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Kappa classes on KSBA spaces

ValeryAlexeev

Abstract

We define kappa classes on moduli spaces of Kollár-Shepherd-Barron-Alexeev (KSBA)-
stable varieties and pairs, generalizing the Miller–Morita–Mumford classes on moduli
of curves, and computing them in some cases where the virtual fundamental class is
known to exist, including Burniat and Campedelli surfaces. For Campedelli surfaces, an
intermediate step is finding the Chow (same as cohomology) ring of the GIT quotient
(P2)7//SL(3).
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1. Introduction

The Miller–Morita–Mumford (MMM) classes, or kappa classes, are some very basic objects in
enumerative geometry of the moduli spaces Mg,n of stable curves. For example, according to
Mumford’s conjecture, as proved by Madsen and Weiss [MW07], the stable cohomology group
of Mg is Q[κ1, κ2, . . . ]. These classes were introduced by Mumford in [Mum83]. Morita [Mor87]
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defined equivalent classes on Mg from a topological point of view, and Miller [Mil86] showed
that Q[κ1, κ2, . . . ] embeds into the stable cohomology of Mg in degrees ≤ g/3.

In [Don20], Donaldson asked if it were possible to extend enumerative geometry of Mg to the
Kollár-Shepherd-Barron-Alexeev (KSBA) spaces, the moduli spaces of stable varieties which are
higher-dimensional analogs of stable curves. He outlined a definition of the virtual fundamental
class on the moduli space of stable surfaces, which was subsequently developed by Jiang [Jia22].

In § 2, we extend the definition of the kappa classes to the KSBA spaces and ask some
basic questions about them. The rest of the paper is devoted to computing them in several
cases (working over C) where the moduli spaces of stable surfaces are known explicitly, such as
products of curves [vO06], Campedelli surfaces [AP23] and Burniat surfaces [AP23, AH23].

2. Definition of kappa classes

A KSBA-stable pair (X,D=
∑

i aiDi) consists of an equidimensional variety X and integral
Weil divisors Di taken with rational coefficients 0<ai ≤ 1 such that X is deminormal (and,
in particular, has only double crossings in codimension 1), Di are Mumford divisors (so do not
contain components of the double locus ofX), the pair (X,D) has semi-log-canonical singularities
and the divisor KX +D is ample.

We refer to Kollár [Kol23, Definition 8.13] for the definition of the moduli functor, which is
quite delicate and involves an important notion of a K-flat family of Mumford divisors. The main
result of [Kol23] is that after fixing the basic invariants, dimension d=dimX, the coefficient
set Ma= (ai) and the volume ν = (KX +D)d, this moduli functor admits a projective coarse
moduli space SP(Ma, d, ν). The moduli stack SP(Ma, d, ν) is a proper Deligne–Mumford stack.

Lemma 2.1. For any family f : (X,D)→ S of KSBA-stable pairs, there exists a well-defined
Q-line bundle KX/S +D on X which is functorial, i.e. compatible with the base change S′→ S.

Proof. It is known that there exists an open subset j : U →X such that:

(i) for any fiber Xs, one has codimXs \Us ≥ 2;

(ii) U → S is Gorenstein and fibers have, at worst, simple double crossings;

(iii) the divisors Di|U are Cartier and lie in the smooth locus of U ;

(iv) for some N ∈N, Nai ∈Z and the sheaf LN := j∗(ω⊗N
U/S(ND)) is invertible.

Define KX/S +D := 1
NLN . This definition is independent of taking further multiples of N and

choosing another open subset U with the above properties.
For any base change S′→ S, the open set j′ : U ′ =U ×S S′→X ′ =X ×S S′ has the same

properties and L′
N = j′∗(ω

⊗N
U ′/S′(ND′)) is the pullback of LN , because formation of ωU/S and

OU (Di) commutes with base changes. �

Corollary 2.2. On the universal family (X ,D)→SP(Ma, d, ν) over the moduli stack there
is a canonical Q-line bundle KX/ SP +D.

Mumford [Mum83] defined the kappa classes κi on Mg as the pushforwards of the cycles
Ki+1

X/Mg
in the universal family f : X →Mg. Similarly, Arbarello and Cornalba [AC96, AC98]

defined κi onMg,n as the pushforwards of (KX/Mg,n
+ D)i+1 in the universal family f : (X ,D=∑n

k=1 Dk)→Mg,n. In both cases we are greatly helped by the fact that Mg and Mg,n are
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smooth Deligne–Mumford stacks, so κi can be considered to be cocycles in Ai(Mg,n)Q and
H2i(Mg,n,Q).

We would like to define the kappa classes on KSBA spaces similarly, as the pushforwards of
(KX/ SP +D)i+d. The question is: in what generality does this definition make sense and which
properties does it have? We propose several versions.

