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Parametric oscillations of an interface separating two fluid phases create nonlinear surface
waves, called Faraday waves, which organise into simple patterns, such as squares and
hexagons, as well as complex structures, such as double hexagonal and superlattice
patterns. In this work, we study the influence of surfactant-induced Marangoni stresses
on the formation and transition of Faraday-wave patterns. We use a control parameter,
B, that assesses the relative importance of Marangoni stresses as compared with the
surface-wave dynamics. Our results show that the threshold acceleration required to
destabilise a surfactant-covered interface through vibration increases with increasing B.
For a surfactant-free interface, a square-wave pattern is observed. As B is incremented, we
report transitions from squares to asymmetric squares, weakly wavy stripes and ultimately
to ridges and hills. These hills are a consequence of the bidirectional Marangoni stresses
at the neck of the ridges. The mechanisms underlying the pattern transitions and the
formation of exotic ridges and hills are discussed.
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1. Introduction
The use of ‘Storm oil’ to calm ocean waves was widely practised by Roman sailors
as reported by Franklin et al. (1774) and Lohse (2023). Aitken (1884) described how
nearly insoluble oil spilled onto water can act as surfactant that calms stormy seas in
Aberdeen Harbour. Inspired by such observations, this work focuses on surfactant-covered
parametric gravity-capillary standing waves, known as Faraday waves.

Faraday (1831) noticed that vertically vibrating a fluid layer produces surface waves
oscillating at half the driving frequency. Crossing a threshold amplitude, these waves
usually organise into patterns such as squares, hexagons and triangles (Westra et al.
2003). Complications arise from factors such as contact line dissipation and surface
contamination. In this work, we focus on the effects of surface contamination on the
Faraday-wave patterns.

Henderson (1998) found that the measured damping rates with insoluble surfactants
agreed with the damping constants of elastic interfacial films (Miles 1967). Kumar &
Matar (2002) presented a linear stability theory for surfactant-covered Faraday waves in
the lubrication approximation. Subsequent research (Kumar & Matar 2004) emphasised
the role of the phase difference that influences the Marangoni stresses. Depending on the
phase difference, the Marangoni stresses may oppose (in phase) or support (out of phase)
the fluid flow. Ubal et al. (2005a,b) computed the two-dimensional numerical simulations
of surfactant-covered Faraday waves. However, these studies are limited to linearised
one- or two-dimensional models, with some being carried out using lubrication theory.
Strickland et al. (2015) conducted experiments to investigate the spatiotemporal evolution
of the surfactant-covered Faraday waves in a cylindrical container of 10 wavelengths in
diameter. Due to the confined region of interest, they observed the combined effects of
meniscus and Faraday waves. As a result, the formation of patterns such as squares and
hexagons was suppressed because of the superposition of these waves. In a related study,
Lau et al. (2020) used surfactant-covered Faraday waves to measure ultralow interfacial
tension between two immiscible fluids (water-dodecane system). They found that the
predicted wavelength from linear stability analysis is two orders of magnitude higher
than the experiments, which shows that the Marangoni stresses are crucial in surfactant-
covered interfacial waves. Despite this, Lau et al. (2020) obtained square patterns in a
surfactant-covered system. No further studies have been conducted on pattern formation
in surfactant-covered Faraday waves.

Périnet et al. (2009) were the first to perform full three-dimensional direct numerical
simulations for the study of Faraday waves. Kahouadji et al. (2015) further exploited
the highly parallelised front tracking code, BLUE (Shin et al. 2017), to find supersquare
patterns. Ebo-Adou et al. (2019) employed BLUE to study Faraday waves on a sphere.
Recently, Panda et al. (2023, 2024) used the same code for studying surface waves on
a water drop. Shin et al. (2018) further extended BLUE by including modules to solve
surfactant dynamics on the interface as well as in the bulk medium.

In this work, we report the results of simulations of three-dimensional surfactant-
covered Faraday waves; we focus on the influence of Marangoni effects on the surface-
wave patterns. Our study reveals that the dominance of Marangoni flow leads to transitions
away from the square patterns to asymmetric squares, weakly wavy stripes, and ridges and
hills. These ridges and hills are new features that occurred on a highly elastic surface.
Ridges are found to rise non-uniformly and fall by forming a hill. Our direct numerical
simulations help to uncover the rich physics of the dynamics of these newly observed
ridges and hills.

