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Abstract

This paper proposes a new statistical model to infer interpretable population-level
preferences from ordinal comparison data. Such data is ubiquitous, e.g., ranked choice
votes, top-10 movie lists, and pairwise sports outcomes. Traditional statistical inference
on ordinal comparison data results in an overall ranking of objects, e.g., from best to
worst, with each object having a unique rank. However, the ranks of some objects may
not be statistically distinguishable. This could happen due to insufficient data or to the
true underlying object qualities being equal. Because uncertainty communication in
estimates of overall rankings is notoriously difficult, we take a different approach and
allow groups of objects to have equal ranks or be rank-clustered in our model. Existing
models related to rank-clustering are limited by their inability to handle a variety of
ordinal data types, to quantify uncertainty, or by the need to pre-specify the number
and size of potential rank-clusters. We solve these limitations through our proposed
Bayesian Rank-Clustered Bradley-Terry-Luce (BTL) model. We accommodate
rank-clustering via parameter fusion by imposing a novel spike-and-slab prior on
object-specific worth parameters in the BTL family of distributions for ordinal
comparisons. We demonstrate rank-clustering on simulated and real datasets in
surveys, elections, and sports analytics.
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1. Introduction

In a traditional analysis of ordinal data, we assume I judges assess J objects by providing

ordinal preferences, Π. The ordinal preferences of each judge, Πi, may be provided in various

forms, such as complete rankings, partial rankings, or pairwise comparisons among available

objects or some subset thereof. Standard statistical model families for ranking data such as

Mallows (Mallows, 1957) or Bradley-Terry-Luce (Bradley and Terry, 1952; Plackett, 1975; Luce,

1959) derive or estimate the rank of each object whereby each object receives a unique rank. An

estimated overall ranking then orders all objects from best to worst. Analyses of this kind, often

referred to as rank aggregation (Dwork et al., 2001), are used to rank candidates in ranked choice

elections, (Gormley and Murphy, 2008; Mollica and Tardella, 2017), sports teams or players in a

league using pairwise game outcomes (Tutz and Schauberger, 2015; Barrientos et al., 2023), or

genes based on ordinal comparisons of genomics data (Eliseussen et al., 2023; Vitelli et al., 2018).

In these scenarios we intentionally do not consider potential heterogeneity among judges. Our

goal is to learn a single ranking which is the desired outcome, whether it is an ordering of

candidates or an ordering of genes.

However, requiring estimated ranks to be unique is not always useful or appropriate. For

example, some objects may be equal or indistinguishable in their true quality or ability. Consider

an election in which 2 candidates, both of the same political party, are running for an office. If

voters express their preferences solely on the basis of party, the candidates are inherently equal in

quality. In another situation, when the number of votes cast is small, estimated ranks assigned to

each candidate could exhibit substantial uncertainty, suggesting the candidates are

indistinguishable in quality based on the limited number of observed votes. In such situations,

allowing for inference to estimate the candidates as having the same rank or be rank-clustered

may improve interpretability, prediction, and decision-making when analyzing ordinal preferences.

In this paper, we propose a Bayesian framework for ordinal data analysis that estimates an

overall ranking of objects with rank-clusters, develop a computationally-efficient Gibbs sampler

for estimation, and apply the model to real and simulated data. Specifically, we choose to model

observed rank via the Bradley-Terry-Luce (BTL) family of distributions which permits analysis of
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ordinal preferences in many forms, such as complete rankings, partial rankings, pairwise

comparisons, and groupwise comparisons. To induce rank-clusters, we place a novel

spike-and-slab fusion prior on the object-specific parameters of BTL distributions. In contrast to

existing work related to rank-clustering in the literature, our model requires neither the

parameter order nor the number or size of rank-clusters to be known in advance. Instead, these

quantities are treated as random variables and estimated simultaneously so that their

corresponding uncertainty is naturally reflected in the resulting inferences.

The rest of the paper is organized as follows. We first review literature related to

rank-clustering in Section 2. Then, we propose the Partition-based Spike-and-Slab Fusion prior

and apply it to a BTL model for ordinal data in Section 3. We develop a computationally-efficient

Gibbs sampler based on reversible jump Markov chain Monte Carlo and demonstrate its accuracy

on simulated data in Section 4. To demonstrate a wide variety of methodological benefits of our

proposed framework, in Section 5, we apply the model to four real datasets: (i) complete rankings

of sushi preferences provided by Japanese adults, (ii) partial rankings of 2021 Minneapolis

mayoral candidates expressed by voters in a ranked choice election, (iii) complete and partial

rankings of policy options from Eurobarometer 34.1, a survey which measures various European

attitudes, and (iv) pairwise basketball game outcomes from the 2023-24 season of the National

Basketball Association. We conclude with a brief discussion in Section 6.

2. Background

Before reviewing ordinal comparisons literature, it is helpful to introduce some basic

terminology and notation. Rankings are a type of ordinal preferences that denote a relative

ordering of objects from best to worst, potentially allowing ties. We use the operator ‘≺‘ to

denote a strict ordering of two objects; e.g., A ≺ B states that object A is strictly preferred to B.

An object’s rank is the place it receives in the ranking.1 Rankings arise in different forms. Given

a collection of objects, a ranking is called complete when all objects are ranked. In contrast, a

1Although some authors have drawn a distinction between the terms “ranking” and “ordering,” in this paper we

choose to use solely the former in accordance with its popular usage.
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ranking is called partial when only a subset of the most-preferred objects are ranked (e.g., a top-5

ranking). In a partial ranking, we assume that unranked objects are less-preferred than those

ranked, but also that the preference order among the unranked objects is unknown. Next, we call

a ranking incomplete when a judge is asked only to rank a subset of the complete collection of

objects. In incomplete rankings, no information can be gleaned regarding objects not considered.

For example, if a voter is asked by an election pollster to rank candidates from a single political

party, the ranking should provide no information regarding their preferences on candidates from

other parties. We call incomplete rankings involving two objects (candidates in the above

example) a pairwise comparison, and incomplete rankings involving more than two objects a

groupwise comparison. Rankings may be both partial and incomplete; e.g., it could be a top-3

ranking of mayoral candidates from a specific political party.

Next, we briefly review methods for estimating rank-clusters based on the BTL and Mallows

families of ordinal data models in turn. For a more thorough review of these standard model

families, see Marden (1996) and Alvo and Yu (2014).

2.1. Methods based on BTL Distributions

Most work related to rank-clustering utilized the BTL family, which comprises the

Bradley-Terry and Plackett-Luce distributions and their extensions. The Bradley-Terry model,

proposed by Zermelo (1929) and discovered independently by Bradley and Terry (1952), is

parameterized by the vector ω ∈ RJ
>0, in which each ωj corresponds to the worth of object j.

Specifically, the Bradley-Terry model specifies the probability that object i will be ranked above

object j in pairwise tournament as

P [i ≺ j|ωi, ωj ] =
ωi

ωi + ωj
. (1)

The Plackett-Luce model (Plackett, 1975) extended the Bradley-Terry to allow for multiple

comparisons, partial rankings, and incomplete rankings, and has been justified under Luce’s

Choice Axiom (Luce, 1959) and Thurstone’s theory of comparative judgment (Thurstone, 1927;

Thompson Jr and Singh, 1967; Yellott Jr, 1977). In this model, a ranking π = {1 ≺ 2 ≺ · · · ≺ J}
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of J objects is assigned probability

P [Π = π|ω1, . . . , ωJ ] =
J∏

j=1

ωj∑J
j′=j ωj′

, (2)

where often one sets
∑

j ωj = 1 for identifiability. Rankings drawn from the Plackett-Luce model

may be interpreted as being created sequentially, where in the first stage an object is selected

among all the options, in the second stage an object is selected among all the remaining, and so

on. Extensions of distributions in the BTL family have been proposed to capture intricacies in

ranked preferences such as order of presentation effects, ties, and covariates (Rao and Kupper,

1967; Critchlow and Fligner, 1991; Gormley and Murphy, 2010; Chapman and Staelin, 1982).

Importantly, the BTL family can handle partial and incomplete rankings by exploiting its reliance

on Luce’s Choice Axiom.