Definition 2.3 (κ0 and κ1). Obviously, for any family κ0 can be defined simply as ν = (KXs
+

Ds)
d ∈Q, the volume of a general fiber, and κ1 = f∗(KX/S +D)d+1 is known as the CM line

bundle; see e.g. [FR06, WX14, PX17].

Definition 2.4 (Cycle version). For any family f : (X,D)→ S with equidimensional base S,
define the cycles κi(S)∈Adim S−i(S) as proper pushforwards

κi(S) = f∗
(
(KX/S +D)i+d ∩ [X]

)
under f∗ : Am(X)→Am(S),

where m=dimX − i− d=dim S − i. Consider the following commutative square.

(X, D) (X ′, D′)

S S′
f f ′

g′

g

Here g : S′→ S is a proper generically finite morphism of degree e, with reduced S, S′. Then g′

is also a proper generically finite morphism of degree e. We have that g′∗[X ′] = e[X], and by the
projection formula

eκi(S) = f∗
(
(KX/S +D)i+d ∩ g′∗[X ′]

)
= f∗g′∗

(
(KX′/S′ +D′)i+d ∩ [X ′]

)
= g∗f ′

∗
(
(KX′/S′ +D′)i+d ∩ [X ′]

)
= g∗κi(S′).

The same definition, and with the same functoriality, also works for the morphisms of DM
stacks using the intersection theory on stacks [Vis89]. In particular, let SP ′ be an irreducible
component of SPred, or its normalization. Then we get cycles κi(SP ′)∈Adim SP ′ −i(SP ′) and
κi(SP

′)∈Adim SP′ −i(SP
′) on its coarse moduli space.

Definition 2.5 (Smooth moduli stack version). If SP ′ is a smooth (necessarily proper) Deligne–
Mumford stack then, just as for Mg,n, we can identify the group Adim(SP ′)−i(SP ′)Q with
Ai(SP ′)Q and define κi in Ai(SP ′)Q. If SP ′ is a global quotient of a smooth projective variety
[V : Γ] by a finite group, then Ai(SP ′)Q =Ai(V )ΓQ. Using the cycle map, we also get kappa classes

in H2i(SP ′,Q) =H2i(V,Q)Γ.
Even if SP ′ is not smooth, we can define κi for all resolutions of singularities S →SP ′ over

SP ′, with S a DM stack. This definition is functorial in S.
Definition 2.6 (Lci morphisms). Suppose that the morphism f : X→ S is lci (e.g. families of
stable curves are lci) and that S is smooth and proper. Using the identification Adim S−i(S) =
Ai(S) we get the kappa classes in Ai(S). If g : S′→ S is an arbitrary morphism from another
smooth and proper variety S′, the functoriality of the refined Gysin homomorphism in homology
[Ful84, Proposition 6.6] implies that for a base change g : S′→ S one has κi(S

′) = g∗κi(S). In
particular, we get kappa classes on a resolution of singularities of SP ′ in a functorial way.
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Definition 2.7 (Cohomological version). Without assuming that f is lci, for any family of stable
pairs f : (X,D)→ S over a smooth, not necessarily proper S, we can use Gysin pushforward
H i(X,Q)→H i(S,Q) defined as the composition

H2(i+d)(X)
∩[X]−−−→HBM

2 dimX−2i−2d(X)
f∗−→HBM

2 dim S−2i
∼−→H2i(S),

where HBM∗ is a Borel–Moore homology (see e.g. [Ful97, Appendix B]). I do not know if this
Gysin pushforward has enough functorial properties to imply κi(S

′) = g∗κi(S).

Definition 2.8 (Almost lci morphisms). Few KSBA-stable surfaces have lci singularities. But
for most of them the index-1 Gorenstein covers are lci. An important idea from Jiang [Jia22] is
to utilize the DM stack of index-1 covers to define the virtual fundamental class of SP. Using
Jiang’s idea, if all the singularities appearing in a certain compact moduli space admit index-1
lci covers, one may define κi as a Gysin pushforward of the pullback of (KX/S +D)i+d from X
to its index-1 covering stack.

At this point an educated reader will certainly think of many other ways to define kappa
classes in cohomology, e.g. using operational Chow rings and bivariant theories, étale Borel–
Moore homology. I think all of them deserve serious consideration.

In what follows, I assume that we have well-defined kappa classes in cohomology as in one
of the above ways. In the three examples considered later in this paper the moduli stacks are
smooth and we use Definition 2.5 to compute κi.

The semipositivity results for families of stable pairs [Fuj18, KP17] imply that KX/S +D is
nef, by a standard argument. It follows that whenever κi are defined in cohomology, they are
nef. In fact, κ1 is the CM line bundle, known to be ample. This is true for Mg by [Mum77], for
Mg,n by [Cor93] and, in general, by [PX17].

