the same way as we
did). Thus, their drops were placed within 0.05

√
2 of the origin. It is also noted that their

normalised radius of the rollers is 0.8, which is slightly greater than ours. Our fifth case
with [h0, α0] = [0.25

√
2, 45◦] defines a challenging task since the droplet is positioned

substantially far away from the origin. For this case, we also vary the Re to investigate the
inertial effect.

2.3. Deep reinforcement learning
DRL is a machine-learning algorithm that leverages deep learning techniques and
reinforcement learning principles to automate the decision-making process (Brunton,
Noack & Koumoutsakos 2020). The core concept of DRL-based control relies on an
agent, approximated by an artificial neural network, learning to identify the optimal control
policy through continuous interaction with the environment. By assessing the outcomes
of its actions as either desirable or undesirable, the agent learns and adapts from these
experiences according to a user-defined reward function.

The state input in our DRL algorithm includes the droplet’s position, velocity
and acceleration, together defined as st = [x(t), y(t), u(t), v(t), kx (t), ky(t)] ∈ S . The
position is obtained by integrating the velocity signal and the acceleration is calculated by
differentiating the velocity signal in time. In contrast, Vona & Lauga (2021) used solely
the position as the state. In our simulations, using only the position as the input failed in
the finite-Re regime, which may be related to the non-negligible inertial effect in our case.
The actions at time t are at = [a1(t), a2(t)] ∈A, adjusting the baseline rotation rates of the
two adjacent rollers as explained earlier. The values of a1(t), a2(t) are sampled between
[−η, η], where η is a predefined constant. The reward function r(t) ∈R

+ consists of r1(t),
r2(t) and r ′, i.e.

r(t) = r1(t) + r2(t) + r ′ = exp[−p(1 − cos β(t))] + exp[−qh(t)] + r ′. (2.2)

The definition of the reward r1(t) follows the work of Vona & Lauga (2021) and is related
to β(t), defined as the angle between the displacement vector b = [x(t) − x(t − 	ta),
y(t) − y(t − 	ta)] and the inward vector a = [−x(t − 	ta), −y(t − 	ta)], as illustrated
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Case Re h0 α0 η p q c he γ 	ta N

1,2 0.4 0.05
√

2 60◦, 80◦ 1.5 2 30 2 0.0025 0.98 0.05 30
3,4 0.4 0.1

√
2 60◦, 80◦ 2 2 10 8 0.005 0.99 0.05 50

5.1, 5.2, 5.3 [10−9,0.4,2] 0.25
√

2 45◦ 3 2 7 10 0.005 0.99 0.05 90
5.4 3 0.25

√
2 45◦ 3 2 7 10 0.005 0.99 0.075 90

Table 1. The cases considered in this work and the parameters selected in each case under a/b = 0.625,
l/b = 3.6. h0, initial radial distance to origin; α0, initial angle; η, clipped value for sampling actions; p, q, c,
parameters in the reward function (2.2); he, target distance to origin; γ , discounting factor; 	ta , time interval
between adjacent control actions; N , maximum control steps per epoch.

h0 α0 η p, q, c

Initial distance Initial angle Clipped value for sampling
actions

Parameters in reward
function

he γ 	ta N

Target distance Discounting factor Time interval between
actions

Maximum control steps
per epoch

Table 2. Explanations for the parameters in table 1.

in figure 1(b), where

cos β(t) = (x(t − 	ta)[x(t − 	ta) − x(t)] + y(t − 	ta)[y(t − 	ta) − y(t)])(
h(t − 	ta)

√[x(t) − x(t − 	ta)]2 + [y(t) − y(t − 	ta)]2
) , (2.3)

and

h(t) =
√

x(t)2 + y(t)2, (2.4)

and 	ta is the time interval for updating actions, i.e. the time interval between two control
steps. The function r2(t) measures the droplet’s radial distance to the origin. The last term
r ′ is defined as

r ′ =
{

c, h(t)� he

0, h(t) > he
, (2.5)

which is relevant only when the droplet reaches the target radial distance denoted by he
and c is the final reward for the droplet reaching the target. Vona & Lauga (2021) solely
used r1(t) in their reward function, which did not work well in our experiments of finite-
Re flows. Thus, we added r2(t) to further incentivise the DRL controller to continuously
increase the rewards as h(t) decreases and also r ′ for the terminal reward. In the above
definition, p, q are user-defined constants. A parametric study on p has been conducted by
Vona & Lauga (2021), which indicates that p = [0.5, 1, 1.5, 2] do not differ significantly
and they chose p = 1. In our DRL training, we found that p can affect the convergence of
training and the stability of the policy. As detailed in Appendix D, we studied the effect of
hyperparameters in the reward functions and set p = 2 to encourage the droplet to move
in the direction pointing to the origin. The values of the aforementioned parameters are
summarised in table 1 with their meanings explained in table 2.
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The time interval between two consecutive actions, denoted as 	ta , appears to be an
important parameter. Its effect on the flow control can be similarly studied as done by
Bentley & Leal (1986a) by varying the time interval. We will consider fixed values of
	ta . Specifically, the action is updated every 50 time steps, or 	ta = 0.05, in the cases
Re = [10−9, 0.4, 2], whereas the action is updated every 75 time steps, or 	ta = 0.075,
in the case of Re = 3, as shown in table 1. Appendix A shows a heuristic approach for
determining 	ta . Unlike in Vona & Lauga (2021), wherein actions ramp up to their new
values on a finite time scale, the actions here are constantly applied and unchanged during
a control step, until it is updated at the next control step.