Since BTL distributions have continuous parameters, rank-clusters may be estimated by

employing parameter fusion or shrinkage. Parameter fusion is the process of simultaneously

estimating parameter values and groups of parameters that should be set equal in value (i.e.,

“fusing” parameters together). Masarotto and Varin (2012) analyze pairwise comparison data

from sports tournaments with parameter fusion techniques under the Bradley-Terry model.

Masarotto and Varin (2012) estimate an overall ranking of teams with rank-clusters by applying

the frequentist fused lasso (Tibshirani et al., 2005), in which the absolute difference between every

pair of worth parameters is penalized after some data-driven normalization. In this approach, the

fused parameters are made equal and thus create a rank-cluster among the corresponding objects.

The approach of Masarotto and Varin (2012) was extended to additional datasets in sports (Tutz

and Schauberger, 2015) and academic journal rankings (Varin et al., 2016; Vana et al., 2016).

Jeon and Choi (2018) argued that shrinkage methods like those proposed by Masarotto and Varin

(2012) and Tutz and Schauberger (2015) were developed specifically for pairwise comparisons,

and thus have inappropriate penalty functions for application to richer kinds of ordinal data like

partial or complete rankings. As a result, Jeon and Choi (2018) proposed a modified

regularization penalty that may be applied to partial or complete rankings under the

Plackett-Luce model. Relatedly, Hermes et al. (2024) consider sparse estimation of a

Plackett-Luce model with object-level covariates under judge heterogeneity. In their setting, the
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number of heterogeneous preference groups and the group membership of each judge are assumed

fixed and known. To improve efficiency of estimation across groups and predictive performance,

they impose a lasso penalty on group-specific covariate coefficients and a simultaneous fused lasso

penalty between each pair of group-specific covariate coefficients. We note that the setting

studied by Hermes et al. (2024) is fundamentally different to ours, in that they assume (known)

preference heterogeneity among the judges and the presence of object-specific covariates.

Parameter fusion methods for rank-clustering exhibit four distinct disadvantages: First,

maximum likelihood estimation of models in the BTL family, even in their simplest forms, often

suffers from numerical instability and slow computational speed. As a result, numerous authors

have proposed complex algorithms to improve estimation accuracy or speed (Hunter et al., 2004;

Maystre and Grossglauser, 2015; Turner et al., 2020; Nguyen and Zhang, 2023). Second,

uncertainty quantification is challenging and theoretically tenuous in lasso-based methods

(Tibshirani, 1996; Fan and Li, 2001). Third, lasso penalty parameters may be difficult to select,

requiring data-driven or ad hoc techniques (Tibshirani, 1996; Masarotto and Varin, 2012). Thus,

interpretation of the resulting parameter estimates and associated uncertainty is reliant on the

specific choice of penalty parameter. Fourth, prior knowledge on the amount and size of

rank-clusters cannot be directly incorporated into the frequentist framework: Although the

penalty parameter influences estimation of rank-clusters, the specific meaning of various possible

choices is not directly interpretable.

Many of these disadvantages may be addressed using spike-and-slab priors, a Bayesian

approach to variable selection (Mitchell and Beauchamp, 1988; George and McCulloch, 1997;

Ishwaran and Rao, 2005). Spike-and-slab priors assign weight to both a point-mass at 0 (“spike”)

and a continuous density function (“slab”). Although the specific formulations of these priors

vary, they estimate parameters which are precisely zero in a probabilistic framework that

incorporates prior knowledge via interpretable hyperparameters, as opposed to opaque penalty

parameters. However, we are aware of only one variant of this prior class for parameter fusion:

Wu et al. (2021) apply spike-and-slab to differences in successive parameters in a linear

regression. In their method, the order of parameters from least to greatest in coefficient value

must be known in advance (as in the fused lasso). This is not practical in the canonical ordinal
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data setting because the parameter order is equivalent to the overall ranking, whose estimation is

a primary goal. Thus, no Bayesian parameter fusions methods exist which may be directly

applied to ordinal data analyses with rank-clustering. Alternatively, one may consider the class of

continuous shrinkage priors, which include Bayesian variants of the lasso (Park and Casella, 2008)

and fused lasso (Casella et al., 2010) among others (e.g., Griffin and Brown (2005); Carvalho

et al. (2010); Bhattacharya et al. (2015)). However, continuous shrinkage priors do not place

positive probability on coefficients (or their differences) being precisely zero. Thus, parameter

fusion must be performed via thresholding the posterior distribution, which is often ad-hoc

(Porwal and Rodriguez, 2021) and will not be considered in this work.

2.2. Methods based on Mallows Distributions

Alternatively, one may consider rank-clustering under the Mallows family of ranking models

(Mallows, 1957). The Mallows family is parameterized by the overall ranking, π0, and a scale

parameter θ ≥ 0 that dictates how likely rankings of a given distance to π0 are to be drawn.

Specifically, the probability of drawing a ranking π from a Mallows(π0, θ) distribution is

P [Π = π|π0, θ] =
e−θd(π,π0)

ψ(θ)
(3)

where d(·, ·) is a distance metric and ψ(θ) is a function which provides an appropriate normalizing

constant. Foundational models in the family are defined by their distance metric, with common

choices being the Kendall’s τ (Kendall, 1938) and Spearman’s ρ (Spearman, 1904).

To our knowledge, the Clustered Mallows Model proposed by Piancastelli and Friel (2024) is

the only rank-clustering method based on the Mallows model. Their work, proposed concurrently

and independently to ours, models item indifference (i.e., rank-clusters) by permitting the overall

ranking parameter π0 to include groups of objects that are tied in rank. The model is estimated

in a Bayesian framework from the observed ranking data. However, there are 3 major limitations

to their work: First and most importantly, the model requires both the number of rank-clusters

and the number of objects per cluster to be pre-specified. Although the authors propose sensible

and efficient tools for model selection, the requirement opens the possibility of model

misspecification. For example, given 7 objects there are 127 model specifications; given 10 objects
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there are 1023 model specifications. In addition, pre-specifying the rank-clustering structure

removes any uncertainty in the number of rank-clusters and their sizes from the inference task,

which we believe to be of key interest in many applications. Second, Bayesian inference of a

Clustered Mallows Model is in the class of doubly-intractable problems since the proposed

model’s normalizing constant is not available in closed form. As a result, exact inference may be

computationally slow, or approximation methods may need to be used that require an inexact

pseudolikelihood approach. Third, the Mallows model is best suited for ordinal data in the form

of complete or partial rankings, meaning the Clustered Mallows Model cannot handle pairwise or

groupwise comparisons. As will be shown in Section 3, our proposed model avoids all three issues

by incorporating parameter fusion in the continuously-parameterized BTL model family.

3. The Rank-Clustered BTL Model

In this section, we first develop a novel spike-and-slab prior for parameter fusion based on

partitions. Then, we employ the prior in a model for rank-clustering based on the BTL family of

ordinal data models.

3.1. Partition-based Spike-and-Slab Fusion (PSSF) Prior

Suppose data are drawn exchangeably from a model, M, parameterized by the vector ω. We

suppose ω is of length J and let each ωj ∈ Ω, Ω ⊆ R. Our goal is to estimate ω under the belief

that some pairs or groups of parameters in ω may be clustered (i.e., fused). We say that two

parameters m,n ∈ {1, . . . , J}, m ̸= n, are clustered precisely when ωm = ωn. Clustered

parameters may take on any value in their domain, Ω.

Before specifying the prior, we provide some notation on partitions. A partition of an object

set J = {1, 2, . . . , J} is a collection g = {C(1), C(2), . . . , C(K)} of K disjoint nonempty subsets

(henceforth referred to as “clusters”) of J such that their union forms J . Let C−1(j) represent

the cluster that contains object j ∈ J . We let S(k) =
∣∣{C(k)}∣∣ be the size of the subset C(k),

and denote by K the number of clusters in g. To emphasize dependence on g, we often write Kg,

Cg(k), etc. Lastly, we let G represent the collection of all partitions g of J , and let

Gk = {g ∈ G : Kg = k}.
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We are now ready to specify the Partition-based Spike-and-Slab Fusion (PSSF) prior. Under

PSSF, ω is assumed to be generated via the following hierarchical model:

G ∼ fG

νk|G = g
iid∼ fν k = 1, 2, . . . ,Kg (4)

ωj = νC−1
g (j) j ∈ J

In Equation 4, fG(·) is a probability mass function on G and fν(·) is a probability density function

on Ω. In words, the prior generates a partition g, and then assigns a unique value νk to each

cluster C(k) ∈ g. Last, each parameter in ω is assigned the value of ν corresponding to its cluster

in g.