A special and very interesting case is the KSBA compactification of the moduli of log Calabi–
Yau pairs (X,Δ+ εB) such that, generically, KX +Δ∼Q 0 and B is Q-Cartier and ample.
By [KX20, Bir23], after fixing basic numerical invariants there exists ε0 > 0 such that for any
0< ε< ε0 the compactification for the stable pairs (X,Δ+ εB) does not depend on ε. Some
concrete cases are the compactified moduli spaces of toric and abelian varieties [Ale02] and of
K3 surfaces [AE23].

Definition 2.9. For a family f : (X,Δ+ εB)→ S of KSBA-stable log Calabi–Yau pairs with
0< ε� 1, the generalized Hodge Q-line bundle λ is defined by the condition KX/S +Δ= f∗(λ).
By functoriality this defines Q-line bundles on the moduli stack and on its coarse moduli space.

Obviously, κi(ε) are polynomials in ε, λ and f∗(Bi+d). For example,

κ1(ε)/ε
d = (n+ 1)ν(B)λ+ εf∗Bd+1,

where ν(B) =Bd
s is the volume of a general fiber. Nefness of κ1(ε) for 0< ε� 1 implies that λ

is nef as well. For toric pairs (X,Δ+ εB) with toric boundary Δ, one has λ= 0. For abelian
and K3 pairs (X, εB), λ is the pullback of the ample Hodge bundle on the Satake–Baily–Borel
compactification. So it is true in these cases. This was also proved for degenerations of pairs
(P2, D) in [ABB+23]. One may therefore ask if λ is always semiample.

3. Products of curves

Consider surfaces of the form X =Cg ×Ch which are products of smooth curves of genus g and
h. Obviously, the stable limits of one-parameter degenerations of such surfaces are products of
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two stable curves. By van Opstall [vO05], there is an irreducible component of the moduli of
stable surfaces isomorphic to Mg ×Mh if g 	= h, or a quotient of it by an involution if g= h.
This construction is further extended by [vO06] to finite quotients of Cg ×Ch.

For a universal family X over the stack Mg ×Mh, the line bundle ωX/Mg×Mh
is simply

p∗1(ωCg/Mg
) + p∗2(ωCh/Mh

), and the kappa classes on Mg ×Mh are merely appropriate sums of

monomials in the pullbacks of kappa classes from Mg and Mh. So this case is reduced to Mg.
The cases of quotients of Cg ×Ch can be treated similarly; at the stack level there is not much
difference.

4. Kappa classes on moduli of Zk
2-covers

In §§ 4 and 5, we treat the cases of Burniat and Campedelli surfaces described in [AP23] and
[AH23]. These are surfaces of general type that are certain branched Zk

2-covers (k= 2, 3) of pairs
(Y, 1

2D), D=
∑

i Di. The stable surfaces on the boundary are Zk
2-covers of stable pairs (Y, 12D).

In each case, the compactified coarse moduli space of surfaces X is a finite quotient of the
compactified fine moduli space for the pairs (Y, 1

2D) by a symmetry group permuting the labels
of the Di.

Any family f : X→ S after a finite base change S′→ S can be written as a Zk
2-cover

X ′→ (Y ′, 1
2D

′), where X ′ =X ×S S′, (Y ′, D′) = (Y, D)×S S′ and the Q-line bundle ωX′/S′ is

the pullback of ωY ′/S′(12D
′). Thus, the kappa classes for the covers X are proportional to the

kappa classes for the pairs (Y, 1
2D) by some multiples that are powers of 2. So it is enough to

study the kappa classes for the pairs (Y, 12D).

5. Burniat surfaces

Burniat surfaces are certain surfaces of general type of degree 3≤ d=K2
X ≤ 6 with pg = q= 0

which can be obtained as Z2
2-covers of degree-d del Pezzo surfaces ramified in a set of 12 curves

coming from a particular configuration of lines in P2.
Primary Burniat surfaces are those of degree 6; they are covers of Cremona surface Σ=Bl3P

2.
Secondary Burniat surfaces have degrees 5 and 4, they are Z2

2-covers of del Pezzo surfaces of
degrees 5 and 4 obtained by further blowups of Σ at the points where some three of the 12 curves
pass through the same point.

An explicit KSBA compactification of the moduli space of primary Burniat surfaces was
described in [AP23]. Using it, explicit KSBA compactifications for the moduli of secondary
Burniat surfaces were described in [AH23].

For Burniat surfaces of degrees 6 and 5 and for the non-nodal Burniat surfaces of degree
4, the above papers give compactifications of the entire irreducible components in the moduli
space of surfaces of general type. In the nodal degree 4 and 3 cases they are closed subsets of
irreducible components or larger dimensions. We do not discuss the nodal cases here.

