
The Knowledge Engineering Review (2025), 40, e4, pp. 1–23
doi:10.1017/S0269888925000050

RESEARCH ARTICLE

Exception handling in multi-agent oriented programming
Matteo Baldoni1 , Cristina Baroglio1 , Roberto Micalizio1 and Stefano Tedeschi2

1Dipartimento di Informatica, Università degli Studi di Torino, Torino, Italy
2Università della Valle d’Aosta – Université de la Vallée d’Aoste, Aosta, Italy
Corresponding author: Matteo Baldoni; Email: matteo.baldoni@unito.it

Received: 21 December 2023; Revised: 10 April 2025; Accepted: 10 April 2025

Keywords: JaCaMo; Multi-agent Systems; exception handling; organization and institutiion; engineering multi-agent systems

Abstract
Exception handling has been successfully proposed in the past years as a simple yet powerful software engineer-
ing tool to promote modularity and decoupling, while also preserving robustness. Multi-agent systems (MAS) and
organizations (MAOs), in turn, offer powerful abstractions to build distributed systems; current models and method-
ologies, however, fall short in addressing exception handling in a systematic way, not considering exceptions as part
of their design. Thus, the problem is usually approached by ad hoc solutions that hamper code modularization
and decoupling. In this work, we outline a vision of how exception handling in MAS can be granted by design.
We present an extension of the organizational model and infrastructure adopted in JaCaMo, that explicitly encom-
passes the notion of exception as a first-class element in the design of an organization. Relying on such a model,
we propose an exception handling mechanism that is seamlessly integrated with organizational concepts, such as
responsibilities, goals, and norms. In an organization, besides responsibilities for organizational goals, we propose
to specify also responsibilities for managing exceptions, that is, for providing feedback about the context in which
exceptions occur, and for handling it.

1. Introduction
A software program can encounter, during its executions, conditions that were not foreseen, sometimes
by mistake, during the implementation. Think, for instance, to the common experience of a badly con-
trolled for-loop that should initialize an array of values but exceeds its boundary. More interesting,
however, is the case when the unforeseen situation is not due to a programming mistake, but rather to
the weird behavior of a user (who, for instance, digits the string ‘fiftyone’ instead of the expected num-
ber 51), or to unforeseen environmental conditions, like a black-out. When this happens, the program
becomes unreliable if unable to properly tackle the case.

Many programming languages allow programmers to tackle such cases by providing exception han-
dling mechanisms, which can be used to enrich the code for specifying exceptions, that will be raised
when, along the execution, certain conditions are met. An exception is often intended as an ‘event that
causes suspension of normal program execution’ (ISO/IEC/IEEE, 2010). When an exception is raised
suitable handlers are activated to manage the situation and allow the program to maintain a reliable
behavior. Proposals like (Goodenough, 1975a,b,c) see exceptions as a means for extending the domain
(i.e., the set of inputs for which effects are defined—as in the ‘fifty-one’ case), or the range (i.e., the
effects obtained when certain inputs are processed—as in the array initialization case) of a piece of code,
in a way that allows the invoker to tailor the management to the specific context of use—for instance, by
writing a feedback to the user asking to insert digits instead of letters.

Cite this article: M. Baldoni, C. Baroglio, R. Micalizio, S. Tedeschi. Exception handling in multi-agent oriented programming.
The Knowledge Engineering Review 40(e4): 1–23. https://doi.org/10.1017/S0269888925000050

C© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050
https://orcid.org/0000-0002-9294-0408
https://orcid.org/0000-0002-9861-390X
mailto:matteo.baldoni@unito.it
https://doi.org/10.1017/S0269888925000050
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0269888925000050&domain=pdf
https://doi.org/10.1017/S0269888925000050

2 M. Baldoni et al.

In general, the full significance of an exception is known only outside the detecting code, which
cannot determine unilaterally what is to be done after an exception is raised. Indeed, in many program-
ming languages it is up to the ‘invoker’ to control the response to the exceptions that are raised by the
‘invoked’ method or function. For this reason, exceptions, besides notifying the occurrence of some
unexpected event, are generally implemented as typed data structures, that allow passing to the handler
all the relevant contextual information about the occurrence at issue (Hagen & Alonso, 2000).