As an example, suppose J = {1, 2, 3} and we draw g = {C(1), C(2)} such that C(1) = {2}

and C(2) = {1, 3}, and draw ν = [5, 10]. Then, ω = [10, 5, 10] because,

ω1 = νC−1
g (1) = ν2 = 10,

ω2 = νC−1
g (2) = ν1 = 5, and

ω3 = νC−1
g (3) = ν2 = 10.

3.1.1. Marginal Prior Probabilities

A useful feature of the PSSF prior is that, regardless of fG, the marginal distribution of each

ωj follows fν . This is because,

P [ωj ] =
J∑

k=1

P [νk|j ∈ C(k)]P [j ∈ C(k)] (5)

= P [ν1]
J∑

k=1

P [j ∈ C(k)] (6)

= fν(·). (7)

Equation 5 holds as there cannot be more than J clusters and each object belongs to precisely

one cluster, Equation 6 holds by the exchangeability of νk, and Equation 7 holds since

P [ν1] = fν(·) by definition and the Law of Total Probability.
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3.1.2. Relationship to Spike-and-Slab

We have not yet explained the proposed PSSF prior’s relationship to the spike-and-slab. It is

easiest to understand their connection by considering the joint prior distribution on two arbitrary

component parameters, ωm and ωn, such that m ̸= n. Due to the partitioning structure of

parameters in the PSSF prior, there is prior probability associated with a parameter cluster.

Thus, their joint prior distribution contains a “spike” component along the line ωm = ωn, with

density of that line determined by fν . Oppositely, given ωm ̸= ωn their joint prior distribution

reflects independent draws from fν .

Figure 1 gives examples of the PSSF prior under varying choices of fG and fν . In all panels,

we let J = {1, 2} and display the joint prior distribution of (ω1, ω2). In this setting, there are

only two unique partitions, g = {1, 1} and g = {1, 2}. Thus, we specify the prior fG by stating the

so-called “cluster probability,” i.e., the probability that g = {1, 1}. Columns correspond to cluster

probabilities 0.1, 0.5, and 0.9, respectively. Rows correspond to fν = Normal(0, 1) and

Gamma(5, 3), respectively. We notice that as the cluster probability increases, so does the density

of points in the spike component. Regardless of fG, marginal distributions of each parameter

follow fν . The marginal relationships seen in Figure 1 hold identically even as J grows.

Furthermore, we show the difference between parameters, ω2 − ω1, between different

scenarios in Figure 2. The rows and columns are identical to that in Figure 1 and make clear the

relationship between the PSSF prior and the traditional spike-and-slab, which has a spike

component at 0 and a background slab density.

3.2. Rank-Clustered BTL Model

We now introduce the Rank-Clustered BTL model for ordinal data. Let I be the number of

judges who assess J objects. Let Πi represent the ordinal preference provided by judge i, which

may be a partial ranking, complete ranking, pairwise comparison, or groupwise comparison. Let

Ri be the number of objects ranked by judge i, i.e., Ri = |Πi|. When Ri < J , his/her ranking is

partial. Let Si denote the objects considered by judge i when forming his/her ranking, such that

Si ⊆ J . When Si ⊂ J , his/her ranking is incomplete. Ri and Si are assumed known.
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Figure 1.

Joint distribution of (ω1, ω2) under the PSSF prior with varying combinations of fG and fν . In all cases, J = {1, 2},

and plots show 20,000 sampled values with marginal density estimates along the axes. Rows correspond to the choice

of fν and columns to fG.

Under the Rank-Clustered BTL model, we assume ordinal data is generated via the following

Bayesian model:

ω ∼ PSSF(fG ∝ Poisson(Kg|λ), fν = Gamma(νk|aγ , bγ))

Πi|ω
iid∼ BTL(ω|Si, Ri) i = 1, . . . , I

(8)

Rank-Clustered BTL applies the proposed PSSF prior under specific choices of fG and fν to the

BTL family of distributions for ordinal data. Note that the data-generating BTL distribution is

identifiable up to scalar multiplication of ω. However, the proposed Bayesian model does not

suffer from identifiability issues due to the non-uniform prior on ω (Johnson et al., 2022). We

emphasize that unlike existing rank-clustering methods, the proposed model does not pre-specify

the number of clusters, a specific rank-clustering structure, or the order of objects. These are

treated as random variables and estimated simultaneously.
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Figure 2.

Distribution of ω2−ω1 under the PSSF prior with varying combinations of fG and fν . In all cases, J = {1, 2}. Rows

correspond to the choice of fν and columns to fG.

3.2.1. Prior Selection

We now discuss the selection of priors and hyperparameters. We set fG according to

fG(g) ∝ Poisson(Kg|λ). (9)

In words, the prior probability of drawing a specific partition g depends only on how many unique

clusters, Kg, it contains. This prior is intentionally vague to permit a variety of rank-clustering

patterns. Note that every partition with the same Kg has equal prior probability. As a

consequence, cluster sizes do not explicitly impact the prior probability of each g.2 Still, there is

an implicit connection between cluster size and Kg. For example, if Kg = J , every cluster must

be a singleton. In this setup, one could set λ ≈ 1 to encourage rank-clustering, or λ ≈ J to

2It is possible to specify fG such that cluster sizes explicitly impact the prior probability of each g. For example,

one could set fG ∼ Poisson(K
(1)
g |λ), where K

(1)
g is the size of the first-place rank-cluster in g. In this case, model

estimation would be unchanged beyond a substitution of the new prior likelihood for fG in Equation (14).
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discourage rank-clustering. Next, we set fν according to

fν(νk) = Gamma(νk|aγ , bγ). (10)

This Gamma prior has been used in Bayesian estimation of BTL models as it allows for

closed-form Gibbs sampling via data augmentation (Caron and Doucet, 2012; Mollica and

Tardella, 2017). The hyperparameters aγ and bγ control the prior distribution on the worth

parameters. Since ω is invariant to multiplicative transformations, aγ and bγ are generally

non-influential. Nonetheless, because the ratios between worth parameters could become very

large when one object is strongly preferred over another, (aγ , bγ) should be chosen to give some

density to values near 0 to allow for such extreme ratios.

3.2.2. Goodness-of-Fit

To assess the adequacy of an estimated Bayesian model to observed data, we use a posterior

predictive p-value (Gelman et al., 2013, p. 146),

p = P
(
T (Πrep; g, ν) ≥ T (Πobs; g, ν)

∣∣ Πobs
)
,

where Πrep is a draw from the posterior predictive distribution, Πobs is the observed data,

T (Π; g, ν) is a discrepancy measure chosen to test a specific quality of the assumed model, and the

probability is taken over the posterior distribution of parameters g, ν and the posterior predictive

distribution of Π. Based on Yao and Böckenholt (1999) and Mollica and Tardella (2017), we

employ a discrepancy measure that considers the number of times item j beats item j′, denoted

τjj′ , for j, j
′ = 1, . . . , J . Specifically,

T (Π; g, ν) =
∑
j<j′

(τjj′ − τ∗jj′)
2

τ∗jj′

where τ∗jj′ is the theoretical frequency expected under an assumed model with parameters g, ν.

Under a well-fitting model, the posterior predictive p-value would be near 0.5, with small values

indicating inadequate model fit.
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4. Bayesian Estimation

In this section, we develop a Gibbs sampler for Bayesian estimation of Rank-Clustered BTL

models and provide simulations to demonstrate its performance under varying numbers of

observations and rank-clusters.

4.1. Gibbs Sampler

Equation 4 defines ω by the pair (ν, g). Thus, to estimate ω, we sample from the joint

posterior distribution of (ν, g). We do so using a reversible jump Markov chain Monte Carlo

(RJMCMC) Gibbs sampler that alternates between updating g and ν via their full conditionals

after data augmentation. The sampler is summarized in Algorithm 1.