As was pointed out to me by Yunfeng Jiang, for numerical applications the most interesting

degrees are 4 and 5. Indeed, for degree d the dimension of the compactification M
Bur
d is d− 2. On

the other hand, by [Don20, Jia22] the dimension of the virtual fundamental class is 10χ(OX)−
2K2

X = 10− 2d. Thus, for d= 6 the virtual fundamental class is zero, and for d= 5 it is a multiple
of a point.

5

https://doi.org/10.1112/mod.2025.2 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.2


Valery Alexeev

Figure 1. Burniat configurations of degree 6 and 4 non-nodal cases.

In §§ 5.1 and 5.2, we consider the degree 6 and 4 non-nodal cases, respectively. Here, the

virtual fundamental case has dimension 2 and coincides with [M
Bur
4 ]. In § 5.3, we compute the

kappa classes on M
Bur
4 .

5.1 Degree 6

Burniat surfaces X6 of degree 6 are Z2
2-covers of a Cremona surface Y tor

6 =Σ=Bl3P
2 ramified

in a configuration of 12 curves shown in the left panel of Figure 1. A Z2
2-cover is determined by

three divisors R, G, B satisfying certain conditions (see [AP23]). We use the primary colors red,
green and blue to draw them. In this case, R=

∑3
i=0 Ri, G=

∑3
i=0 Gi, B =

∑3
i=0 Bi. The curves

with i= 0, 3 form the toric boundary D6,bry of Σ. The curves with i= 1, 2 form the interior
divisor D6,int. The total branch divisor of X6→ Y6 is D6 =D6,bry +D6,int =R+G+B.

In [AP23] is a construction of a compactified moduli space for the pairs (Y6,
1
2D6), which we

will denote by M6 here. It comes with a universal family (Ytor
6 , 1

2D6)→M6. Then the compact-

ified moduli space M
Bur
6 of degree 6 Burniat surfaces is the quotient of M6 by a finite group

S3 � S4
2 shuffling the labels of Ri, Gi, Bi.

In more detail, (Y6, 1
2D6)→M6 is obtained from an explicit morphism of toric varieties

Ytor
6 →M

tor
6 by a series of smooth blowups, followed by a contraction to the relative canonical

model. The morphism M6→M
tor
6 is a composition of a blowup ρ1 at the central point 1∈C∗4 ⊂

M
tor
6 , followed by a blowup ρ2 along six disjoint P1. A family Y ′

6→M6 is obtained from Ytor
6

by doing the base changes under ρ1, ρ2 and additional smooth blowups in the fibers. On Y ′
6, the

divisor KY ′
6/M6

+ 1
2D6 is relatively big and nef over M6. The universal family Y6→M6 is its

relative canonical model.
The boundary divisor Dtor

6,bry is the union of the boundary curves on the fibers; it is the

horizontal part of the toric boundary of Ytor
6 . The interior divisor Dtor

6 on Ytor
6 is constructed in

[AP23, Sec. 4] as follows. In addition to the map p1 : Ytor
6 →M

tor
6 , there a second projection, a

birational morphism p2 : Ytor
6 → VP6

to a projective toric variety VP6
defined by a lattice polytope

P6 that is the convex hull of a 46-point set A6. Under this projection, the fibers Y6 become closed
subvarieties of VP6

. Then Dint is a section of p∗2OVP6
(2)⊗ p∗1OM6

(−F ) for a certain effective

divisor F on M6 that is defined in the proof of [AP23, Proposition 4.20].

5.2 Degree 4

Non-nodal Burniat surfaces of degree 4 are defined as follows. One considers the special config-
urations for which the triples of the curves (R1, G1, B1) and (R2, G2, B2) pass through common
points, as in the right panel of Figure 1. Let Y →Σ be the blowup at these points. The strict
preimages of R, G, B give a Z2

2-cover π : X→ Y that is a Burniat surface of degree 4. Note that
the exceptional divisors are not included in the branch divisor of π.
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Figure 2. Surfaces over Z ⊂M6 of degrees 6 and 4.

The compactified moduli space M
Bur
4 of degree 4 Burniat surfaces was constructed in [AH23]

as an S3 � S2
2 -quotient of the compactified moduli space M4 of pairs (Y, 1

2D), as follows.
Remark 5.1. As we only consider the non-nodal degree 4 case in this paper, in order to simplify
the notation, in this section we write simply D, Z, Y . . . instead of D4a, Z4a, Y4a. . ., as in [AH23].
To distinguish the parent degree 6 case, we keep the subscripts there: D6, Z6, Y6. . ..