Scaling from monolithic to distributed systems, the picture becomes more complex. Here, many
threads/processes are executed in parallel. Exceptions might be raised in a thread/process that should
be handled by another, but there is not a notion of ‘invocation’ to be leveraged upon. Some proposals
concerning Akka and workflow management, for instance (Hewitt et al., 1973; Hagen & Alonso, 2000;
Gupta, 2012; Goodwin, 2015), organize the execution of threads by way of parent–child relationships:
when a child process raises an exception, its parent handles it. When we come to multi-agent systems
(MAS) (Wooldridge, 2009), however, no structural relationships, like the mentioned invoker-callee and
parent–child, exist. Thus, although it may happen that an agent failure has an impact on the activities
carried out by other agents, even identifying which agents should be capable of raising which exceptions,
and which other agents should be capable of handling them, is challenging. The reasons are that agents
are peers which interact by message exchange, and each agent is autonomous in its deliberative process—
even when it cooperates and coordinates with others in order to accomplish its goals. For instance,
consider a doctor and one of his or her patients. The patient emails some symptoms to the doctor without
receiving any answer (because the message was lost). In this case, only the patient agent can realize that
something went wrong and hence can raise an exception about the lack of feedback, which can then be
handled by the doctor. Instead, in case the doctor cannot prescribe what requested, it is the doctor agent
that can raise the exception, and the patient is the one who should handle it.

In this paper, we outline a vision of how exception handling can be seamlessly integrated in MAS
design and development. To face the inherent need of coordination among autonomous agents, the orga-
nization metaphor has been used for a long time in MAS. Since the initial proposals, like (Corkill &
Lesser, 1983; Dignum, 2009), agent organizations encompass an explicit structure of roles and relations;
responsibilities of tasks are distributed among the participating agents by role adoption. Thanks to norms
(Esteva et al., 2001), the structures of distributed responsibilities among agents have been enriched with
structures of social expectations, making roles the anchoring point of social expectations on the behavior
of the agents who will play them in the organization. In particular, normative multi-agent organizations
(MAO) (Dardenne et al., 1993; Bauer et al., 2001; Bresciani et al., 2004; Hübner et al., 2007; Boella
et al., 2008; Boissier et al., 2013; Boissier et al., 2020) provide mechanisms to publish, enact, adapt,
monitor and enforce normative behaviors. Thus, once decided to adopt a role, with the accompanying
norms, in order to participate to the organization, agents assume the responsibility of the targeted tasks
and are expected to accomplish their duties.

Under this perspective, we claim that the raising and handling of exceptions are tasks that should be
encompassed in the MAS as part of the specification of its organization, consequently falling under the
responsibility of specific agents. More specifically, the contribution of this paper is twofold. First, the
paper introduces a model that defines exceptions at both the organizational and the agent level, explaining
the key concepts. Second, building on the conceptual meta-model presented in Baldoni et al. (2022),
we explain how the JaCaMo platform was modified in order to support the implementation of MAOs
with exceptions, providing insights not only into the technical changes but also into the rationale behind
them. Note that, although we focus on explaining how we grafted exception handling on JaCaMo’s
architecture, the approach is general and could be adopted beyond the community strictly working with
JaCaMo. We help the explanation by illustrating the realization of complex examples taken from the
literature, and in particular inspired by Christie et al. (2021), that show how exceptions can be of use in
practical, real-world scenarios.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 3

The paper is structured as follows. Section 2 recalls the main concepts about JaCaMo and introduces
the extension of JaCaMo’s meta-model with exception handling. Section 3 presents in detail how we
integrated the proposed exception handling mechanism into JaCaMo’s organizational infrastructure.
Section 4 discusses the most relevant related works concerning exception handling in MAS. Discussion
and conclusions end the paper.