Proximal policy optimisation (PPO) is used as the training algorithm, which has a
typical policy-based actor–critic network structure (Sutton & Barto 2018). The actor
network πθ(at | st ) takes the state st as the input and generates a probability distribution
from which the action at is sampled. The critic network Vφ(st ) predicts the value function
of state st , i.e. the discounted rewards starting from the state st . The critic aims to provide
an accurate prediction to minimise the objective function. For more technical details on
PPO, the reader is referred to Schulman et al. (2017). This method has been used in
previous DRL works applied to the flow control problems (Rabault et al. 2019) and also
in our past work (Li & Zhang 2022). Both the actor and the critic networks consist of
two hidden layers each with 300 neurons using ReLU as the activation function. The
networks are updated using the Adam-optimiser (Kingma & Ba 2014) with the learning
rate of 0.0001 and of 0.0002 respectively. The allowable steps N in each epoch and the
discount factor γ are case-dependent, as summarised in table 1.

It is worthy mentioning that in addition to PPO, there are other algorithms in RL control.
Based on how the DRL algorithms collect and use data, they can generally be classified
into two categories, i.e. on-policy and off-policy methods. On-policy algorithms, such as
PPO, learn exclusively from data generated by the current policy being trained. While this
ensures that the training data are always aligned with the policy, it can lead to lower sample
efficiency since past experiences are discarded. Off-policy algorithms, such as SAC (soft
actor–critic) and DDPG (deep deterministic policy gradient), can learn from historical
data collected by any policy, including those different from the current one. This reuse
of past experiences makes off-policy methods more sample-efficient. However, their off-
policy nature often introduces challenges in stability and convergence, requiring careful
hyperparameter tuning and additional optimisation techniques.

In the fluid dynamics community, PPO has been widely adopted due to its stability and
robustness, as demonstrated in studies such as Rabault et al. (2019), Fan et al. (2020), Ren,
Rabault & Tang (2021) and Li & Zhang (2022). DDPG has also been successfully applied
in works like Bucci et al. (2019), Zeng & Graham (2021), Kim et al. (2022) and Xu &
Zhang (2023). For this study, we opted for PPO primarily because of its stability and lower
sensitivity to hyperparameter variations. Furthermore, our approach leverages geometric
symmetry, which already enhances the sample efficiency. This reduces the importance of
the trade-off between stability and sample efficiency, making PPO a suitable choice for
our framework. While other DRL algorithms might offer performance improvements, we
believe that the core novelty of our work, that is, investigating inertial effects and geometric
symmetry, is effectively captured within our current numerical framework. This will be
demonstrated in § 3.

In the end, we explain the other theme of the work, that is, how to use the geometric
symmetry in FRM for DRL control. In general, leveraging symmetry to enhance models
in machine learning has recently emerged as a prominent research trend (Otto et al. 2023).
In DRL-related works, similar concepts have demonstrated improved model performance,
such as the invariance of locality discussed by Belus et al. (2019), Vignon et al. (2023),
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Figure 2. Agent training history for droplets at different initial positions. The first row corresponds to the
closest radial distance to the origin. The second row shows the cumulative rewards of each epoch.

Vasanth, Rabault & Vinuesa (2024) and Suárez et al. (2024, 2025). In these works, the
reward function is densely defined within specific local regions influenced by control
actions. However, we emphasise that the geometric symmetry employed in this study is
distinct from these approaches. It is derived from the global transformation framework
introduced by van der Pol et al. (2020). Thanks to the geometric symmetry of FRM, the
whole domain can be evenly divided into eight sub-quadrants from i to viii, as shown in
figure 1(a). Following the notation of van der Pol et al. (2020), for state s ∈ S , action
a ∈A and reward r ∈R

+, under transformation operators Lg : S → S and K s
g :A→A, a

symmetry-enhanced DRL algorithm can be constructed as

r(s, a) = r(Lg[s], K s
g[a]), (2.6)

where Lg or K s
g defines the transformation of state or action using the inherent symmetry.

The equation implies that the immediate reward of the state–action pair remains the same
after the transformation. So, s (or a) and Lg[s] (or K s

g[a]) are equivalent in S (or A). One
can train a control policy in the lifted space (i.e. one of the eight sub-quadrants) and, once
the training process is converged, map the policy back and apply it to the entire domain
(see § 3.2 for details). Note that this concept is different from constraining the numerical
simulations of FRM in a sub-quadrant.

3. Results and discussion
In the following, we will first present the typical training results of DRL for Re = 0.4.
Then, the DRL policy leveraging the geometric symmetry of FRM will be constructed to
demonstrate the advantage of symmetry consideration. Finally, we will focus on the other
theme of the paper, i.e. the characterisation of the inertial effect in the framework of DRL
control.