This paper is organised as follows. First, we briefly present the problem, scaling and
the numerical method. We then present the numerical threshold acceleration which is
1008 R4-2
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Figure 1. (a) Schematic representation of the computational domain: the height of the domain H̃ = 5.00 mm,
and the lateral dimensions λ̃c × λ̃c, where λ̃c is the critical wavelength. No-penetration and no-slip boundary
conditions are applied at the bottom and top of the domain and periodic boundaries on the sides. Here,
F̃ is the oscillatory driving acceleration, Ã is the acceleration amplitude, and ω is the angular frequency.
(b) Critical acceleration Fc for a surfactant-free interface where the solid lines represent the neutral curves
for the hydrodynamic parameters listed in Ubal et al. (2005b) and the present work, evaluated using the
method of Kumar & Tuckerman (1994). Here ‘SH’ and ‘H’ refer to the subharmonic and harmonic tongues.
(c,d) Temporal evolution of the total kinetic energy Ek for a (c) surfactant-free and (d) surfactant-covered
(βs = 1.0, Γ0 = 0.2) interface at different acceleration amplitudes F . The wavelength in both cases is the
critical wavelength λ̃c = 5.3023 mm for the surfactant-free case.

validated by comparison with the two-dimensional simulations of Ubal et al. (2005b).
After that, we present a phase diagram that highlights the influence of Marangoni stresses
in the pattern transition of surfactant-covered Faraday waves. These patterns are analysed
spectrally. Finally, we explain the newly observed ridges and hills in detail.

2. Problem formulation, non-dimensionalisation and numerical method
Our computational domain is shown in figure 1(a), which contains a layer of heavy
fluid overlaid by light fluid under the gravitational acceleration, g. We choose a
simulation set-up and hydrodynamic parameters based on Ubal et al. (2005b), where
the lower heavy fluid is a water–glycerine mixture of depth h̃ = 1 mm, density ρ̃w =
1000 kg m−3 and viscosity μ̃w = 0.025 kg m−1 s−1. Unlike Ubal et al. (2005b), we
include an upper air layer of height 4 mm, density ρ̃a = 1.206 kg m−3 and viscosity μ̃a =
1.82 × 10−5 kg m−1 s−1. The surface tension of the liquid–gas surfactant-free interface is
σ̃0 = 70 × 10−3 kg s−2. Due to the low density ratio (10−3) and capillary length lc =√

σ̃0/((ρ̃w − ρ̃a)g) = 2.67 mm being smaller than the air layer height, the upper fluid
minimally influences the Faraday instability, allowing comparison with Ubal et al.
(2005b). The frequency of the external vibration is 100 Hz (angular frequency ω =
2π 100 rad s−1).
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We consider an insoluble surfactant that is present only on the interface since we
consider that the time scale of surfactant desorption from the interface into the bulk
is larger than the vibratory time scale. The saturated surfactant concentration at the
critical micelle concentration is Γ̃∞ ∼ O(10−6) mol m−2; the range of surfactant elasticity
parameter βs (whose definition is discussed in the following section) is 0.1 < βs < 0.9.
The diffusivity for the surfactant D is set to 2.5 × 10−9 m2 s−1 to align with the work of
Ubal et al. (2005a,b). Unless otherwise specified, we set the initial surfactant coverage to
Γ̃0 = 0.5Γ̃∞.

We list the major time scales in the problem: (i) the capillary time scale �t̃c =
(ρ̃wh̃3/σ̃0)

1/2 of natural capillary oscillations of the perturbed planar interface; (ii) the
imposed vibrational time scale �t̃i = 1/ω; and (iii) the Marangoni time scale �t̃m =
μ̃wh̃/(σ̃0 − σ̃ (Γ̃0)), where σ̃ denotes the surface tension of a surfactant-laden interface,
which quantifies the surfactant dynamics on the interface. Our choice of parameters leads
to �t̃c ∼ O(10−3) s, �t̃i ∼ O(10−3) s and �t̃m ∼ O(10−4−10−3) s. This choice ensures
that we observe a competition between the vibrational, capillary and Marangoni effects.