2. Exception handling in JaCaMo
JaCaMo (Boissier et al., 2020) is one of the best-known platforms for programming MAO and integrates
three different dimensions: agents, environments, and organizations. JaCaMo agents are programmed
in Jason (Bordini et al., 2007). An agent is an entity composed of a set of beliefs, representing the agent
current state and knowledge about the environment, a set of goals, which correspond to tasks the agent
has to perform, and a set of plans which are courses of actions, either internal or external, triggered
by events, that can be taken by the agent in given circumstances. The agent environment consists of a
dynamic and distributed set of shared artifacts that are programmed in CArtAgO (Ricci et al., 2009).
Each artifact provides to the agents the interface (set of operations), through which it can be used. Thus,
agents can both perceive the artifact observable state, reacting to events, and act upon an artifact by
performing the artifact-provided operations.

2.1 Specification of a basic organization
JaCaMo organizations are programmed in Moise (Hübner et al., 2007). The organizational model struc-
tures the specification of an agent organization along three dimensions (Hübner et al., 2010). The
structural dimension specifies roles, groups, and links between roles in the organization. The func-
tional dimension encompasses one or more schemes that elicit how the global organizational goals are
decomposed into subgoals and how these subgoals are grouped in coherent sets, called missions, to be
distributed to the agents. The normative dimension binds the previous two by specifying the role permis-
sions and obligations for missions. Agents, in fact, are held to explicitly commit to the missions defined
in the scheme, thereby taking responsibility for mission goals. Organizational goals are mapped into
individual agent goals. Obligations to achieve organizational goals are issued according to the norma-
tive specification of the organization and the current state of the system. An obligation is fulfilled when
the corresponding goal is achieved by the recipient agent before a given deadline. During the execution
of a scheme, the involved goals can be in the state waiting (the goal cannot be pursued yet because it
depends on the satisfaction of other goals), enabled (the goal can be pursued; its preconditions have
been satisfied), or achieved (the agents were able to achieve the goal). The organizational infrastruc-
ture is designed as a part of the environment in which agents are situated by means of some dedicated
organizational artifacts, upon which agents can perform operations.

At runtime, the organizational specification is translated into a normative program, written in a spe-
cific language, called NOPL (Hübner et al., 2009, 2010, 2011). The interpretation of such a program
is performed by a dedicated interpreter, included in each organizational artifact, and regulates the func-
tioning of the organization. A normative program in NOPL is composed of: (i) a set of normative facts,
either translated from the specification or added dynamically during the execution, (ii) a set of inference
rules, and (iii) a set of norms. The specification of normative facts and inference rules follows a syntax
that is similar to the ones used in Jason and Prolog. In case of prohibition, norm activation results in
the failure of the action which triggered the norm. Otherwise, the result is the emission of an obligation
directed toward some agent and concerning a state of the world that the agent ought to bring about.

Let us, now, introduce the running example that we will use along the paper. It is inspired by Christie
et al. (2021), an article concerning fault tolerance in MAS. With reference to Figure 1:

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

4 M. Baldoni et al.

consult patient doctor prescribe

follow therapy

pharmacist fill prescription

send(prescription(P))deliver(drugs(D))

explain(symptoms(S))

Figure 1. The Therapy scenario

Example 1 (Therapy) The scenario involves a patient, a doctor, and a pharmacist:

• The patient consults the doctor explaining some symptoms and then waits for the medicines in
order to follow the therapy.

• The doctor prescribes the medicines and communicates the prescription to the pharmacist.
• The pharmacist fills the prescription and has the prescribed drugs delivered to the patient.

An additional constraint is that medicines must be taken within five days.