3.1. Training results of DRL for Re = 0.4
This section explains the controlled results using the DRL method for a droplet initially
placed in the sub-quadrant iii. Note that in this case, it is the roller (1) and (2) of which
we implement the modulation of the rotation rates. Figure 2 displays the agent training
history in terms of epochs for all the five considered cases. In the first row, h′

i measures the
minimum distance of the droplet to the origin in the i th epoch. As the training proceeds,

1012 A8-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
21

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10212


Journal of Fluid Mechanics

the value of h′
i gradually decreases and consistently stays below he in the end. During the

training, there are occasional ‘downward overshoots’ of h′
i falling below he. We consider

the training to have converged when there are more than 30–50 consecutive epochs of
successful control, indicated by h′

i < he. Overall, ∼400 epochs are commonly required
to train cases 1–4 and ∼1100 epochs for case 5. This difference additionally testifies
to the difficulty in controlling the last case, which is substantially far from the origin.
The second row of the figure shows the cumulative rewards Ri , which adds up all the
immediate rewards of the training steps in the i th epoch. In cases 1–4, the values of Ri
initially rise rapidly, followed by significant fluctuations, and eventually stabilise as the
droplet nears the origin. Case 5 presents a continuous climbing-up trend in the training
process. Combined together, the results of hi and Ri imply that the agent learns from the
interactions with the flow environment and updates its policy to guide the droplet to move
towards the origin. With a sufficient amount of training epochs, the droplet is capable of
reaching the target distance indicated by he. These results extend those of Vona & Lauga
(2021), where initial positions of drops typically within h0 < 0.05

√
2 were considered,

and demonstrate that droplets placed further away from the origin can also be controlled
successfully by DRL.

To test the effectiveness of trained policies, the converged ones have been run for an
additional 50 epochs and we find that in all the tests, the droplets can be driven back to the
origin within the target radial distance he. Figure 3 draws the representative trajectories
and the associated actions for cases 1–4 in panel (a, b) and for case 5 in panel (c, d). It
can be noticed that these trajectories exhibit smooth transitions from their starting point to
the ending point, which are in contrast to the results of Vona & Lauga (2021) where the
paths manifest zigzags. Possible reasons may include that Vona & Lauga (2021) studied a
model of inertia-less Stokes flow without a time derivative term, while our work is based
on DNS with finite inertial effect. Another possible reason might be that Vona & Lauga
(2021) reset the roller velocity to its default right before the next action, giving rise to
zigzags, whereas we continuously apply the action in all steps.

The actions exerted by the agent reflect a controlling logic, which is consistent with the
underlying flow physics. Specifically, the difference between a1 and a2 becomes larger
with smaller α0, see figure 3(b). Note that for all the considered droplets initiated in sub-
quadrant iii, a1 is assigned to roller (2) and a2 is assigned to roller (1). The extensional
flow generated by the baseline rotation rate ωB presents influx from the top/bottom and
outflux towards the left/right in the regions between the rollers (see figure 4). The droplet
initially positioned with smaller α0 tends to be swept away by the outflux with a stronger
left-pulling force; to counteract the left-pulling force exerted by the outflux, the roller (1)
modulated by a2(t) should work ‘harder’ to steer the droplet to move clockwise. Thus, the
value of a2(t) is in general larger in the case of smaller α0 for the same h0. This also ex-
plains why the DRL algorithm yields a controlled trajectory which deviates more from the
straight direction (the dashed lines, see figure 3a) in the smaller α0 cases. This effect is less
severe in the cases of larger α0, resulting in a smaller difference between a1 and a2 in panel
(b). In case 5.2, the sign of a1 is even negative at the beginning (see figure 3d), reversing
its rotation direction, which also aims to counteract the local outflux pulling the droplet to
the left and, together with a2, generate a trajectory as shown in figure 3(c). Figure 4 shows
exemplary instantaneous quiver plots of the velocity field in case 5.2. Without control, the
droplet will move exponentially away from the initial position, as shown in panel (a). That
the roller (1)’s action is stronger is also consistent with the roller choice of Vona & Lauga
(2021). The inertial effect will be further compared with small-Re flows in § 3.3.1.
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Droplets trajectories in cases 1-4. Modulations of roller actions for cases 1–4, where

only two rollers are active: a1 (t) corresponds to

roller (2), and a2 (t) corresponds to roller (1).

Modulations of roller actions for case 5.2, where

only two rollers are active: a1 (t) corresponds to

roller (2), and a2 (t) corresponds to roller (1).

Droplet trajectory in case 5.2.
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Figure 3. Converged policies in figure 2 are run for 50 episodes at Re = 0.4, all droplets are successfully driven
to the target radial distance. Panels (a), (c) demonstrate representative trajectories for all the considered cases.
Panels (b), (d) display the corresponding actions. Note that only two rollers (1) and (2) are acted on, and an
action is followed by a waiting time 	ta = 50	t until the next one, during which it is unchanged. Therefore,
in each control step shown in panels (b), (d), actions are actually step functions, and continuous lines in these
panels are guides for the eye.

In the end, we would like to discuss the robustness of the trained policy under random
noise and its generalisability to other initial conditions. Appendix B demonstrates the
effectiveness of the policies in noisy environments by introducing a thermal noise term
into the NS equation. Additionally, Appendix C explores the potential for a global policy
by applying the policy trained for the specific initial condition x0 = (−0.03, 0.02) to
other points in a nearby region. The results reveal that while droplets released from
initial positions close to that used for training the policy can sometimes be successfully
controlled, the policy remains sensitive to initial conditions otherwise. Several factors
may contribute to this sensitivity. First, in regions of extensional flow with steep flow
gradients, small perturbations in the initial conditions can lead to significant trajectory
deviations, complicating the control task. Second, since the DRL training is tailored to a
specific initial position, the trained policy may not generalise well to regions with distinct
flow characteristics, increasing the likelihood of control failure for significantly different
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0.40.20 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Velocity magnitude

–Ω –a1 (t)Ω +a2 (t)Ω+Ω

+Ω+Ω –Ω –Ω

(a) (b)

Figure 4. Instantaneous quiver plots for the velocity field in case 5.2 at Re = 0.4. (a) Without control. The
droplet tends to be swept away. The flow is inherently symmetric. (b) The last time step of an epoch for a
converged policy. The white cross represents the starting position of the droplet and the red one the ending
position in this control case of h0 = 0.25

√
2 and α0 = 45◦.

initial conditions. Nonetheless, our findings indicate that the policy can effectively
manage certain nearby initial positions, as shown by the green dots in figure 12 in
Appendix C.