There exists a closed subvariety Z ⊂M6, a complete intersection of two divisors, over which
the curves (R1, G1, B1) and (R2, G2, B2) are incident. The degenerate pairs appearing in this
family are shown in the upper row of Figure 2. The restricted family Y6|Z comes with two disjoint
sections s1, s2. Let Y ′→Z be the blowup of Y6|Z along s1, s2.

The variety Z is the strict preimage of a toric variety Ztor ⊂Ytor under the blowup ρ1. It
turns out that Ztor �Σ and Z =Bl1Σ. The divisor KY ′/Z + 1

2D′ is relatively nef over Z; let Y ′′

be its relative canonical model. The degenerate fibers appearing in Y ′′→Z are shown in the
lower row of Figure 2. They are a union of two P1 × P1 glued along the diagonal, a union of four
P2 and another union of two P1 × P1 with a different configuration of branch divisors.

Over the exceptional divisor of Bl1Σ→Σ (the divisor of type E) all the fibers are isomorphic,
so the family (Y ′′, 1

2D′′)→Z descends to a family (Y, 1
2D)→M4 =Ztor =Σ. Thus, the final

family Y →Σ is obtained from the toric family Ytor→Σ as follows. There is a sequence of
smooth blowups

Ytor =Y0 β1←−Y1 β2←−Y2 β3←−Y3 β4←−Y4 =Y ′, (1)

in which

(i) β1 is the blowup of the fiber (Ytor
6 )1 �Σ of Ytor

6 over 1∈Σ (this is the base change
Y1 =Y0 ×Σ Bl1Σ→Y0);

(ii) β2 is the blowup of P1 = β−1(1), preimage of the central point 1∈ (Ytor
6 )1;

(iii) β3 and β4 are the blowups of the sections si =Ri ∩Gi ∩Bi, i= 1, 2.

This sequence is followed by a contraction Y ′→Y ′′ followed by a contraction Y ′′→Y covering
the contraction Bl1Σ→Σ.

5.3 Kappa classes

Theorem 5.2. In A∗(Σ) one has κ0 = 1, κ1 =OΣ(1) =O(−KΣ), κ2 =
47
4 · [pt].

7

https://doi.org/10.1112/mod.2025.2 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.2


Valery Alexeev

Proof. The class κ0 is the degree of the divisor KY + 1
2D on a general fiber, so κ0 = (KY +

1
2D)2 = (−1

2KY )
2 = 1.

For the rest, we begin by computing the divisor KYtor/Σ + 1
2Dtor. Let us denote the toric

boundary of the toric variety Ytor by Δ. Denote the part of Δ that maps to the toric boundary
of Σ by Δver and the remaining part by Δhor. Obviously, one has Δver = p∗1(ΔΣ) = p∗1OΣ(1) for
the projection Ytor→Ztor =Σ.

As explained above, the family Ytor
6 →M

tor
6 comes with a second projection p2 : Ytor

6 → VP6

and the fibers Y tor
6 are closed subvarieties sweeping out VP6

. Restricting this family to Z gives
a family that sweeps out a smaller toric variety V for the lattice polytope P obtained by an
appropriate projection of P6. By Lemma 5.4, the projection Ytor

6 → V is small, since both varieties
have 18 toric boundary divisors. By Lemma 5.3, P is reflexive with a unique interior point. This

implies that Δ= p∗2ΔV and −KV =ΔV =OV (1). Restricting the divisor D6,int on M
tor
6 to the

family over Ztor gives O(Dint) = p∗2OV (2)⊗ p∗1OΣ(−1). Putting this together, writing additively,
and for convenience mixing up sheaves and divisors, we get

KYtor/Σ =−Δhor, Δ= p∗2OV (1), Dbry =Δhor,

Dint = p∗2OV (2)− p∗1OΣ(1) = 2Δ−Δver,

KYtor/Σ + 1
2Dtor =−Δhor + 1

2(Δ
hor + 2Δ−Δver) = 1

2Δ= p∗2OV (
1
2).

By symmetry, κ1 is a multiple of OΣ(1). To find this multiple it is enough to find its intersection
with a boundary (−1)-curve C on Σ, which equals (KY + 1

2D)3 on the divisor F = f−1(C)⊂Y.
To compute it, we can ignore the blowup ρ1 since it does not touch F . We can also compute on
the family Y ′ since the contraction Y ′→Y ′′ from a relative minimal model to a relative canonical
model is crepant.