In order to implement the example in JaCaMo, it is necessary to realize an organization that involves
agents playing the roles patient, doctor, and pharmacist. Such roles are part of the structural specification
of the organization (Lines 3–7 in Listing 1). The functional specification of the organization (Lines
16–39) tells how the organizational goal (therapy) is structured into subgoals that are grouped into
missions and assigned to roles by way of the normative specification (Lines 40–44). In our case, the
subgoals are consult and follow_therapy (assigned to patient), prescribe (assigned to doctor), and
fill_prescription (assigned to the pharmacist). In this context, explain(symptoms), send(prescription),
and deliver(drugs) are actions executed while pursuing the goals associated with the roles (see Listings 3,
4 and 5). The agents playing the various roles will have plans that allow them to achieve their goals. In our
example, in the plan for achieving the subgoal consult, the patient will explain the suffered symptoms
to the doctor, while in the plan for achieving goal prescribe, the doctor will send the prescription to
the pharmacist. Last but not least, for achieving goal fill_prescription, the pharmacist will deliver the
drugs to the patient. Besides this, we require that follow_therapy be achieved within five days after the
consult.

1 <organisational specification>
2 <structural specification>
3 <role definitions>
4 <role id=”patient”/>
5 <role id=”doctor”/>
6 <role id=”pharmacist”/>
7 </role definitions>
8 <group specification id=”therapy group”>
9 <roles>

10 <role id=”patient” min=”1” max=”1”/>
11 <role id=”doctor” min=”1” max=”1”/>
12 <role id=”pharmacist” min=”1” max=”1”/>
13 </roles>
14 </group specification>
15 </structural specification>
16 <functional specification>
17 <scheme id=”therapy sch”>
18 <goal id=”therapy”>
19 <plan operator=”parallel”>
20 <goal id=”cpf”>
21 <plan operator=”sequence”>

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 5

22 <goal id=”consult”/> <goal id=”prescribe”/> <goal id=”fill prescription”/>
23 </plan>
24 </goal>
25 <goal id=”follow therapy” ttf=”5 day”/>
26 </plan>
27 </goal>
28 <mission id=”mPatient” min=”1” max=”1”>
29 <goal id=”consult”/>
30 <goal id=”follow therapy”/>
31 </mission>
32 <mission id=”mDoctor” min=”1” max=”1”>
33 <goal id=”prescribe”/>
34 </mission>
35 <mission id=”mPharmacist” min=”1” max=”1”>
36 <goal id=”fill prescription”/>
37 </mission>
38 </scheme>
39 </functional specification>
40 <normative specification>
41 <norm id=”n1” type=”obligation” role=”patient” mission=”mPatient”/>
42 <norm id=”n2” type=”obligation” role=”doctor” mission=”mDoctor”/>
43 <norm id=”n3” type=”obligation” role=”pharmacist” mission=”mPharmacist”/>
44 </normative specification>
45 </organisational specification>

Listing 1. Organization structural, functional, and normative specifications.

As usual in JaCaMo, the execution of such plans is coordinated, within the organization, by the emis-
sion of obligations, whose activation depends on what occurred that far. By means of a built-in library
(see Listing 2), obligations are mapped into agents internal goals that can, then, be practically pursued
by the agent, for example, by executing some operations over the environment. In case of success, the
corresponding organizational goals are set as achieved by means of the goalAchieved(...) primitive that
is made available by the organizational infrastructure.

1 +obligation(Ag, Norm , What , Deadline)[artifact_id(ArtId), norm(_, Un)]
2 : .my_name(Ag) & (satisfied(Scheme , Goal) = What | done(Scheme , Goal , Ag) = What)
3 <- .member (["M", Mission], Un);
4 !fulfill_obligation(Scheme , Goal , ArtId , Mission).
5
6 +! fulfill_obligation(Scheme , Goal , ArtId , Mission)
7 <- !Goal[scheme(Scheme)];
8 goalAchieved(Goal)[artifact_id(ArtId)].

Listing 2. JaCaMo library that maps organizational obligations onto agents’ internal goals.

Below, we report a skeleton implementation of a patient agent. The agent can handle two goals,
consult (the doctor) and follow_therapy. The former is achieved by executing a plan that simply sends
a message to the doctor, which explains the suffered symptoms. The latter involves waiting for medicine
delivery, and then taking the prescribed drugs.