We choose the height of the liquid h̃ as the length scale, the inverse angular frequency
1/ω as the time scale, and ρ̃wω2h̃2 as the pressure scale. Finally, the interfacial
concentration Γ̃ is scaled by the saturated interfacial concentration Γ̃∞. The dimensionless
hydrodynamic equations are then written as

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p − ρ

Fr2 (1 − F cos t) iz + 1
Re

∇ ·
[
μ(∇u + ∇uT )

]

+ 1
W e

∫
A(t)

(σκn + ∇sσ) δ(x − x f )dA. (2.2)

Here, the dimensionless density and dynamic viscosity are given by

ρ = ρ̃a/ρ̃w + (1 − ρ̃a/ρ̃w)H(x̃, t̃), μ = μ̃a/μ̃w + (1 − μ̃a/μ̃w)H(x̃, t̃), (2.3)

where H(x̃, t̃) is the Heaviside function, which is set to 0 for air (subscript a) and 1 for
water (subscript w). The last term on the right-hand side of (2.2) corresponds to the
surface force at the interface x = x f and n is the vector normal to the interface. Inside
the integral, the first and second terms account for forces arising from the normal and
tangential stresses; the latter are the Marangoni stresses induced by the presence of surface
tension gradients. Here A(t) denotes the dimensionless time-dependent interfacial area.
The interfacial concentration Γ evolves according to

∂Γ

∂t
+ ∇s · (Γ us) = 1

Pe
∇2

s Γ, (2.4)

where us is the surface velocity, ∇s (∇s ·) is the gradient (divergence) in the plane locally
tangent to the interface. As justified by Stone (1990) and used by Muradoglu & Tryggvason
(2008) and Shin et al. (2018), in the Lagrangian frame of reference the velocity satisfies
u · n = 0, which gives rise to (2.4). The dimensionless parameters in (2.2) and (2.4) are the
Reynolds, Weber, Péclet and Froude numbers, and the ratio of imposed acceleration Ã to
gravitational acceleration g:

Re = ωρ̃wh̃2

μ̃w

, W e = ω2ρ̃wh̃3

σ̃0
, Pe = ωh̃2

D , Fr = ω

√
h̃

g
, F = Ã

g
. (2.5)
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The surfactant dynamics is coupled with the hydrodynamics through the nonlinear
Langmuir equation of state given by

σ = max [0.05, 1 + βs ln (1 − Γ )] , βs ≡ RT̃ Γ̃∞
σ̃0

, (2.6)

where βs is the surfactant elasticity number measuring the sensitivity of the surface tension
to the surfactant concentration and where the lower limit of σ has been set to 0.05, below
which the Langmuir equation of state may diverge. Here, T̃ is the temperature and R is
the universal gas constant.

The interplay between the surfactant-dependent elastic interface, capillary forces and
vibratory inertial forces are captured by βs and W e. Scaling the stresses by vibratory
inertial stress (ρ̃wω2h̃2) and surface tension by the surfactant-free surface tension (σ̃0), we
obtain the Marangoni stress, τ , along the tangent t to the interface:

τ ≡ 1
W e

∇sσ · t = − Ma

(1 − Γ )
∇sΓ · t, (2.7)

where Ma = βs/W e is the Marangoni number. Here Ma describes the competition
between the surfactant-dependent surface elastic forces and the vibratory inertial forces.
Rescaling the surface tension by the difference between the surfactant-free and surfactant-
covered surface tension (σ̃ (Γ̃0) + σ(σ̃0 − σ̃ (Γ̃0))) and stresses by the viscous stresses
(μ̃wω), we obtain a dimensionless parameter B, given by,

B ≡ σ̃0 − σ̃ (Γ̃0)

ωμ̃wh̃
= − σ̃0βs ln (1 − Γ̃0/Γ̃∞)

ωμ̃wh̃
. (2.8)

Kumar & Matar (2004) refer to B as the Marangoni number. Because B, unlike Ma,
includes the surface tension gradient forces, as well as the vibratory inertial and viscous
forces, we will use B as a control parameter in the remainder of the paper.