Algorithm 1 Gibbs sampler for Rank-Clustered BTL models

1. Initialize g(0), ν(0) at random, ensuring that |ν(0)| = Kg(0) .

2. For t = 1, 2, . . . , T1,

(a) Sample g(t) via its full conditional using RJMCMC in order to traverse the space of partitions

of varying numbers of clusters.

(b) Sample ν(t) via its full conditional T2 times, which is possible via closed-form Gibbs sampling

with data augmentation.

Based on our experience fitting Rank-Clustered BTL models to real and simulated data, we

recommend initializing g(0) = {1, 2, . . . , J} (and thus Kg(0) = J) as it allows rank-clusters to be

formed during the estimation process (as opposed to being imposed by the analyst during

initialization). For Step 2, T1 should be sufficiently large to allow for convergence of the MCMC

chain, although specific choices are context-dependent. Step 2(a) performs RJMCMC on clusters

of objects. Since RJMCMC can be slow to converge in high dimensions, it is important to run

multiple chains and assess for mixing and convergence (Gelman et al., 2013). Step 2(b) relies on a

closed-form Gibbs sampler. We find T2 ≤ 5 is usually sufficient for posterior sampling.
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4.1.1. Details of Step 2(a)

We now detail Step 2(a), which proposes a new partition g′ based on the current partition g.

Since (g, ν) are intricately tied, ν must simultaneously be updated to an appropriate ν ′. The

sampling of discrete partitions is challenging to perform efficiently. In a seminal paper on

RJMCMC, Green (1995) provided a method for sampling partitions. We adapt that work for the

Rank-Clustered BTL model.

Following Green (1995), we only propose g′ which are slight modifications of g: Precisely, we

allow only for ‘births’ splitting one cluster into two, or ‘deaths’ merging two clusters into one.

Since all partitions have positive probability, this process is irreducible, as required. There is no

need to propose g′ that shuffle the partitions but maintain the number of clusters, as these

partitions may be obtained by successive birth and death moves.

Births are attempted with probability bg = 0.5.3 In this case, we select a cluster k at random

among those with at least two objects. The cluster is split “binomially”, meaning that each

object is placed independently into one of the “child” subgroups, k1 or k2, with equal probability,

conditional on each subgroup ultimately containing at least one object. Deaths are attempted

with probability dg = 1− bg = 0.5. In a death, two adjacent clusters are merged at random.

Adjacency means that ̸ ∃k : νk ∈ (νk1 , νk2).

Births and deaths require updating ν by increasing or decreasing its dimension by 1,

respectively. In a birth, we split a cluster’s worth νk into (ν ′k1 , ν
′
k2
) using,

ν ′k1 = uνk, ν ′k2 = u−1νk, (11)

where u ∼ Unif(0.5, 1.5). The corresponding death solves these equations simultaneously:

νk =
√
ν ′k1ν

′
k2
. (12)

For reversibility, we automatically reject proposed births where ν ′k1 , ν
′
k2

are not adjacent.

3One could specify an alternative bg ∈ (0, 1) or make bg a function of Kg (as in Green (1995)). For simplicity, we

fix bg = 0.5.
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Per Green (1995), the Metropolis-Hastings probabilities for a birth and death, respectively,

are min(1, A) and min(1, A−1), where

A =
P (ν ′, g′|Π)
P (ν, g|Π)

× q(ν, g|ν ′, g′)
q(ν ′, g′|ν, g)P (u)

×
∣∣∣∂(ν ′k1 , ν ′k2)
∂(u, νk)

∣∣∣, (13)

where q(ν ′, g′|ν, g) is the transition probability of sampling (ν ′, g′) given current parameter set

(ν, g). We now calculate each term in A. First,

P (ν ′, g′|Π)
P (ν, g|Π)

=
P (Π|ν ′, g′)P [ν ′|g′]P [g′]∑

g′′
∫
ν′′ P (Π|ν ′′, g′′)P [ν ′′|g′′]dν ′′P [g′′]

∑
g′′

∫
ν′′ P (Π|ν

′′, g′′)P [ν ′′|g′′]dν ′′P [g′′]
P (Π|ν, g)P [ν|g]P [g]

=
P (Π|ν ′, g′)P [ν ′|g′]P [g′]
P (Π|ν, g)P [ν|g]P [g]

=
P (Π|ν ′, g′)
P (Π|ν, g)

×
Gamma(ν ′k1 |aγ , bγ)Gamma(ν ′k2 |aγ , bγ)

Gamma(νk|aγ , bγ)
× P [g′]

P [g]
, (14)

where P (Π|ν, g) and P [g] are defined by Equation 8. Second,

q(ν, g|ν ′, g′)
q(ν ′, g′|ν, g)P (u)

=
dg′ × 1

Kg′−1(
bg × 1

#{l:Sl(g)≥2} × 2
2Sg(k)−2

)(
1

1.5−0.5

) (15)

=
dg′#{l : Sg(l) ≥ 2}(2Sg(k)−1 − 1)

bg(Kg′ − 1)

The numerator in Equation 15 is the death probability, dg′ , times the probability of selecting a

pair of adjacent partitions given Kg′ total partitions after a split (there are Kg′ − 1 such pairs).

The denominator is the birth probability, bg, times the probability of selecting a specific cluster k

among those with at least two members. This term also includes the probability of dividing the

Sg(k) objects in cluster k into two non-empty subsets. There are (2Sg(k) − 2)/2 such subsets, since

there are 2Sg(k) total possible partitions, two empty partitions, and two ways to obtain each

two-way split. Third and last,

∣∣∣∂(ν ′k1 , ν ′k2)
∂(u, νk)

∣∣∣ = ∣∣∣∣∣
 ∂

∂uν
′
k1

∂
∂νk

ν ′k1
∂
∂uν

′
k2

∂
∂νk

ν ′k2

 ∣∣∣∣∣ =
∣∣∣∣∣
 ∂

∂uuνk
∂

∂νk
uνk

∂
∂uνk/u

∂
∂νk

νk/u

 ∣∣∣∣∣ =
∣∣∣∣∣
 νk u

−νk/u2 1/u

 ∣∣∣∣∣
=

2νk
u
. (16)
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4.1.2. Details of Step 2(b)

To update ν conditional on a partition g and our data, Π, we turn to a clever data

augmentation trick for Bayesian estimation of Plackett-Luce models as seen in Caron and Doucet

(2012) and Mollica and Tardella (2017). Here, we adapt their trick to account for the more

general BTL family of distributions and rank-clustering. Let Y = {Yir} be a collection of

independent random variables, i = 1, . . . , I and r = 1, . . . , Ri, sampled according to

Yir ∼ Exponential
( ∑

j∈Si

νg−1(j) −
r−1∑
s=0

νg−1(πi(s))

)
. (17)

The exponential rates are precisely the denominator terms from BTL densities that are

burdensome to calculate. The full conditional posterior probability P [ν|Y,Π, g] is then,

P [ν|Y,Π, g] ∝P [Y |Π, g, ν]P [Π|g, ν]P [g|ν]P [ν]

∝P [Y |Π, g, ν]P [Π|g, ν]P [ν]

=

I∏
i=1

Ri∏
r=1

( ∑
j∈Si

νg−1(j) −
r−1∑
s=0

νg−1(πi(s))

)
e
−yir

(∑
j∈Si

νg−1(j)−
∑r−1

s=0 νg−1(πi(s))

)
×

I∏
i=1

Ri∏
r=1

νg−1(πi(r))∑
j∈Si

νg−1(j) −
∑r−1

s=0 νg−1(πi(s))

×
K∏
k=1

ν
aγ−1
k e−bγνk

=

I∏
i=1

Ri∏
r=1

νg−1(πi(r))e
−yir

(∑
j∈Si

νg−1(j)−
∑r−1

s=0 νg−1(πi(s))

)
×

K∏
k=1

ν
aγ−1
k e−bγνk (18)

Given these cancellations, we notice a closed-form expression for the posterior:

P [ν|Y,Π, g] ∝
I∏

i=1

K∏
k=1

νckik e−νk
∑Ri

r=1 yirδirk ×
K∏
k=1

ν
aγ−1
k e−bγνk

=
K∏
k=1

ν
aγ+

I∑
i=1

cki−1

k e
−νk(bγ+

I∑
i=1

Ri∑
r=1

yirδirk)

∝
K∏
k=1

Gamma
(
νk

∣∣∣ aγ + I∑
i=1

cki, bγ +
I∑

i=1

Ri∑
r=1

yirδirk

)
(19)

where

cki =
∣∣{j : j ∈ πi, g

−1(j) = k
}∣∣ (20)

δirk =
∣∣{j : j ∈ Si, j ̸∈ {πi(1), . . . , πi(r − 1)}, g−1(j) = k

}∣∣. (21)
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Thus, we can sample ν from a closed-form Gamma distribution after augmentation of the

conditioning data Π and random variable g with Y .