3.2. DRL policy leveraging geometric symmetry of FRM
In § 2.2, we have briefly mentioned that the geometric symmetry of FRM enables the
control policies trained in one sub-quadrant to be applied to the entire flow domain.
This section elaborates on the utilisation of this symmetry using policies trained in § 3.1.
To begin, considering a droplet initially positioned in the sub-quadrant iii, represented
by the blue dot in figure 5, we denote the state of the droplet at time t as siii (t) =
[x(t), y(t), u(t), v(t), kx (t), ky(t)], and the actions determined by the agent at time
t as a(t) = [a1(t), a2(t)] as in ωi i i (t) = [+a2(t)Ω, −a1(t)Ω, +Ω, −Ω]. The optimal
policy is thus denoted as πθ(a(t)|siii (t)). By using the proper transformations based on
the geometric symmetry, this policy πθ can be applied to the entire domain, as explained
below.

For instance, in figure 5(a), the red droplet in sub-quadrant iv is symmetric to the
blue droplet in sub-quadrant iii about the antidiagonal line (−45◦). In this case, the
state of the red droplet can be expressed in terms of that of the blue droplet by
siv(t) = [−y(t), −x(t), −v(t), −u(t), −ky(t), −kx (t)]. The relation can also be
written in a matrix form (with siv(t), siii (t) interpreted as columns)

siv(t) =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Lg for antidiagonal line (−45◦)

siii (t) (3.1)
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Figure 5. The domain of FRM is evenly divided into eight sub-quadrants. By the geometric symmetry, the
control policy trained in one of the sub-quadrants can be applied to the entire domain. For example, panel
(a) shows that the dynamics of the blue droplet in sub-quadrant iii and that of the red droplet in the sub-
quadrant iv is symmetric with respect to the antidiagonal line (−45◦). Panel (b) shows that symmetry with
respect to the vertical axis for the droplets in sub-quadrants ii and iii.

The Lg’s using the symmetry with respect to the horizontal axis, vertical axis and diagonal
line read respectively⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Lg for horizontal line

,

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Lg for vertical line

and

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Lg for diagonal line (45◦)

.

(3.2)
Note that the diagonal line in this work is defined as that with an angle of 45◦.

To apply the policy πθ already trained in sub-quadrant iii to iv, we also need to
consider the action in sub-quadrant iii to be transformed to ωiv(t) = [−Ω, +a1(t)Ω,

−a2(t)Ω, +Ω] according to the symmetry with respect to the antidiagonal line, or
ωiv(t) = K s

gω
i i i (t),

ωiv(t) =
⎛
⎜⎝

0 0 −1 0
0 −1 0 0

−1 0 0 0
0 0 0 −1

⎞
⎟⎠

︸ ︷︷ ︸
K s

g for antidiagonal line (−45◦)

ωi i i (t). (3.3)

In this case, the rotation directions of all rollers are reversed as indicated by the red arrows
in panel (a). Similarly, figure 5(b) shows that the symmetry with respect to the vertical
axis can be leveraged to control the droplet initially positioned in sub-quadrant ii based on
the control policy trained in sub-quadrant iii. The K s

g’s using the symmetry with respect
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Figure 6. Trajectories by applying the policies trained in § 3.1 based on geometric symmetry in FRM. Note
that the polices trained in sub-quadrant iii (see the solid lines) are applied directly to other sub-quadrants (the
dashed lines) without new training. (a) h0 = 0.05

√
2 and α0 = 60◦, 80◦. (b) h0 = 0.1

√
2 and α0 = 60◦, 80◦.

(c) h0 = 0.25
√

2 and α0 = 45◦.

to the horizontal axis, vertical axis and diagonal line read respectively⎛
⎜⎝

0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎠

︸ ︷︷ ︸
K s

g for horizontal line

,

⎛
⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠

︸ ︷︷ ︸
K s

g for vertical line

and

⎛
⎜⎝

−1 0 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0

⎞
⎟⎠

︸ ︷︷ ︸
K s

g for diagonal line (45◦)

.