We refer to Shin et al. (2017, 2018) for an exhaustive description of the numerical
implementation, parallelisation and validation of the numerical framework which we
briefly outline here. The spatial derivatives on the Eulerian grid are calculated using
a standard cell-centred scheme, except for the nonlinear convective term for which
we implemented an essentially non-oscillatory (ENO) procedure on a staggered grid.
Peskin’s immersed boundary method is used to couple the Eulerian and the Lagrangian
grids. The advection of the Lagrangian field x f (t + �t) = ∫ t+�t

t u f (t)dt , where u f (t)
is the interpolated velocity at the interface at time t , is accomplished by second-order
Runge–Kutta numerical integration. A resolution of �x = �y = λc/44 was found to be
necessary to capture the Faraday-wave dynamics in Périnet et al. (2009) and Kahouadji
et al. (2015). We choose a finer resolution of λc/128 to capture the coupling with the
surfactant dynamics. Adaptive time stepping is used, where the time step is restricted
by the surfactant diffusion, advection, capillary, viscous and vibratory numerical time-
step criteria. More details can be found in Kahouadji et al. (2015) and Muradoglu &
Tryggvason (2008).

3. Results and discussion
We begin by computing the Faraday-wave threshold on the surfactant-free (clean) surface
using the method for linear stability analysis detailed in Kumar & Tuckerman (1994). We
determined that the critical acceleration amplitude Fc and wavelength λc are 12.34 and
5.3023, respectively (see figure 1b). We can also compute a threshold from our nonlinear
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βs Γ0 B Present work (F N
c ) FUbal

c δUbal (%) �(%)

Clean 0 0 12.32 12.30 0.16 0.16
1.0 0.1 0.44 13.09 13.00 0.69 6.07
1.0 0.2 0.89 15.45 15.50 0.32 25.2
1.0 0.3 1.33 18.47 18.51 0.21 49.7

Table 1. Numerical threshold acceleration F N
c (B) for surfactant-free and surfactant-covered interfaces for

varying initial surfactant coverage Γ0 and elasticity number βs and a fixed wavelength λc = 5.3023. The
surfactant-free critical acceleration Fc = 12.34 is obtained by using the linear stability method of Kumar &
Tuckerman (1994). The table demonstrates the agreement of our thresholds with those of Ubal et al. (2005b)
via δUbal(B) ≡ |F N

c (B) − FUbal
c (B)|/F N

c (B). The last column presents the increase in the Faraday threshold
due to surfactant coverage via � ≡ (F N

c (B) − Fc)/Fc.

numerical simulations by computing the initial growth rates of the total kinetic energy Ek
for several values of F near Fc. Since the growth rate varies linearly with the acceleration
near the threshold, we can compute the threshold F N

c by linear interpolation. Furthermore,
since our focus is on evaluating the growth rate, we selected a lateral surface area
of λc × λc. For a surfactant-free interface, we considered three acceleration amplitudes
F = (0.9, 1, 1.1)Fc, as shown in figure 1(b). Interpolation to zero growth rate yields
F N

c = 12.32, which differs by only 0.16 % from the theoretical Fc, as shown in the first
line of table 1.

A theoretical linear stability analysis such as that of Kumar & Tuckerman (1994) for
a surfactant-covered interface would require linearising the Langmuir equation of state
(Kumar & Matar 2002, 2004), a task that has not yet been carried out. However, we
can compute the acceleration of the numerical threshold F N

c (B) using the procedure
described earlier. We compute growth rates from numerical simulations with surfactant-
covered βs = 1 interfaces for different initial surfactant coverage Γ0 (and corresponding
values of B). Although the critical wavelength varies with the elasticity number (Kumar &
Matar 2004), we approximate it by its surfactant-free value. The resulting thresholds F N

c
are displayed in the next three rows of table 1. The same computations were carried
out by Ubal et al. (2005a) and Ubal et al. (2005b) using a two-dimensional finite-
element technique. Their values are displayed as FUbal

c (B) in table 1. The relative errors
δUbal ≡ |F N

c (B) − FUbal
c (B)|/F N

c between our results and those of Ubal et al. (2005b) are
less than 0.7 %. The last column of table 1 shows the strong dependence of the Faraday
threshold on the surfactant coverage via the relative increase � ≡ |F N

c (B) − Fc|/Fc. Our
results show that increasing B stabilises the interface, as observed in previous studies
(Henderson 1998; Ubal et al. 2005a).