Now that we have developed an efficient estimation algorithm for Rank-Clustered BTL

models, we turn to a numerical simulation to demonstrate estimation accuracy under different

rank-clustering regimes.

4.2. Numerical Simulation

We now demonstrate accurate estimation of worth parameters and rank-clusters via a

Rank-Clustered BTL model in a numerical simulation. We assume there are J = 8 objects which

form K=1, 2, 4, or 8 rank-clusters. When K = J = 8, every object is independent; there are only

singleton rank-clusters. In the true worth parameter vector, ω0, rank-clustered objects have

identical values and successive rank-clusters are separated in value by a factor of 4 (see Table 1

for specific values). Fourfold increases induce strong but not absolute separation between objects:

For demonstration, in a pairwise tournament between an object with ω1 = 1 and ω2 = 4, the

probability of selecting object 2 is,

P [2 ≺ 1|ω1 = 1, ω2 = 4] =
ω2

ω1 + ω2
=

4

4 + 1
= 0.8.

We also vary the Poisson hyperparameter on the number of rank-clusters, λ ∈ {0.1, 2, 4, 8}, which

encourages rank-clustering to different extents and allows us to measure robustness of results

when λ is somewhat misspecified. To assess consistency in the number of observations, we vary

the number of judges I ∈ {50, 200, 800}. Finally, to assess the influence of partial and incomplete

rankings, we vary the tuple (R,S) ∈ {(2, 2), (4, 4), (2, 8), (4, 8), (8, 8)}, where R is the number of

ranked objects and S is the number of objects considered by each judge. When R < 8 the ranking

is partial, when S < 8 the ranking is incomplete. The set of considered objects, Si for each judge

i, is selected independently and uniformly at random.

For each combination of K, λ, (R,S), and I, we generate 20 independent datasets and fit a

Rank-Clustered BTL distribution to each, under hyperparameters aγ = 5 and bγ = 3. We set

T1 = 5,000 and T2 = 2 to obtain 10,000 posterior samples in each MCMC chain and remove the

first half as burn-in. We note that no MCMC chain of length 10,000 took longer than 20 minutes
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to run (∼0.12 seconds/iteration); many ran in under 2 minutes. For identifiability, posterior

estimates of ω0 are normalized post-hoc such that
∑

j ω0j = 1.

Setting: ω0

K = 1 {40, 40, 40, 40, 40, 40, 40, 40}

K = 2 {40, 40, 40, 40, 41, 41, 41, 41}

K = 4 {40, 40, 41, 41, 42, 42, 43, 43}

K = 8 {40, 41, 42, 43, 44, 45, 46, 47}

Table 1.

Simulation settings for ω0 under varying numbers of true rank-clusters, K.

We first examine the accuracy of estimation for ω0 across simulation settings. Figure 3

displays boxplots of mean absolute error (MAE) for ω0 by number of judges I, true number of

rank-clusters K, and the choice of hyperparameter λ. In general, estimation is quite accurate. We

see that for any specific combination of K and λ, MAE decreases as I increases. Estimation error

is higher when K is large and I is small, most likely the result of error estimating a complex

rank-clustering structure.

Figure 4 displays the mean posterior probability of rank-clustering across object pairs which

are truly rank-clustered (navy) or independent (gold) in ω0. Results are further separated by the

number of judges, I, true number of clusters, K, and hyperparameter λ. For rank-clustered pairs,

accuracy of recovery is generally high and increases with the number of judges, I. Accuracy is

best when hyperparameter λ ≈ K, which occurs when prior belief regarding the number of

rank-clusters is approximately correct. If there is limited prior knowledge on the number of

rank-clusters, we suggest specifying a vague hyperparameter setting such as λ = J
2 and assessing

sensitivity of results to various choices of λ. The posterior probability of rank-clustering

independent object pairs is near 0 in all simulations, indicating excellent recovery accuracy of

objects with distinct worth parameters.

The numerical simulations in this section indicate that the proposed Rank-Clustered BTL

model is able to accurately estimate the relative worth of objects in a collection, including in the

presence of rank-clustering or partial/incomplete observed rankings. Estimation error decreases to
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Figure 3.

Boxplots of posterior mean absolute error for ω0 across combinations of the number of judges I, true number of rank-

clusters K, hyperparameter λ, number of ranked objects R, and number of assessed objects S. Errors are calculated

after normalization of posterior samples such that
∑

j ω0j = 1.
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Figure 4.

Boxplots of the mean posterior probability of rank-clustering object pairs which are truly rank-clustered (left) or

independent (right) across combinations of I, K, λ, R, and S.

0 as the number of observations increases. Overall, the model correctly identifies rank-clustered

and independent object pairs.
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5. Applications

In this section, we apply the Rank-Clustered BTL model to four real datasets involving

ordinal comparisons. These four applications were chosen to highlight the applicability of our

method to various ordinal data types and domain areas and illustrate methodological values of

our approach which are summarized in Table 2. The data sets are comprised of sushi preferences

of Japanese adults (Kamishima, 2003), policy preferences of respondents from Great Britain in a

Eurobarometer survey (Reif and Melich, 1993), ranked-choice votes in a Minneapolis mayoral

election (Minneapolis Elections and Voter Services, 2021), and pairwise game outcomes among

teams in the US National Basketball Association (National Basketball Association, 2024).

Setting Data Type Methodological Value

5.1 Sushi pref-

erences in

Tohoku

Complete rankings

of 10 sushi types

Rank-clusters sushi types by preferences.

Comparing inferred overall ranking with that

of the Clustered Mallows Model.

5.2 Minneapolis

mayoral elec-

tion votes

Top-3 partial rank-

ings of 17 candidates

Interpretable overall ranking captures the

winner’s mandate in ranked-choice elections.

Comparing inferred overall ranking with those

from a standard BTL model and two election

procedures.

5.3 Eurobarometer

survey policy

preferences

Partial rankings of 7

policy options

Inferred overall ranking permits identification

of similarly preferred options to aid policy-

makers.

5.4 Basketball

game outcomes

Pairwise compar-

isons (game winners)

among 30 teams

Inferred overall order captures similarly-

performing teams. Setting with limited in-

formation and low signal.

Table 2.

Summary of applications by subsection.
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5.1. Sushi Preferences in Tohoku

We first study complete preference rankings of 10 sushi types from a benchmarking dataset

by Kamishima (2003). To allow our results to be comparable with an analysis of the sushi data

by Piancastelli and Friel (2024), we analyze the preferences of survey respondents who lived in

Japan’s Tohoku region until at least 15 years of age. There were 280 such respondents. We fit a

Rank-Clustered BTL distribution to the data with aγ = 5, bγ = 3, and λ = 2 to encourage

rank-clustering but permit a wide variety of outcomes. We ran a total of 32,000 MCMC

iterations, which took approximately 12 minutes (0.02 seconds/iteration). Figure 5 displays

posterior rank-clustering probabilities (left) and parameter posteriors (right). In the left panel,

the color of the (i, j) square of the clustering matrix represents the posterior probability that

sushi types i and j are equal in rank at the population level. Additional results, including

goodness-of-fit and convergence diagnostics, are provided in the supplementary materials.
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Figure 5.

Primary results from Rank-Clustered BTL analysis of Tohoku sushi data. Left: Posterior rank-clustering probabilities.