(3.4)

The idea can be further extended to the remaining sub-quadrants. To sum up, the
corresponding states and actions can be summarised as

(i) i: si (t) = [y(t), −x(t), v(t), −u(t), ky(t), −kx (t)];
ωi (t) = [−a1(t)Ω, +Ω, −Ω, +a2(t)Ω];

(ii) ii: sii (t) = [−x(t), y(t), −u(t), v(t), −kx (t), ky(t)];
ωi i (t) = [+a1(t)Ω, −a2(t)Ω, +Ω, −Ω];

(iii) v: sv(t) = [−y(t), x(t), −v(t), u(t), −ky(t), kx (t)];
ωv(t) = [−Ω, +a2(t)Ω, −a1(t)Ω, +Ω];

(iv) vi: svi (t) = [x(t), −y(t), u(t), −v(t), kx (t), −ky(t)];
ωvi (t) = [+Ω, −Ω, +a1(t)Ω, −a2(t)Ω];

(v) vii: svi i (t) = [−x(t), −y(t), −u(t), −v(t), −kx (t), −ky(t)];
ωvi i (t) = [+Ω, −Ω, +a2(t)Ω, −a1(t)Ω];

(vi) viii: svi i i (t) = [y(t), x(t), v(t), u(t), ky(t), kx (t)];
ωvi i i (t) = [−a2(t)Ω, +Ω, −Ω, +a1(t)Ω].

To validate the idea based on the geometric symmetry, we apply the policies obtained in
§ 3.1 for sub-quadrant iii to the entire flow domain directly without new training. As illus-
trated in figure 6, the dashed lines represent the direct application of the trained policies
described in § 3.1. It is evident that all the droplets are successfully guided to the origin.

3.3. Effect of inertia on the DRL control of FRM
In this study, inertia is numerically modelled and its effects on the DRL control will
be discussed in this section. The Re values investigated are Re = 10−9, 0.4, 2 and 3.
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Figure 7. Effect of inertia on the droplet trajectory subject to ad hoc action variation. The blue dot marks the
initial position of the droplet at [−0.25, 0.25]. Panel (a) illustrates the action history of the roller (labeled as
roller 2), where different colours represent the variations in the applied control action over time. In other panels,
the black dashed lines show the trajectories without control, corresponding to the case where a1(t) = 1 for
t ∈ [0, 2]. The curve segments in multiple colours show the trajectories of the droplet under the corresponding
actions.

One may wonder why we limit the study to relatively small values of Re. The reason is that,
as Re increases, control becomes progressively more challenging. At higher Re, the delay
in flow response caused by the increased inertia disrupts the action–reward relationship in
DRL, ultimately leading to failed control. This will be explained next.

Figure 7 illustrates the effect of inertia on the delay in flow response by examining
the droplet trajectory as the applied action is varied. This demonstration is an ad hoc
test and does not correspond to the control cases in table 1. In panels (b)–( f ), the black
dashed line represents the trajectory of a droplet started at the initial position [−0.25, 0.25]
without control, following the baseline roller action [+Ω, −Ω, +Ω, −Ω]. Since the
Re values are small, all these black dashed trajectories appear similar, although minor
differences exist that are difficult to discern. However, when the roller action is varied
to [+Ω, −a1(t)Ω, +Ω, −Ω], with the profile of a1(t) shown in panel (a), the variation
in the trajectories across the considered Re values becomes significant, even though the
values of Re are generally small. This is depicted by the curves in multiple colours.
Notably, for Re = 10−9, where inertia is negligible, the droplet instantly adjusts its motion
in response to changes in the roller action. As Re increases, the effects of inertia become
more pronounced. The droplet exhibits greater resistance to changes in direction, despite
the roller action being reversed with a large amplitude. This is particularly evident in
high-Re cases, and leads to significant delay in flow response, potentially disrupting the
action–reward relationship in the DRL control. For example, at Re = 3 and Re = 5, the red
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Figure 8. Droplet trajectory under control corresponding to the case 5.1 in table 1 with the parameters h0 =
0.25

√
2, α0 = 45◦ and Re = 10−9, compared with the baseline case 5.2 (Re = 0.4), which has been explained

in detail in § 3.1. (b) Roller actions in the case of h0 = 0.25
√

2 and α0 = 45◦, and the value history of the
positions [x(t), y(t)] and velocities [u(t), v(t)].

segments of the trajectories appear to follow the continuation of the blue segments, even
though the red signal represents a reversed rotation with relatively large amplitude. As
the DRL agent interprets the outcome of each control action and refines the policy based
on the perceived flow state, it may mistakenly infer that the red action has no influence
on the droplet’s position. This misinterpretation can ultimately lead to a failed control
attempt if the state space is defined solely based on position. In our DRL set-up, the state
includes position, velocity and acceleration. However, even with this comprehensive state
representation, the current approach fails to achieve successful control for Re = 5 in our
FRM flow. Consequently, results for Re = 5 are not included in this manuscript.

In the following, we will provide the control performance of the DRL agent for
Re = 10−9 and Re = 2, 3, to be compared with the results in § 3.1 for Re = 0.4.

3.3.1. Vanishingly small Re
For completeness, we report control results for a vanishingly small-Re (= 10−9) flow
in FRM to elucidate the differences in the numerical settings and results between the
vanishingly small-Re and the finite Re = 0.4 cases. Figure 8(a) shows that the furthest
case h0 = 0.25

√
2, α0 = 45◦ in the small-Re flow can be controlled successfully by a

DRL agent trained with only the droplet position as the state, without needing velocity or
acceleration. In contrast, in the finite-Re cases, the converged DRL agent entails a velocity
component, highlighting its increased complexity compared with the small-Re flow. The
test presented in Appendix E suggests that acceleration may play a less significant role
compared with velocity in defining the state. The figure also demonstrates that the inertial
effects result in more curved control trajectories than in the Stokes case, consistent with
our ad hoc test in figure 7. The geometric symmetry has been leveraged in figure 8(a).
Compared with the small-Re case of Vona & Lauga (2021), where droplet trajectories
exhibit zigzags, our trajectories display less wiggles. Figure 8(b) compares the actions
and the positions/velocities of the two flows. Two notable differences between them can
be observed: (i) the Stokes flow can be controlled in a shorter time and (ii) the actions
in the Re = 0.4 case deviate more from the baseline rotation compared with those in the
Stokes flow. These differences again highlight the increased complexity brought about by
the inertia in the finite-Re case.
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Figure 9. (a) Controlled droplet trajectory for case 5.3 in table 1 with the parameters h0 = 0.25
√