1 +! consult
2 <- .send(doctor , tell , explain(symptoms ([fever ,headache]))).
3
4 +! follow_therapy : deliver(drugs(D))
5 <- // Take the medicine D.
6
7 +! follow_therapy : not deliver(drugs(_))
8 <- .wait ({+ deliver(drugs(_))});
9 !follow_therapy.

Listing 3. Excerpt of the patient agent’s code.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

6 M. Baldoni et al.

Raising Goal

when

Handling Goal

when

Notification Policy

condition

Report

arguments

generate

update

Raising Goal

when

Handling Goal

when

Notification Policy

condition

Report

arguments

Organization

generate

update

Environment Agent

target

Observable
Event

Observable
Property

OperationArtifactWorkspace

sub-group

Internal ActionExternal Action

Action

Triggering Event

Belief

PlanScheme

Mission

Goal Internal Goal

Agent

Norm

RoleGroup

Organization

Figure 2. JaCaMo’s conceptual meta-model extended for exception handling. The newly added con-
cepts are highlighted in orange. Orange lines also highlight the mapping among concepts belonging to
different dimensions

Similarly, the doctor and the pharmacist pursue their assigned goals as sketched hereafter.

1 +! prescribe : explain(symptoms(S))
2 <- !computePrescription(S,P);
3 .send(pharmacist , tell , send(prescription(P))).
4
5 +! computePrescription(S,P)
6 <- // analyze symptoms S, recover the patient ’s history ...
7 // write prescription P

Listing 4. Excerpt of the doctor agent’s code.

1 +! fill_prescription : send(prescription(P))
2 <- // prepare parcel for drugs D in prescription P
3 .send(patient , tell , deliver(drugs(D))).

Listing 5. Excerpt of the pharmacist agent’s code.

2.2 Adding exceptions
Let us, now, see how exception specification and exception handling are introduced in the picture.
Figure 2 reports the meta-model of our proposal. It enriches a previous meta-model, described in Baldoni
et al. (2022), with elements that were disregarded in that proposal, like the environment dimension
and the mapping between concepts belonging to different dimensions, thus providing a complete pic-
ture. Such a mapping is central in the implementation of the infrastructure (for details, please, check
Section 3).

In Baldoni et al. (2022), an exception is a piece of information that concerns the result of an oper-
ation, which is needed to interpret such a result and to identify the right prosecution. The functional
specification of the organization includes, in the scheme, a set of notification policies, whose general
template is reported in Listing 6. A notification policy concerns an organizational goal (target) and

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 7

Table 1. Condition types for notification policies. When the organization is made of a
single functional decomposition scheme instance scheme_id(S) can be omitted

Type Condition formula
always true
goal failure scheme_id(S) & failed(S, $target)
goal delay scheme_id(S) & unfulfilled(obligation(_, _, done(S, $target, _), _))
goal achievement scheme_id(S) & satisfied(S, $target)
custom any valid NOPL formula

specifies an activation condition (condition): a logical formula that encodes the state of the organiza-
tion, and the target goal in particular, in which the policy must be applied. Such conditions can amount
to the failure, the delay, the achievement of a goal or some combination. Table 1 contains some relevant
types of condition together with their corresponding NOPL formulas: clause scheme_id(S) identifies
the functional decomposition scheme instance to which the condition refers. Placeholders starting with
$ represent goal identifiers. Other conditions can be expressed as well, by directly specifying the corre-
sponding NOPL formula as attribute. Note that it is possible to define many notification policies having
the same goal as target, each having a different activation condition. In addition, a notification policy
includes the definition of one or more exceptions that can possibly be raised, by means of the dedi-
cated tag report. Each report specifies the structure of the information that will be exchanged, together
with some raising and handling goals. Raising and handling goals are subject to further conditions that
control their use.