Main diagonal displays posterior median estimate of worth parameter after normalization. Red squares indicate

maximum a posteriori rank-clusters. Right: Posterior distributions of sushi-specific worth parameters.

Sushi types are ordered according to posterior median worth. Based on the left panel in

Figure 5, fatty tuna appears to be strictly most preferred in this population, followed by tuna and
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shrimp rank-clustered in second place. Salmon roe and sea eel exhibit high posterior probability

of rank-clustering, as do sea urchin, tuna roll, and squid; these two groups may themselves be

rank-clustered. Egg and cucumber roll are rank-clustered in last place. Our results demonstrate

the proposed model’s ability to rank-cluster objects with uncertainty under complete rankings in

survey data.

We compare our results to those found by Piancastelli and Friel (2024) in a Clustered

Mallows Model (CMM). They estimate the following ranking: fatty tuna ≺ tuna ≺ shrimp ≺

{salmon roe, sea urchin} ≺ {sea eel, tuna roll, squid} ≺ {egg, cucumber roll}. Our results are,

unsurprisingly, similar, but differ in illuminating ways. Tuna and shrimp are rank-clustered in our

model. The rank-clusters {salmon roe, sea eel} and {sea urchin, tuna roll, squid} swap the rank

of sea eel and sea urchin. These two rank-clusters exhibit some posterior probability of

rank-clustering themselves. These differences showcase how the model pre-specification required

by CMM limits the flexibility of results and may not fully show what the data has to offer or fully

account for uncertainty in the estimated ranks and rank-clusters. The Rank-Clustered BTL

model requires no pre-specification and permits complex posterior summaries of rank-clustering,

including uncertainty in the number of rank-clusters and their respective sizes.

5.2. 2021 Minneapolis Mayoral Election

Our second example analyzes real rank-choice votes from the 2021 mayoral election in

Minneapolis, Minnesota (Minneapolis Elections and Voter Services, 2021). This election included

17 candidates (excluding write-ins and one who received no votes) and asked voters to rank their

top-3 choices, in order. A total of 145,337 votes were cast in this election. To mimic exit polling

data, we randomly sample 1000 valid votes for analysis, which we treat as a random sample of

preferences from the population of Minneapolis voters. We want to estimate the overall

preferences of Minneapolis voters regarding mayoral candidates and learn which candidates, if any,

are rank-clustered at the population level. Clustering candidates may be of interest to political

scientists or local political organizations for the purpose of understanding voter preferences

(Gunther and Diamond, 2003; Dimock et al., 2014). For example, if the winner of the election is

deemed to be rank-clustered with other candidate(s), their mandate may be considered weak.
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Conversely, if the winner is a singleton first-place rank-cluster—clearly ranked above all other

candidates—their mandate may be considered strong. We fit a Rank-Clustered BTL to the data

with aγ = 5, bγ = 3, and λ = 2 to encourage few rank-clusters. We ran a total of 80,000 MCMC

iterations, which took approximately 72.5 minutes (approximately 0.05 seconds/iteration). Figure

6 displays posterior rank-clustering probabilities (left) and parameter posteriors (right). In the left

panel, the color of the (i, j) square of the clustering matrix represents the posterior probability

that candidates i and j are equal in rank at the population level. Additional results, including

goodness-of-fit and convergence diagnostics, are provided in the supplementary materials.
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Figure 6.

Primary results from Rank-Clustered BTL analysis of mayoral votes. Party abbreviations are in parentheses after

candidate surnames. Left: Posterior rank-clustering probabilities. Main diagonal displays posterior median estimate

of worth parameter after normalization. Red squares indicate maximum a posteriori rank-clusters. Right: Posterior

distributions of candidate-specific worth parameters.

In Figure 6, candidates are ordered by their posterior median estimate of worth. Cluster 1

consists of Jacob Frey, the winner and incumbent. We note that Frey is not rank-clustered with

other candidates with high posterior probability, suggesting a relatively strong mandate. Cluster

2 consists of Kate Knuth and Sheila Nezhad, both female, non-incumbent DFL candidates. Last,

Cluster 7 consists of 6 candidates with minimal support.
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Figure 7.

Comparison of estimated rank for each candidate across four aggregation methods: Ranked Choice, First-Past-the-

Post (FPP), BTL, and Rank-Clustered BTL (RC BTL). Candidates are ordered by their rank in the actual ranked

choice election.

Figure 7 compares point estimates of rank for each candidate across four methods. The first

and second rows display assigned ranks from ranked choice and “first-past-the-post” (FPP)

election procedures, respectively. We calculate FPP ranks by ordering candidates by the number

of first place votes he/she received (ignoring all second and third place votes).4 The third and

fourth rows display maximum a posteriori ranks from a standard Bayesian BTL and our

Rank-Clustered BTL, respectively. Frey wins the election in all methods. The BTL and

Rank-Clustered BTL models roughly reflect the deterministic algorithms, although we notice

some swaps in candidate ranks which may be attributed to differences between first place and

second or third place votes. For example, Conner received fewer first place votes than Turner, but

far more second and third place votes (see supplementary materials for vote totals). As a result,

deterministic algorithms rank Turner above Conner, while the BTL model takes into account the

additional preference information and ranks Conner above Turner. In summary, the overall

ordering estimated by the Rank-Clustered BTL differs from a standard BTL model and two

deterministic election procedures. Furthermore, our model confirms that Frey is strictly preferred

over the remaining candidates by voters.

4If the actual election had utilized FPP tabulation, results may have been different based on the differing voter

strategies encouraged by ranked choice and FPP elections.
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5.3. Eurobarometer 34.1 Survey Data

We analyze data from the Eurobarometer 34.1 survey (Reif and Melich, 1993), which

included the following question:

Question 28: There are various actions that could be taken to eliminate the drugs

problem. In your opinion, what is the first priority? And the next most urgent? (Ask

respondent to rank all 7, with 1 as the most urgent.)

1. Information campaigns about the dangers of drugs.

2. Hunting down drug pushers and distributors.

3. Legal penalty for drug taking.

4. Looking after and treating drug addicts and rehabilitating them.

5. Funding research into drug substitutes, and into the treatment of drug addiction.

6. Fighting the social causes of drug addiction.

7. Reinforcing the control or distribution and usage of addictive medicines.

We subset the data to respondents from Great Britain to avoid heterogeneity and

non-proportional sampling among respondents from different European countries. There were

1005 valid responses among this group (out of 1031 total surveyed), of which 970 were complete

rankings and the rest ranked between 1 and 5 items (a top-6 ranking is inherently equivalent to a

complete ranking since all survey options were presented). We seek to identify a population-level

ordering of the priorities that accounts for potential equality or indistinguishability among the

options based on the survey data. These data were previously studied by Wang et al. (2017) with

a mixed-membership model to learn about heterogeneity of opinions among survey respondents.

Our analysis, although a simplification of the diverse population’s heterogeneous preferences,

provides a simpler interpretation to policy-makers interested in understanding rank-ordering of

policy preferences.

We fit a Rank-Clustered BTL model to the data with aγ = 5, bγ = 3, and λ = 2 to encourage

rank-clustering. We ran a total of 16,000 MCMC iterations, which took approximately 12.5
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minutes (0.047 seconds/iteration). Figure 8 displays posterior rank-clustering probabilities (left)

and parameter posteriors (right). In the left panel, the color of the (i, j) square of the clustering

matrix represents the posterior probability that policies i and j are equal in rank at the

population level. Additional results, including goodness-of-fit and convergence diagnostics, are

provided in the supplementary materials.
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Figure 8.

Primary results from Rank-Clustered BTL analysis of Eurobarometer 34.1 data. Left: Posterior rank-clustering

probabilities. Main diagonal displays posterior median estimate of worth parameter after normalization. Red squares

indicate maximum a posteriori rank-clusters. Right: Posterior distributions of policy-specific worth parameters.