The restriction of Ytor to F has two irreducible components corresponding to the two surfaces
Bl1F1 in case D of Figure 2. Each component maps birationally to a boundary divisor of V . Thus,
the degree of p∗2OV (1) on F is twice the degree of OV (1) on a boundary divisor of V . The latter
degree is the lattice volume of the corresponding facet of P , which by Lemma 5.3 is 7. So the
degree of KYtor/Σ + 1

2D on F is 2 · 78 .
Restricting Ytor to C gives a family Ytor

C with two disjoint sections corresponding to the two
special points. The family Y ′

C is obtained from it by blowups at the two special sections, one in
each irreducible component of Ytor

C . One has

KY ′
C/C + 1

2D|F = β∗(KYtor
C /C + 1

2Dtor
C )− 1

2E1 − 1
2E2,

where E1, E2 are the exceptional divisors. Using the blowup formula [Ful84, 3.3.4] and
Lemma 5.5, we get that the degree of KY/Σ + 1

2D on F is 2 · 7−3
8 = 1. So, κ1 =OΣ(1).

To compute κ2 = (KY ′/Bl1Σ + 1
2D′)4, we can compute on Y ′→Bl1Σ using the functorial prop-

erty of the diagram (1). On Ytor one has
(
KYtor/Σ + 1

2Dtor
)4

=OV

(
1
2

)4
= 18·7

24 = 63
8 by Lemma 5.3.

Then we trace how this number changes under the four blowups in (1) using [Ful84, 3.3.4]. �

The next two lemmas are proved by direct computations with polytopes.

Lemma 5.3. The polytope P is a reflexive four-dimensional polytope with the f -vector
(1, 30, 84, 72, 18, 1) and a unique interior point. Its 18 facets are isomorphic three3-dimensional
polytopes with 8 vertices and lattice volume 7. One has vol(P ) = 18 · 7.
Lemma 5.4. The toric family Ytor is a projective toric variety for a four4-dimensional lattice
polytope P + 14PΣ with the f -vector (1, 42, 96, 72, 18, 1).
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Here, PΣ is the hexagon corresponding to the toric variety (Σ,OΣ(1)), and 14PΣ is the fiber
polytope coming from the construction of the toric family in [AP23].

Lemma 5.5. For each of the special sections s1 =Rtor
1 ∩Gtor

1 ∩Btor
1 and s2 =Rtor

2 ∩Gtor
2 ∩Btor

2

of Ytor→Σ, the normal bundle is trivial, i.e. equal to O⊕2
Σ .

Proof. Consider the union U of torus orbits in Ytor containing s1. Since U comes with a section
and a free action of the vertical torus C∗2 = ker(C∗4→C∗2), one has U =Σ×C∗2. So Ns1/U =
O⊕2

s1 , and the same works for s2. �

6. Campedelli surfaces

The Campedelli surfaces considered in [AP23] are surfaces of general type with K2 = 2 and
pg = 0 which are Z3

2-covers of P2 ramified in seven lines in general position. The branch data
for this cover consists of these seven lines Dg, g ∈Z3

2 \ 0. The moduli space has dimension 6,
which coincides with the dimension of the virtual fundamental class, equal to 10χ− 2K2

X . So
the virtual fundamental class in this case is [MCam].

By [AP23], the moduli stackMCam is a global quotient [M : Γ], where M is the compactified
moduli space of labeled log canonical pairs (P2,

∑
g∈F3

2\0
1
2Dg) and Γ=GL(3, F3

2). Further, M in

this case is the GIT quotient (P2)7//SL(3) for the symmetric polarization (1, . . . , 1). The sets of
stable and semistable points in this case coincide and the SL(3)-action on it is free. Therefore,
(P2)7//SL(3) is smooth.

The universal family (Y,∑ 1
2Dg)→M is itself a GIT quotient of a family of hyperplane

arrangements in (P2)7 × (P2)∨ by the action of the group SL(3) for the polarization (1, . . . , 1, ε),
0< ε� 1.

As a first step, I compute the Chow ring of M = (P2)7//SL(3). Then the rational Chow ring
of the stackMCam is identified with its Γ-invariant subring.

6.1 Chow ring

Let X = (P2)7 with the diagonal action of G=SL(3). Consider the GIT quotient X//G for the
symmetric polarization (1, . . . , 1). In this case, the stable and semistable loci coincide and the
G-action on Xs is free, so the cohomology ring of X//G can be identified with the equivari-
ant cohomology ring HG(X

ss,Q) and the Chow ring of X//G with the equivariant Chow ring
AG(X

ss)Q.

Remark 6.1. As Michel Brion explained to me, for any semisimple group G with a maximal
torus T and a G-variety V that admits a T -invariant cell decomposition, the G-equivariant
Chow ring A∗

G(V )Q and the G-equivariant cohomology ring H∗
G(V,Q) coincide. Indeed, for the

T -equivariant versions the cycle map A∗
T (V )Q→H∗

T (V,Q) is an isomorphism by [Bri97], and the
G-equivariant versions A∗

G and H∗
G are the Weyl group invariant subrings of these.