2, α0 = 45◦
and Re = 2. (b) Action history and value history in the test. (c) Controlled droplet trajectory for case 5.4 in
table 1 with the parameters h0 = 0.25

√
2, α0 = 45◦ and Re = 3. (d) Action history and value history in the

test. Three rollers are activated in this control task.

3.3.2. Training results for Re = 2, 3
This section presents additional results for Re = 2 and Re = 3, as shown in figure 9. For
Re = 3, the increasing inertia results in a more significant delay in flow response. Our
numerical tests indicate that introducing an additional roller is necessary for effective
control in this case. Specifically, rollers (1), (2) and (3) are used, corresponding to actions
a1(t), a2(t) and a3(t), respectively. Figures 9(a) and 9(b) illustrate successful training
outcomes for Re = 2. Similar to the Re = 0.4 case, the action a2(t) in this case takes
on positive values, while a1(t) initially assumes negative values before transitioning to
positive. The controlled trajectory exhibits a slight turn at the beginning, which becomes
more pronounced for Re = 3, as shown in panel (c). The trajectory for Re = 3 suggests
that a strong force pointing towards the bottom-left is exerted on the droplet by the
extensional flow. The collective actions of the rollers successfully guide the droplet
towards the target. The more distorted trajectory pattern observed for Re = 3, combined
with the need for three rollers, highlights the increased difficulty of control with higher
flow inertia. This challenge is closely linked to the delayed flow response, as discussed
earlier in this section. Future research could focus on enhancing the controllability of
DRL systems for higher- Re flows by leveraging more advanced algorithms and control
strategies.
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4. Conclusion
In this study, we have further tested the applicability of DRL in controlling droplet
trajectories within an FRM simulated by DNS. The work extends that of Bentley & Leal
(1986a) and Vona & Lauga (2021), but with two new considerations. First, we focused
on the finite-Re regime, incorporating nonlinear inertial effects in our control problem.
Second, we have leveraged the geometric symmetry of the FRM to enhance the training
efficiency of the DRL policies.

Our results have demonstrated that DRL can effectively harness the complex flow
dynamics of FRM to achieve desired droplets movement towards the origin, even when
starting from challenging initial conditions that place the droplets far from the centre. The
ability of the DRL agent to adaptively adjust two or even three roller speeds demonstrates
its effectiveness. The effect of inertia in the control task has also been discussed from the
perspective of flow physics. We note that the delay in flow response caused by the inertial
effect can potentially disrupt the action–reward relationship in DRL, which makes the
precise control more challenging as the Re increases. Future efforts are needed to improve
the performance of DRL controllers in FRM flows with higher Re.

In addition, the investigation into the intrinsic symmetry of FRM has provided a
better practice that enables the application of trained control policies across various sub-
quadrants of the flow field without loss of performance. This idea can be readily applied
to other control methods for FRM.

Future work could focus on further optimisation of control in high-Re regimes,
where inertia becomes more dominant. Additionally, incorporating more advanced noise-
handling techniques or extending the DRL framework to multi-agent settings could
improve the performance of RL in dealing with multiple initial conditions. More refined
reward functions can further enhance the control performance, such as a penalty term to
avoid abrupt changes in angular velocities and torque fluctuation. Other future research
includes extending the DRL strategy to handle more complex flows in FRM. For example,
polymeric flows at vanishingly small Re may exhibit elastic nonlinearity. Our attempt to
control a nonlinear flow with finite Re may showcase the applicability of DRL in these
complex fluids.
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Education, Singapore (WBS No. A-8001172–00-00).
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Appendix A. Action updating time interval �ta
This appendix outlines a heuristic approach to determine an appropriate action update time
interval, 	ta . This quantity is closely related to the delay in flow response, as discussed in
§ 3.3. To quantitatively determine 	ta , we estimate the response time 	td , defined as the
duration between the initiation of an action and the onset of a 0.1% velocity change at a
certain position. Figure 10 presents an ad hoc test of the flow response time 	td for various
Re. In this test, the action is varied as shown by the thin dashed lines (corresponding to
the right y-axis for a1(t)). Specifically, the roller’s action changes from the default value 1
to −3 over the interval t = [0.05, 0.15] before returning to its default value. Three velocity
probes are placed at positions [0.05

√
2, 0.15

√
2, 0.25

√
2] with α0 = 45◦ to monitor the

corresponding flow responses.
The estimated 	td values are reported in the figure. Our experiments show that, for

successful control policy training, the action update time interval 	ta should generally be
of the same order as, or larger than, the flow response time 	td . This ensures the agent has
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Figure 10. The response test across Re values. The dashed line represents the actions exerted by roller
(2), denoted as a1(t). The red, green and blue lines are the velocity signals monitored at positions of
h0 = [0.25

√
2, 0.05

√
2, 0.25

√
2] and α0 = 45◦.

sufficient time to evaluate the consequences of its actions within the flow environment.
Based on these observations, we set 	ta = 0.05 for Re = [0.4, 2]. For Re = 3, the flow
response time is notably larger, as seen in figure 10(d). Accordingly, the action is updated
every 75 numerical time steps, corresponding to 	ta = 0.075. It is worth noting that these
values of 	ta are not necessarily optimal, and there remains room for further improvement.