Policy option 2 (information campaigns) is strictly preferred to the rest among the

population of survey respondents from Great Britain, whereas options 5 (funding research) and 3

(legal penalty) are rank-clustered last. The results indicates to policymakers that respondents in

Great Britain strongly prioritize Option 2 in comparison to the rest, while pairs of Options 1 and

4 and Options 3 and 5, are, respectively, indistinguishable within each pair, with 1 and 4 being

strongly preferred to 3 and 5. By rank-clustering similarly-preferred options, interpretation of

constituent preferences is simplified for policymakers.
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5.4. 2023-24 National Basketball Association Game Outcomes

Last, we analyze outcomes of 1,230 games from the 2023-24 season of the National Basketball

Association (NBA) of the United States of America (National Basketball Association, 2024). In

this season, 30 teams each played 82 games, including between 2 and 5 games against every other

team. We seek to estimate an overall ranking of teams that allows for potential equality in

ranking.

We fit a Rank-Clustered BTL model to the data with aγ = 5, bγ = 3, and λ = 1 to encourage

rank-clustering given the limited ordinal comparison data provided by pairwise matchups. We ran

a total of 320,000 MCMC iterations, which took approximately 22.6 hours (approximately 0.25

seconds/iteration). Figure 9 displays posterior rank-clustering probabilities (left) and parameter

posteriors (right). In the left panel, the color of the (i, j) square of the clustering matrix

represents the posterior probability that teams i and j are equal in rank at the population level.

Additional results, including goodness-of-fit and convergence diagnostics, are provided in the

supplementary materials.

In this setting, the Rank-Clustered BTL model estimates an ordering of professional

basketball teams with uncertain rank-clustering patterns. Uncertain rank-clustering may result

from two aspects of this application. First, pairwise comparisons provide little information in

relation to partial or complete rankings, by construction. Second, game outcomes provide low

signal measurements of team ability (Baumer et al., 2023). That is because many factors

influence game outcomes, such as skill, home advantage, injuries, roster changes, and luck (Cai

et al., 2019). Consistent with the low signal and limited information setting, an 80% posterior

credible interval indicates that there are between 6 and 9 rank-clusters. Every team has less than

0.037 posterior probability of belonging to a singleton rank-cluster.

As seen in the left panel of Figure 9, 4 teams (Boston Celtics, Oklahoma City Thunder,

Denver Nuggets, and Minnesota Timberwolves) appear to be rank-clustered for first place. Based

on regular season data alone, our model suggests that these 4 teams were of roughly

indistinguishable ability. Conversely, we observe that 6 teams (Toronto Raptors, San Antonio

Spurs, Portland Trail Blazers, Charlotte Hornets, Washington Wizards, and Detroit Pistons) all
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Figure 9.

Primary results from Rank-Clustered BTL analysis of 2023-24 NBA data. Left: Posterior rank-clustering probabil-

ities. Main diagonal displays posterior median estimate of worth parameter after normalization. Right: Posterior

distributions of team-specific worth parameters.

have a high posterior probability of rank-clustering in last place. Instead of reporting the

uncertain ranking of these teams with some granularity, we recommend to infer that these teams

were the worst teams of the league in this season. These rank-clusters, despite not accounting for

the complexities of the sport, provide useful and interpretable summaries of the teams’ abilities

across the regular season. A similar analysis could be used in the future to predict postseason

performance.

6. Discussion

In this paper, we proposed the Rank-Clustered BTL model for estimating an overall ranking

of objects with rank-clusters. The model employs the Bradley-Terry-Luce (BTL) family of

distributions for ordinal comparisons. We proposed Partition-based Spike-and-Slab Fusion

(PSSF) prior to estimates model parameters in a Bayesian framework. The model requires neither

pre-specification of the number or size of the rank-clusters (improving upon Piancastelli and Friel

(2024)), nor specification of lasso-based penalty parameters (improving upon Masarotto and
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Varin (2012); Jeon and Choi (2018); Hermes et al. (2024)). In a simulation study, we

demonstrated the model’s ability to accurately and consistently estimate the relative worth of

objects in a collection while simultaneously estimating rank-clusters. We used Rank-Clustered

BTL on four real datasets under different types of ordinal comparison data.

In contrast to the only other spike-and-slab based prior for parameter fusion Wu et al.

(2021), PSSF prior we developed does not require a known parameter order. Visual inspection of

the prior distribution makes obvious its connection to spike-and-slab: “spike” components

correspond to parameter clusters and “slab” components correspond to independent parameters.

Estimation of parameters under this model requires reversible jump MCMC. To overcome

potentially slow or computationally-burdensome estimation in this setting, we proposed a

computationally efficient Gibbs sampler. The sampler alternates between updating the partition

of objects, based on the seminal work of Green (1995), and updating object-level worth

parameters following a data augmentation trick for standard Plackett-Luce models by Caron and

Doucet (2012) that was later adapted for Plackett-Luce mixtures by Mollica and Tardella (2017).

The proposed PSSF prior requires selecting hyperpriors for partitions, fG, and the

continuous values for each unique parameter, fν . In this work, we specified fG ∝ Poisson(Kg|λ) to

be intentionally vague over the large space of partitions and fν ∝ Gamma(aγ , bγ) based on

conjugacy. However, alternative hyperpriors are available. A Negative Binomial or Beta Negative

Binomial distribution for fG may be more appropriate when stronger prior knowledge of Kg is

available. If PSSF were to be applied to linear regression for parameter fusion, a Normal or

t−distribution may be substituted for fν .

A useful benefit of estimating parameter values and clusters in a single Bayesian framework

is the avoidance of issues associated with selective inference (Taylor and Tibshirani, 2015) or,

more colloquially, double dipping (Kriegeskorte et al., 2009). Selective inference occurs when the

same data is used twice in the process of model selection and/or estimation, e.g., to estimate

some latent structure underlying the data and subsequently to estimate parameters conditional

on that estimated structure. In our context, selective inference would occur if ordinal preference

data was used first to identify rank-clusters and then used again to estimate worth parameter

values conditional on those clusters. We note that selective inference occurs in the estimation of
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the related Clustered Mallows Model by Piancastelli and Friel (2024), which requires selecting the

number and size of rank-clusters among objects before fitting the model. Selective inference often

leads to invalid inference in part because uncertainty regarding the estimated clustering structure

is not taken into account. However, Rank-Clustered BTL models do not perform selective

inference because parameter values and rank-clusters are estimated simultaneously. As such, we

believe our parameter estimates to be more credible than those from the aforementioned methods

in the literature because they rely on a fully Bayesian approach that incorporates uncertainty

across the posterior distributions of both the rank-clustering structure and the specific parameter

values (Gelman et al., 2013, p. 24).

Results from Rank-Clustered BTL models are useful in a variety of inferential contexts. As

noted in other fusion literatures on rankings, estimated overall rankings may be easier to

understand and interpret when rank-clusters of objects are identified, as rank-clusters lead to

fewer rank levels of objects to distinguish (Masarotto and Varin, 2012). In contexts where model

results are used for prediction, such as in sports, estimating rank-clusters may improve predictive

accuracy (Tutz and Schauberger, 2015). Similarly, estimating rank-clusters is important in the

context of decision-making: In peer review, for example, rank-clusters can be beneficial for

communicating uncertainty in the assessment of preferences and for better transparency in

funding decisions. We might imagine a scenario where a government agency is only able to fund

two grants, however, two grant proposals are rank-clustered in second place. In this case,

rank-clustering can be used to communicate uncertainty in the relative quality of the top

proposals. A potential danger is that under this uncertainty, decision makers may be tempted to

resort to unfair tie-breaking methods, e.g., selecting the proposal with the most famous author.

Instead, tie-breaking should occur based on a fairer or more principled method, such as a partial

lottery (Fang and Casadevall, 2016; Roumbanis, 2019; Heyard et al., 2022).