Table 2 shows the increase in the Faraday threshold for many other values of elasticity
number βs and surfactant coverage Γ0. The damping rate increases with either of these
parameters, leading to an increase in the threshold of Faraday waves. We note that the
threshold depends almost entirely on their combination, B; that is, when βs and Γ are
varied so as to produce the same value of B, then F N

c is unchanged. See, for example,
the parameter pairs (βs = 0.45, Γ0 = 0.40), which yield B = 1.02, F N

c = 43.0 and (βs =
0.80, Γ0 = 0.25), which yield B = 1.03, F N

c = 43.6. Other pairs of (β, Γ0) values that
yield very close values of B and F N

c can also be seen in table 2.
After a transient phase, Faraday waves appear, which correspond to subharmonic waves

whose amplitude is steady and whose response period T is twice that of the forcing
period. We set t = 0 to be an instant within the steady-amplitude Faraday-wave regime.
The computations for assessing the influence of B on interfacial dynamics in the nonlinear
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βs Γ0 B F N
c �(%)

0.10 0.50 0.30 13.02 5.51
0.85 0.10 0.40 13.09 6.07
0.25 0.40 0.57 14.69 19.0
0.15 0.60 0.61 15.32 24.1
0.20 0.50 0.62 15.45 25.2
0.65 0.20 0.65 15.62 26.5
0.75 0.20 0.75 15.92 29.0
0.50 0.30 0.79 16.05 30.0
0.35 0.40 0.80 16.09 30.4
0.30 0.50 0.92 16.45 33.4
0.45 0.40 1.02 17.65 43.0
0.80 0.25 1.03 17.72 43.6
0.35 0.50 1.08 18.58 50.5
0.50 0.40 1.14 18.61 50.8
0.40 0.50 1.23 18.63 51.0
0.60 0.40 1.37 18.92 53.3
0.45 0.50 1.39 19.01 54.0
0.35 0.60 1.42 19.08 54.6
0.50 0.50 1.51 19.18 55.4
0.45 0.60 1.83 20.08 62.7
0.60 0.50 1.85 20.83 68.8
0.70 0.50 2.16 20.99 70.0

Table 2. Numerical threshold acceleration F N
c for wavelength λc and varying βs , Γ0 and B, and its relative

increase � ≡ (F N
c − Fc)/Fc from the surfactant-free case. The bold data are used in figure 2.

regime are conducted for F = 1.1F N
c on a larger lateral surface area of 3λc × 3λc. In the

surfactant-free case, we observe square patterns.
As shown in figure 2(a), for B < 1 (dark blue dots, purple region), the interface

exhibits square symmetry. In a narrow band of 1 � B � 1.23 (light blue dots), the
vertical and horizontal directions differ slightly; we refer to these patterns as asymmetric
squares. Within 1.23 � B � 1.46 (orange dots), the asymmetric square pattern undergoes a
transition to weakly wavy stripes. Ridges (ellipses whose major axes are in the y-direction)
appear very faintly as dots for B = 1.23, t = 3T/4, and more prominently on the wavy
stripes for B = 1.51. For B = 1.83, t = 0, one can also see circular hills between each set
of ridges. The hills are the continuation of the ridges formed in the previous half-period.
One such instance is shown at t = 3T/4, where the ridges have disappeared but the hills
are present. We explore below the role of Marangoni stresses in the formation of these
patterns.

To quantify the patterns, we evaluate the spatial Fourier spectra for the surface height, ζ ,
and surfactant concentration, Γ , defining ζ̂mn(t) and Γ̂mn(t) to be the Fourier coefficients
associated with the (x, y) wavevector kmn . We then set ζmn ≡ max[t,t+T ] |ζ̂mn(t)| and
Γmn ≡ max[t,t+T ] |Γ̂mn(t)|. Figures 2(c,d) present an overview of the spatial Fourier
spectra of ζ and Γ as a function of B in the range B ∈ [0, 1.51]. At higher B, ridges
and hills emerge, where steep spatial gradients and many higher spatial harmonics appear.

For B < 1, the square pattern is characterised by comparable amplitudes of ζ10 and ζ01,
as shown in figure 2(c). For B < 0.5, where Marangoni effects are weak, the ζmn modes
have magnitudes similar to those associated with the clean case corresponding to B = 0,
consistent with previous findings (Constante-Amores et al. 2021). For B > 1, Marangoni-
driven stresses dominate over inertial effects. The square symmetry is broken, and by
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Figure 2. (a) Phase diagram in the βs−Γ0 parameter plane showing the inertia-dominated (violet) and
Marangoni-dominated (pink) regions. The solid, dotted, dot-dashed and dashed lines correspond to the
B = 1, 1.23, 1.46, 2 contours, respectively. The four typical patterns are squares, asymmetric squares, weakly
wavy stripes, and ridges and hills. The phase boundaries are accurate to within �B = ±0.1. The corresponding
values of B and F N

c are reported in table 2. (b) Spatiotemporal evolution of the surface deflection ζ over one
time period is shown from left to right; squares (B = 0.92), asymmetric squares (B = 1.23), weakly wavy
stripes (B = 1.51), and ridges and hills (B = 1.83) are shown from top to bottom rows, respectively. Panels
(c,d) show ζmn and Γmn , the maximal magnitudes over time of the ζ and Γ fourier coefficients, respectively,
as a function of B.