Theorem 6.2. One has

A∗(X//G)Q =H∗(X//G,Q) =Q[z1, . . . , z7, c2, c3]/J,

with the generators of degree (1, . . . , 1, 2, 3) and the ideal J generated by the relations:

(i) z31 + c2z1 + c3;

(ii) σ3(z1, z2, z3, z4, z5)− σ1(z1, z2, z3, z4, z5)c2 + c3;
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(iii) σ4(z1, z2, z3, z4, z5)− σ2(z1, z2, z3, z4, z5)c2 + c22 + σ1(z1, z2, z3, z4, z5)c3;

(iv) (z21z
2
2 + z22z

2
3 + z23z

2
1) + (z1 + z2 + z3)(z1z2z3 − c3) + (z21 + z22 + z33)c2 + c22;

and the ones obtained from them by permuting the variables z1, . . . , z7. Here, σk are the
elementary symmetric polynomials.

Moreover, the relations of types (i),(ii),(iv) and a single relation of type (iii), or the sum of
all relations of type (iii), suffice. The relations of types (i),(ii) are independent.

The dimensions of Ai for i= 0, . . . , 6 are (1, 7, 29, 64, 29, 7, 1).

Proof. This is a direct application of Brion’s paper [Bri91]. Let T ⊂G be the maximal torus.
One has

AT (·) = S =Q[ε0, ε1, ε2]/(ε0 + ε1 + ε2), AG(·) = SW =Q[c2, c3], W = S3,

where c2 and c3 are the Chern characters of the representation V with P2 = P(V ), the elementary
symmetric polynomials in εi. Then the equivariant cohomology ring A∗

T (X) equals S[z1, . . . , z7]
modulo the basic relations (zi + ε0)(zi + ε1)(zi + ε2). Similarly, A∗

G(X) equals SW [z1, . . . , z7]
modulo the basic relations z3i + c2zi + c3. Here, zi = c1(OP2(1)) for the ith P2, cf. Remark 6.3.

Let Xss
T denote the set of semistable points for the action of T . Then by [Bri91, Theorem

2.1], A∗
T (X

ss
T ) =A∗

T (X)/I, and the ideal I is described with the help of the maximal unstable
sets. Up to the permutation by S3 × S7 of indices, they are

{0}3, {0, 1, 2}4 and {1, 2}5, {0, 1, 2}2,
which in a transparent way correspond to the instability conditions of seven lines on P2 (see
[AP23]): when three lines coincide or five lines pass through a common point. Then I up to
permutation by S3 × S7 is generated by the expressions

(z1 + ε1)(z1 + ε2)(z2 + ε1)(z2 + ε2)(z3 + ε1)(z3 + ε2)

and (z1 + ε0)(z2 + ε0)(z3 + ε0)(z4 + ε0)(z5 + ε0).

Then, by [Bri91, Section 1.2], one has A∗
G(X

ss) =A∗G(X)/p(I), where p is the anti-
symmetrization operator

p=D−1
∑
w∈W

(−1)sign(w)w, D= (ε0 − ε1)(ε1 − ε2)(ε2 − ε0).

Moreover, given generators fi of I and an additive basis 〈gj〉 for the harmonic module H, the
ideal p(I) is generated by p(figj). For G=SL(3) the harmonic module is H= 〈1, εi, ε2i − ε2j , D〉.
The rest is a computation in sagemath [Sag22]. �

Remark 6.3. In [Bri91] Grothendieck’s convention for a projective space PV as the space of one1-
dimensional quotient of V is followed. We follow the convention that PV is the space of lines in
V , more common in the literature on equivariant cohomology. Then for us zi = c1(OP2(1)), and
in [Bri91], zi = c1(OP2(−1)).

6.2 GL(3, 2)-invariants

Denote by sk = σk(z1, . . . , z7) the elementary symmetric polynomials in z1, . . . , z7. Also, denote
by s′3, respectively s′′3, the sums of zizjzk with distinct i, j, k such that the indices i, j, k considered
as points of the Fano plane P2(F2) are incident, respectively are not incident. Obviously, s′3 and
s′′3 are GL(3, F2)-invariant but not S7-invariant. One has s3 = s′3 + s′′3 and denotes t= s′′3 − 4s′3.
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Theorem 6.4. For the ring of invariants A∗(X//G)GL(3,2), the dimensions of the invariants of
degree 0, . . . , 6 are (1, 1, 3, 4, 3, 1, 1) with an additive basis

1 s1 s21, c2, s2 s31, c2s1, s2s1, t c22, c2s2, s
2
2 c22s1 c32.