We list a few possible directions for future research. First, in this work we have not

considered the level of interconnectedness among the assessed objects (e.g., if separate groups of

judges assess completely distinct sets of objects). This is particularly relevant in the case of

pairwise comparison data, in which some pairs of objects may never experience a head-to-head

match-up. Second, the PSSF prior could be imposed as a prior for more complex BTL models or
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to other models entirely. In the former, the PSSF prior could be applied to preference learning via

BTL distributions that incorporate covariates (e.g., Baldassarre et al. (2023); Gormley and

Murphy (2010); Chapman and Staelin (1982); Hermes et al. (2024)) or ties in the observed

ordinal comparison data (e.g., Rao and Kupper (1967)). In that case, the prior may be modified

to permit covariate parameter estimation in addition to rank-clustering. In the latter case, the

PSSF prior may be applied to regression for variable fusion, and its performance may be

compared to other existing Bayesian variable fusion methods (e.g., Casella et al. (2010); Song and

Cheng (2020); Shimamura et al. (2019)). Third, we notice that the PSSF prior bears some

resemblance to a Dirichlet process prior (Escobar and West, 1995). Specifically, we may consider

fν in PSSF as a base distribution in a Dirichlet process. However, the Dirichlet process’

concentration parameter is related to but distinct from fG in PSSF. Thus, the connection

between Bayesian nonparametrics and Bayesian parameter fusion requires further study. Fourth,

the proposed model could be studied in the framework of a latent class mixture model in order to

introduce clustering among both objects (i.e. rank-clusters) and judges (i.e., preference

heterogeneity) simultaneously. Doing so would result in a novel form of biclustering. However, the

identifiability of such a model is not clear and would require theoretical investigation.

The proposed Rank-Clustered BTL model accurately estimates rank-clusters, permitting

complex summaries beyond the traditional overall ranking and allowing for improved

interpretability of the results. The Bayesian Rank-Clustered BTL model relies on a novel,

spike-and-slab type prior for parameter fusion, and is estimated in a computationally-efficient

manner. The applications in survey data, voting, and sports to aid informed inference and

decision-making illustrate methodological versatility and broad applicability of our proposed

rank-clustering approach.
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Appendix A. Additional Application Results

Appendix A.1. Additional Results from Section 5.1

Figure 10 displays stacked bar charts of ranks received by each sushi type by the survey

respondents from Tohoku. Figure 11 shows a comparison among results obtained using the

proposed Rank-Clustered BTL, a standard BTL, and the Clustered Mallows model.

0

100

200

Fa
tty

 T
un

a

Tu
na

S
hr

im
p

S
al

m
on

 R
oe

S
ea

 E
el

S
ea

 U
rc

hi
n

Tu
na

 R
ol

l

S
qu

id

E
gg

C
uc

um
be

r 
R

ol
l

C
ou

nt

Rank

1

2

3

4

5

6

7

8

9

10

Figure 10.

Stacked bar charts of ranks received by each sushi type.
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Comparison of results among comparator methods for the Sushi data analysis.
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Table 3 contains posterior predictive p-values based on the discrepancy measure defined in

Section 3.2.2. A p-value is calculated for both a standard BTL distribution and a Rank-Clustered

BTL distribution fit to the observed data. All statistics are well above a standard 0.05 threshold,

indicating acceptable fit to the observed data. We recall that posterior predictive p-values are

used as tools to assess potential model misfits, and not to compare or choose among the models

(Gelman et al., 2013, p. 150).

Model BTL RC-BTL

p-value 0.30 0.24

Table 3.

Posterior predictive p-values based on a standard BTL and Rank-Clustered BTL (RC-BTL) to assess goodness-of-fit

in the Sushi data analysis.

Figures 12 and 13 contain trace plots for K and ω after burn-in for each chain. We find the

trace plots to demonstrate satisfactory mixing and convergence.
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Trace plot of K in the Sushi data analysis
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Trace plots of ω in the Sushi data analysis

Appendix A.2. Additional Results from Section 5.2

Figure 14 displays stacked bar charts of the sampled votes by rank level for each candidate.

Candidates are ordered by their final placement according to the official ranked choice voting

algorithm. The incumbent, Jacob Frey, receives the largest share of first place votes, although

Kate Knuth and Sheila Nezhad also receive substantial support. The remaining candidates

receive comparatively few votes. Most candidates are associated with the

Democratic-Farmer-Labor (DFL) party, which is affiliated with the national Democratic Party.

Laverne Turner and Bob “Again” Carney Jr. are the only Republicans (GOP) in the race. The

remaining candidates represent Grassroots–Legalize Cannabis (GLC), Libertarian (LIB), Socialist

Workers Party (SWP), For the People Party (FPP), Independence (INC), Independent (IND),

and Humanitarian–Community Party (HCP).

Table 4 contains posterior predictive p-values based on the discrepancy measure defined in

Section 3.2.2. A p-value is calculated for both a standard BTL distribution and a Rank-Clustered

BTL distribution fit to the observed data. All statistics are well above a standard 0.05 threshold,

indicating acceptable fit to the observed data. We recall that posterior predictive p-values are

used as tools to assess potential model misfits, and not to compare or choose among the models

(Gelman et al., 2013, p. 150).
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Figure 14.

Number of votes by rank level and candidate. Candidates are ordered by their position in the official ranked choice

election. Acronyms on the tops of bars represent each candidate’s political party.

Model BTL RC-BTL

p-value 0.41 0.30

Table 4.

Posterior predictive p-values based on a standard BTL and Rank-Clustered BTL (RC-BTL) to assess goodness-of-fit

in the Minneapolis mayoral election data analysis.

Figures 15 and 16 contain trace plots for K and ω after burn-in for each chain. We find the

trace plots to demonstrate satisfactory mixing and convergence.
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Figure 15.

Trace plots of K in the Minneapolis mayoral election data analysis.
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Trace plots of ω in the Minneapolis mayoral election data analysis.

https://doi.org/10.1017/psy.2025.10014 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10014


45

Appendix A.3. Additional Results from Section 5.3

Figure 17 displays stacked bar charts of ranks received by each policy option by the survey

respondents from Great Britain. Figure 18 shows a comparison between results obtained using

the proposed Rank-Clustered BTL and a standard BTL model.
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Stacked bar charts of ranks received by each policy option.
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Figure 18.

Comparison of results among comparator methods for the Eurobarometer survey data analysis.

Table 5 contains posterior predictive p-values based on the discrepancy measure defined in
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Section 3.2.2. A p-value is calculated for both a standard BTL distribution and a Rank-Clustered

BTL distribution fit to the observed data. All statistics are well above a standard 0.05 threshold,

indicating acceptable fit to the observed data. We recall that posterior predictive p-values are

used as tools to assess potential model misfits, and not to compare or choose among the models

(Gelman et al., 2013, p. 150).

Model BTL RC-BTL

p-value 0.32 0.35

Table 5.

Posterior predictive p-values based on a standard BTL and Rank-Clustered BTL (RC-BTL) to assess goodness-of-fit

in the Eurobarometer survey data analysis.

Figures 19 and 20 contain trace plots for K and ω after burn-in for each chain. We find the

trace plots to demonstrate satisfactory mixing and convergence.
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Figure 19.

Trace plot of K in the Eurobarometer survey data analysis
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Figure 20.

Trace plot of ω in the Eurobarometer survey data analysis

Appendix A.4. Additional Results from Section 5.4

Figure 21 displays stacked bar charts of the season record of each NBA team across the

2023-24 season. Figure 22 shows a comparison between results obtained using the proposed

Rank-Clustered BTL and a standard BTL model.

Table 6 contains posterior predictive p-values based on the discrepancy measure defined in

Section 3.2.2. A p-value is calculated for both a standard BTL distribution and a Rank-Clustered

BTL distribution fit to the observed data. All statistics are well above a standard 0.05 threshold,

indicating acceptable fit to the observed data. We recall that posterior predictive p-values are

used as tools to assess potential model misfits, and not to compare or choose among the models

(Gelman et al., 2013, p. 150).

Figures 23 and 24 contain trace plots for K and ω after burn-in for each chain. We find the

trace plots to demonstrate satisfactory mixing and convergence.
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Figure 21.

Stacked bar charts of ranks received by each NBA team across the 2023-24 season. Winning = rank 1; losing = rank

2.

Model BTL RC-BTL

p-value 0.61 0.60

Table 6.

Posterior predictive p-values based on a standard BTL and Rank-Clustered BTL (RC-BTL) to assess goodness-of-fit

in the 2023-24 NBA season analysis.
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Figure 22.

Comparison of results among comparator methods for the 2023-24 NBA season analysis.
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Figure 23.

Trace plot of K in the 2023-24 NBA season analysis
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Figure 24.

Trace plot of ω in the 2023-24 NBA season analysis
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