B = 1.23, ζ10 surpasses ζ01, with an increase in higher-order modes, such as the ζ20 mode.
As B increases further, strong x-dependent modes emerge, leading to a transition from
asymmetric squares to stripes (see figure 2c).

A parallel change occurs in the Γ -spectrum. For B < 1, the surfactant is advected
without being significantly hindered by Marangoni stresses, aligning the Γ -spectrum
with the ζ -spectrum, where Γ10 and Γ01 dominate (see figure 2d). For B > 1, Γ10
begins to surpass Γ01. Thus, B ≈ 1 is a pivotal point in the dynamics, at which there
is an equilibrium between the opposing mechanisms of advection-driven surfactant
inhomogeneity and Marangoni-driven homogeneity.

We now turn to the formation of hills and ridges on the interface. Figures 3(a–d)
illustrate the evolution of a small portion of the interface, colour-coded by surfactant
concentration. During the first half-cycle, the ridges rise, and the fluid and surfactant flow
up from the troughs, advecting the surfactant to the apex of the ridge. Figures 3(e–h) show
two-dimensional projections containing arc s, as indicated in figure 3(a). As the surfactant
is advected towards the apex, a Γ -deficit (higher σ ) is created at the trough.
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Figure 3. (a–d) Three-dimensional visualisation of the surface. (a) Rise of ridges and necking process at
t = T/4 and (b) maximum rise of the ridge at t = 3T/8. (c) Prominent hill on the ridge at t = T/2. (d) Falling
hill at t = 3T/4. (e–h) Two-dimensional projections on x−z slice containing interface curve s (indicated in (a))
for t = T/4, 3T/8, T/2 and 3T/4, respectively. A half-wavelength (ridge to trough) is shown. Colour-coding
of the plane indicates y−vorticity ωy , while streamlines show flow in the x−z plane. The interface curve s is
coloured according to the surfactant concentration. Red dots indicate the point of maximum curvature. (i–l)
Tangential (see (f )) Marangoni stress and velocity along s at t = T/4, 3T/8, T/2 and 3T/4 shown as black
and red curves, respectively. When the sign of one of these quantities is positive (negative), its direction points
rightwards (leftwards) from the apex (trough) through the neck to the trough (apex) of the ridge, as indicated
at the top (bottom) of figure 3(i). The vertical dashed line indicates the necking region, shown as the red dot in
the corresponding x−z projection. The length of s decreases from approximately 5 at t = T/4, 3T/8, T/2 to
approximately 4 at t = 3T/4, as can be seen in the curves in (e–h).

The capillary force resulting from the Γ -deficit leads to the emergence of a bulb on the
ridge, surrounded by a narrow region of negative curvature, which we call a neck, and
which is highlighted by a red spot on the interface in figures 3(e–h); Γ accumulates at
the ends of the ridge as shown in figures 3(a,b). Marangoni stresses along s counteract
the Γ -inhomogeneity caused by the surface advection. This is shown in figure 3(i), where
∇sσ · t = τ > 0 and us · t = ut < 0 along the arc s. We call this a barrier. This barrier
rigidifies the surface during the first half-cycle, leading to |us | ≈ 0 at t = 3T/8, as shown
in figure 3(b).

The negative vorticity along the surface in figure 3(f ) indicates that τ opposes the
surface advection. Due to this barrier, a backflow develops on the surface from the apex
towards the neck, as indicated by ut > 0 in the inset of figure 3(j). This drives surfactants
from the apex towards the neck. Simultaneously, the accumulated surfactant at the ends
of the ridge flows towards the neck due to a similar mechanism, as illustrated by the red
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Figure 4. Marangoni-influenced ridge formation: (a) x−z projection containing s, as defined in figure 3, at
t = T ; the colour-coding used here is that of figure 3. (b) Three-dimensional visualisation of the interface
colour-coded by the magnitude of Marangoni stresses |∇sσ |, indicating the barriers around the rising ridge.

arrows in figure 3(b). During this process, the midpoint of the ridge rises to form a bulb;
see figure 3(c). By t = T/2, Γ is maximal (so σ is minimal) at the neck.