Appendix B. Robustness test with thermal noise
We have established effective control policies in deterministic flow environment. In this
appendix, we test the trained policy under thermal noise. Based on the work by Vona &
Lauga (2021), we implement the Langevin approach by adding the thermal noise term to
the NS equation which can be expressed as

Fi = (2	t/Pe)1/2Γi (B1)

where Pe is the dimensionless Péclet number defining the relative magnitude of the
advection over Brownian diffusion. Equation (B1) is added at the end of each numerical
step, where 	t is the numerical time interval and Γi (with i = u, v) is drawn from a
standard normal distribution.

A lower Pe results in higher thermal noise, which can interfere with the control. The
following experiment sets a range of Pe and tests the policies to examine whether they
can still guide the droplets back to the origin within the target distance. The test uses the
policies for the farthest initial positions, namely h0 = 0.25

√
2 and α0 = 45◦, for all the Re

considered. A control is considered successful if the final distance is less than the target
value he = 0.005.

Figure 11 shows the test results, where panels (a) and (b) display the accuracy and
average distance, respectively. The accuracy is computed as the number of successful
controls out of 100 total runs. From panel (a), one can clearly see that for all the policies
tested, the accuracy decreases with smaller Pe as noise levels increase. Among the
Reynolds numbers, the greatest Re(= 3) is negatively influenced most by the thermal
noise. This is understandable since the droplet’s motion in this flow regime is most affected
by inertia, making it the most complex case to control.
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Figure 11. Robustness test based on adding thermal noise to the flow environment. (a) The accuracy as the
number of successful controls out of 100 total runs. (b) The average distance of 100 total runs.

Panel (b) displays the average distance at the end of the testing step. In most
cases (except for Re = 3 at Pe = 10k, k = 3, 4), the average distance is less than or
approximately equal to the target distance he = 0.005. This demonstrates the effectiveness
of the policies in a noisy environment.

Appendix C. Global policy
Vona & Lauga (2021) investigated the possibility of a global policy by applying the policy
trained for a specific case with x0 = (−0.03, 0.02) to the other points in a nearby region.
The idea was to evaluate the performance of the trained policy generalised to different
initial positions.

To test the applicability of a similar global policy, we apply the trained policy for h0 =
0.25

√
2 and α0 = 45◦ to other points within the region x × y ∈ [−0.3, −0.1] × [0.1, 0.3].

The region is divided into a 10 × 10 rectangular grid of evenly spaced cells, as shown in
figure 12. Trajectories are simulated starting from the centre of each grid cell using the
policies trained for the initial condition (−0.25, 0.25), indicated by the red dot. The final
distance to the origin is shown for each trajectory as a colour map in figure 12. Some
thermal noise with Pe = 105 has been added to the flow environment. It is noted that our
lattice is significantly greater than that considered in Vona & Lauga (2021) and the droplets
are placed further away from the target.

Consistent with the findings of Vona & Lauga (2021), figure 12 shows that points
closer to the position (−0.25, 0.25) tend to have smaller final distances to the target,
particularly those near the diagonal line. Unsuccessful cases (regions without green dots)
are predominantly clustered along the edges of the domain, likely due to the strong
extensional flow in these areas. Some differences are observed across the considered Re
range. Specifically, for intermediate-Re values, the lower-triangular region exhibits more
successful testing outcomes.

In addition, we note that the trained policy, developed for a specific Re and geometry
(e.g. roller radius), can also be effectively applied to similar settings (results not shown).
This suggests that the trained policy exhibits a degree of generalisation, allowing it
to perform well under conditions that are close to those for which it was originally
trained.
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Figure 12. Final distances of droplets to the target position. Droplets are initially located at the cell centres on
a 10 × 10 rectangular grid, uniformly distributed over x × y ∈ [−0.3, −0.1] × [0.1, 0.3]. The applied policy
was trained for the specific initial position (−0.25, 0.25), denoted by the red dot. The green dots indicate the
final distance to the target is less than he = 0.005. Some thermal noise with Pe = 105 has been added to the
flow environment in these tests.

Appendix D. Refining the hyperparameters in the reward function
This appendix explains how the hyperparameters are determined in our reward function as
in (2.2). We will study the effect of each term, i.e. r1(t), r2(t), r ′ and the selected values
of the parameters used therein. For clarity, we will focus on [h0, α0] = [0.05

√
2, 45◦] and

Re = 0.4 to illustrate.

D.1. The r1(t) term
We discuss first the parameter p which appears in the first term of the reward
function, r1(t) = exp[−p(1 − cos β(t))], where β(t) is the angle between two consecutive
displacement vectors (see figure 1). Figure 13 plots r1(t) as a function of β(t), showing
that a larger p value incentivises the droplet to move in directions confined within
a narrower angle between the displacement vectors. This suggests that p plays a role
in controlling the exploration–exploitation trade-off in the DRL control. Specifically, a
smaller p promotes exploration, though it may hinder policy convergence, while a larger
p encourages exploitation, sacrificing the exploration capacity.