The algebra A∗(X//G)GL(3,2) is generated by s1, c2, s2, t with relations

ts1, tc2, ts2, t2 + 126c32,

45s41 − 1246c22 + 1090c2s2 − 240s22, 15c2s
2
1 − 28c22 + 35c2s2 − 10s22,

3s2s
2
1 − 49c22 + 46c2s2 − 11s22, 5c2s2s1 − 16c22s1, 5s22s1 − 59c22s1.

Proof. The irreducible characters of GL(3, 2) are χ1, χ3, χ3̄, χ6, χ7, χ8, where the subscript
denotes the dimension and χ1 is the trivial representation. There are two basic permutation
representations of S7 on the 7 variables z1, . . . , z7 and on the 21 monomials zizj with i 	= j. The
induced GL(3, 2)-representations are

χp
7 = χ1 + χ6, χp

21 = χ1 + 2χ6 + χ8.

From the relations of Theorem 6.2, the representations on Ai for i= 1, 2, 3 are:

(i) A1 = χp
7 = χ1 + χ6, invariant: s1;

(ii) A2 =Sym2(χp
7) + χ1 · c2 = 3χ1 + 3χ6 + χ8, invariants s

2
1, s2, c2;

(iii) (from the generators and relations of type (i) and (ii))

A3 = Sym3(χ) + χp
7 · c2 + χ1 · c3 − χp

7 − χp
14

= (4χ1 + 7χ6 + 2χ7 + 3χ8) + χ1 − (χ1 + 2χ6 + χ8)

= 4χ1 + 5χ6 + 2χ7 + 2χ8.

From this and Poincare duality, for dim(H2i)GL(3,2) we get 1, 1, 3, 4, 3, 1, 1. By hard Lefschetz,
s2i1 H

6−2i �H6+2i. This gives additive bases in the invariant subspaces of H8 =A4, H10 =A5,
H12 =A6, and we check that our choices (leading to smaller formulas) also give bases. For H6,
we get a subspace s1 · (H4)GL(3,2) = 〈s31, c2s1, s2s1〉. Since these vectors are S7-invariant and t is
not, adding t completes them to a basis of (H6)GL(3,2).

I checked the algebra relations and the fact that they suffice in sagemath. �

Remark 6.5. The smaller subring of invariants A∗(X//G)S7 has (1, 1, 3, 3, 3, 1, 1) for the dimen-
sions of the graded pieces. It is generated by s1, c2, s2 with the same relations, dropping those
involving t.

For § 6.3, I note the relation c3 =
1
7(2s

3
1 − 6s2s1 + 17c2s1).

6.3 Kappa classes

The moduli stack MCam is a global quotient [M : GL(3, 2)], where M = (P2)7//SL(3,C). Let
f : Y →M be the universal family of stable pairs (Y,

∑7
i=1

1
2Bi) (see [AP23]). The kappa classes

on M are

κl = f∗Ll+2 where L= ωY/M

(
7∑

i=1

1

2
Bi

)
.

I am grateful to William Graham for explaining to me how to do pushforward in equivariant
cohomology, which is used in the proof of the next theorem.
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Theorem 6.6. In the Chow ring A∗(M,Q) described above, one has

22κ0 = 1,

23κ1 = 3s1,

24κ2 = 6s21 − c2,

25κ3 = 10s31 − 5s1c2 + c3,

26κ4 = 15s41 − 15s21c2 + c22 + 6s1c3,

27κ5 = 21s51 − 35s31c2 + 7s1c
2
2 + 21s21c3 − 2c2c3,

28κ6 = 28s61 − 70s41c2 + 28s21c
2
2 − c32 + 56s31c3 − 16s1c2c3 + c23.

Proof. Over X = P(V )7 we have the universal family X × P(V ∗) with seven divisors Bi, and the
family over M is a quotient by a free action of G=SL(V ). Therefore, it suffices to compute in
A∗

G(X). Denote h=OP(V ∗)(1). Each Bi is the incidence divisor in P(V )× P(V ∗) and is linearly
equivalent to zi + h. Therefore,

L= ωX×P(V ∗)/X

(
7∑

i=1

1

2
Bi

)
=−3h+

7∑
i=1

1

2
(h+ zi) =

1

2
(h+ s1).

By projection formula, to compute f∗Li+2 it suffices to know f∗hk under the homomor-
phism A∗

G(P(V
∗))→A∗

G(·) = S induced by the morphism P(V ∗)→ pt. For s∈ SW one has
f∗(s) = f∗(hs) = 0, f∗(h2s) = s, and the pushforwards of higher powers of h follow by recursively
using the basic relation h3 + c2h− c3 = 0. The rest is an easy computation. �

Note that s1 is the ample line bundle that comes with the GIT quotient construction, the
O(1) on the Proj of the graded algebra of invariants.
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