The accumulated surfactant causes Marangoni stresses, with distinct peaks of τ > 0 and
τ < 0 across the neck (figure 3k). The barrier is now formed at the neck (shown as a white
dotted region in figure 3c) where these stresses in the region between the apex and the
neck begin to oppose the flow reversal at half-cycle. Meanwhile, surface tension decreases
at the neck. As a result, the neck begins to reopen (see the streamlines in figure 3g) as is
commonly observed in surfactant-laden neck reopening phenomena, discussed in detail in
Constante-Amores et al. (2021).

In the next half-cycle (t � T/2), the ridge begins to fall. However, the opposing
Marangoni stress between the neck and the apex (τ < 0 in figure 3k) slows the collapse
of this region. This slower descent of ut (dut/ds ≈ 0) leads to the formation of the hill on
the ridge. Meanwhile, at t = 3T/4, the region between the neck and the trough continues
to fall more quickly than the hill. This accelerated fall is driven by the surfactant gradients
towards the trough (τ > 0 as shown in figure 3l) which, instead of opposing the bulk flow as
before, now begin to support it due to ut > 0. The presence of two high-vorticity regions
(blue zones) along the interface in figure 3(h) is an effect of the two distinct roles of
Marangoni stresses at the neck. As a consequence, new ridges develop while the hills of
the previous cycle are still present, as seen in figure 2 at t = 0, B = 1.83.

Figure 4 further elucidates the mechanism of ridge formation. The surfactant
accumulates on the developing ridge due to a combination of Marangoni-driven surface
flow from the neck to the trough (τ > 0 in figure 3h,l) as previously discussed, and
advection through bulk flow in the second half-cycle leading to strong surface compression
at the ridge. This accumulation (see Γ -surplus region highlighted in figure 4a) generates
a Marangoni stress, directed from the newly developed ridge toward the falling hill (as
highlighted by the arrow indicating the direction of τ in figure 4a). The magnitude of the
Marangoni stress, |∇sσ |, is shown in figure 4(b). This high-stress region, which surrounds
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the developing ridge, highlights the strength of the barrier to ridge formation. Close
inspection of this region reveals that the barrier is weaker at the midpoint of the ridge,
allowing stronger inward-directed surface flow to this region (viz. the velocity glyphs in
figure 4b). This, in turn, leads to a higher elevation at the midpoint of the ridge than at its
ends, as shown in figure 4(b).

4. Conclusion
The study highlights the role of Marangoni stresses in Faraday-wave-pattern transitions.
Numerical simulations were validated against previously reported two-dimensional
simulation. Using the parameter B to compare the Marangoni and inertial time scales, we
found that the threshold acceleration increases with B. After we evaluated B, we increment
the acceleration by 10 % of their respective threshold acceleration. Square patterns are
observed for the surfactant-free interface. For the surfactant-covered interface, we found
four different patterns as we increased B. We showed that at B ≈ 1, square patterns
transition to asymmetric squares. Increasing Marangoni strength further, asymmetric
squares change to weakly wavy stripes. The novel finding highlighted here is the fact that
at further higher B values, ridges and hills appear. Due to strong Marangoni flow during
a cycle of forcing, surfactant and surface flow compete (τ > 0 and ut < 0), which we call
a barrier. The barrier slows down a rising ridge which then reaches its maximum height,
resembling a bulb, at t = 3T/8. While the bulb falls in the next half-cycle, a Γ -surplus
region forms at the neck of the ridge. This creates a bi-directional Marangoni stress, where
the flow is opposed (supported) between the apex (neck) and the neck (trough). This led to
a faster collapse of the ridge between the neck and the trough. However, the bulb falls at a
slower rate resembling a hill structure on the ridge. In the next cycle, Γ accumulates at the
newly forming crest. The barrier is weaker at the midpoint than at the sides of the rising
crest. This creates a faster rise of the midpoint of the crest, resembling a ridge structure.
The existence of such a barrier at the newly forming crest and at the neck are the cause of
the formation of these interesting ridges and hills.
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