The overall effect of p in the FRM control is shown in figure 14, which displays different
trajectories obtained by policies trained by using only r1(t) with various p. The maximum
allowable control steps are N = 45. One can see that p > 1 results in trajectories closer
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Figure 13. The first reward term r1(t) against the angle in degrees between two displacement vectors.

to the diagonal line which points from the initial point to the origin, consistent with the
discussion based on figure 13. For p � 2, no obvious differences are found in terms of the
moving direction. In the specific test, the final distance of the p = 2 case is closest to the
target. Therefore, we set p = 2 in our numerical experiments as the corresponding r1(t)
appears to strike a good balance between exploration and exploitation.

From these results, we can see that if only r1(t) is used, the droplet fails to approach
closer to the origin. The reason may be that once the droplet moves in the radial direction
pointing towards the target, a high reward is given according to r1(t), which hinders a
further improvement of the control. To overcome this, we additionally include r2(t) =
exp[−qh(t)] which encourages the droplet to move to the target.

D.2. The r2(t) term
To determine the value of q in r2(t), we first plot r2(t) as a function of h(t) for different
values of q, as shown in figure 15. We aim to design such that the range of r2(t)
corresponds to the values of h(t) which cover the entire distance of the droplet trajectory
in the control. Specifically, for h0 = 0.05

√
2, the value of q is determined to be q = 30.

Figure 16 displays the trajectory obtained by policy trained using r1(t) + r2(t) with
p = 2, q = 30, and the associated training history. Compared with those in figure 14, the
trajectory in figure 16 ends up closer to the origin, proving the effectiveness of r2(t).

D.3. The r ′ term
To further motivate the agent guiding the droplet to the origin within an expected threshold
he, we add the third reward term

r ′ =
{

c, h(t)� he

0, h(t) > he
. (D1)

We would like to use a relatively high value for c since its contribution to the return will
be repeatedly discounted. Additionally, a larger c provides a greater incentive to arrive at
the target. In the manuscript, we chose c = 2 for h0 = 0.05

√
2. To verify that this value is

effective for the control, we will do a numerical study for c = 2 and c = 4.
Figures 17 and 18 display the results with c = 2 and c = 4, respectively. We can see that

both trajectories shown in these two cases can reach the target distance within he = 0.0025.
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Figure 14. The trajectories obtained by policies trained using only r1(t) with different choices of p. The other
terms in the reward function, i.e. r2(t), r ′, are excluded in this test.
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Figure 16. (a) The trajectory obtained by policy trained with r1(t) + r2(t)′ using [p, q] = [2, 30] without
adding r ′; (b,c) the training history.
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Figure 17. (a) The trajectory obtained by policy trained with r1(t) + r2(t) + r ′ using [p, q, c] = [2, 30, 2];
(b,c) the training history.

Comparing the training history among figures 16, 17 and 18, we can see that adding r ′
improves the convergence to the target distance since this reward term encourages the
droplet to move to the origin within prescribed target distance he. Using c = 4 only slightly
improves the control performance by termination with fewer epochs. This verifies our
choice of c = 2 in the manuscript.

Appendix E. Tests on different state definitions
In this appendix, we explore a point raised by one of the reviewers that the acceleration in
the state definition could be more susceptible to noise compared with other state variables

1012 A8-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
21

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10212


X. Dai, D. Xu, M. Zhang and Y. Yang

–0.10
–0.10

–0.05

0

0.05

0.10
p = 2, q = 30, c = 4

he = 0.0025

y

x

R
et

u
rn

F
in

al
 d

is
ta

n
ce

–0.05 0 0.05 0.10
0

10

20

30

0.01

0.10

Epoch

0 200 400 600 800 1000

Epoch

0 200 400 600 800 1000

(a) (b)

(c)
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Figure 19. (a) Droplet trajectory under control corresponding to case 5.3 in table 1 with the parameters h0 =
0.25

√
2, α0 = 45◦ and Re = 2. The dashed lines result from the application of geometric symmetry in FRM.

(b) Action history and value history in the test. Additionally, different input configurations for the DRL state
were tested, including both position and velocity and position alone. The policy using only position failed to
converge. Two closest rollers are activated in the control task.

such as position or velocity. In our numerical method, we simply calculate the acceleration
from the time derivative of velocity signals. To test if the acceleration is necessary or not,
especially in the case where the acquisition of the acceleration is severely subject to noise,
we provide the following numerical tests.

We focus on the case Re = 2 for illustration. The results for the baseline set-up, where
the state includes the position, velocity and acceleration of the droplet, are shown in
figure 9( a, b). In figure 19, we successively discard acceleration and velocity from the
state definition. By comparing the baseline set-up with the case where acceleration is
excluded, one can observe that the trajectories are visually identical, although the results
for u, v exhibit slight differences. The actions shown in panel (b) for these two cases are
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also highly similar. In both cases, the policies successfully guide the droplet to the target.
However, when only position is retained in the state, the control is unsuccessful under
otherwise identical parameters. Based on this test, we conclude that the acceleration may
not be necessary in our control set-up at Re = 2. Nevertheless, it remains to be tested
whether this conclusion holds at higher Re, where acceleration may play a more critical
role due to stronger inertial effects. However, since significantly increasing Re would
disrupt the action–reward relationship in our current DRL algorithm, this investigation
will be considered in future work.
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