1 <notification policy id=”ID” target=”GOAL” condition=”COND” type=”exception”>
2 [<report id=”ExID”>
3 [<argument id=”ArgID” arity=”N”/>] ∗
4 [<raise goal id=”GOAL” [when=”COND”]?/>] +

5 [<handle goal id=”GOAL” [when=”COND”]?/>] +

6 </report>] +

7 </notification policy>

Listing 6. XML template for notification policies. + indicates one or more occurrences of the element
between square brackets, ∗ indicates zero or more occurrences, and ? indicates optional elements.

Let us now explain each field of a notification policy.
Reports capture the shape of the information that the agents responsible for raising the exception

have to provide to those in charge for handling it (i.e., the feedback Hagen & Alonso, 2000; Alderson
& Doyle, 2010). More in detail, reports include a set of arguments—predicates (with their arity) that
must be instantiated and made available by the raising agents. Intuitively, a report is a form to be filled
in by the agents in charge of raising the exception. The filled form amounts to the actual exception that
is raised and made available to the handling agents. If a report includes multiple arguments, we assume
that all of them will be instantiated. Each report also includes at least one raising goal and at least one
handling goal. These are the organizational goals through which the exception is managed. Note that a
single notification policy may include many reports. This feature is, for instance, handy when the system
designer deals with events showing many facets, with possibly many consequences on the system. It will
require several (generally uncoordinated) actions, by different agents, to properly tackle all of them at
system level.

Raising goals and handling goals, denoted by tags raise − goal and handle − goal, are the orga-
nizational goals that allow managing exceptions. As standard goals in JaCaMo, raising and handling
goals are included in missions, to which the agents, that play organizational roles, commit. Each report
contains at least one raising goal and one handling goal, but it may encompass many of both types. So,

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

8 M. Baldoni et al.

handle(lost symptoms)

consult patient doctor prescribe

follow therapy handle(missing prescription)

pharmacist fill prescription

handle(no delivery) handle(no delivery no fill)

send(prescription(P))deliver(drugs(D))

explain(symptoms(S))

exception(no delivery,doctor ,date)

exception(lost symptoms,symptoms)

exception(missing prescription,patient,date,doctor)

Figure 3. The Therapy scenario extended with exception handling

the same exception could be raised (and handled) in different ways in different circumstances, which are
captured by the optional when clause, whose value corresponds to a state of the organization in which
it makes sense to pursue that goal. Such a state amounts to a logical formula in NOPL, just like policy
conditions (see Table 1).

Note that the act of raising an exception may require the joint efforts of many agents, as well as many
agents may be involved in handling a raised exception. The involved agents may each be requested to
carry out the same action, or they may be distributed different tasks which altogether produce the desired
outcome. Thus, for each raising and handling goals, there may be many committed agents (exploiting
JaCaMo’s mission cardinality). Finally, raising and handling goals (like all goals in JaCaMo) might
be structured, that is, they might be composed of many sub-goals, requiring the collaboration of many
agents to collect and make the relevant information available.

The management of exception raising and handling through obligations and through the normative
system of the MAO clearly identifies agents’ responsibilities. In general, the agent that detects the con-
ditions that will lead to raising an exception might not be equipped with the means to properly address
the situation. It might not be able to determine the impact of the situation on the overall system. The
exception handling mechanism we have introduced allows conveying relevant contextual information to
those agents that are actually equipped with the means to promptly tackle them. This might be a complex
process, involving many agents engaged in complex workflows. This is achieved by exploiting JaCaMo’s
standard notions of goal cardinality and decomposition.

Let us, now, illustrate the specification of notification policies with reference to the Therapy scenario
and to Figure 3.

Example 2 (Exception Handling in Therapy) Five days have passed and the patient has not received
the needed medicines yet.

The failure of the patient’s goal follow_therapy may be due to different circumstances:

1. The doctor did not receive the symptoms sent by the patient;
2. The doctor received the symptoms, but did not produce the prescription;
3. The pharmacist filled the prescription, but the medicine did not arrive to the patient;
4. The pharmacist delayed the preparation of the medicine;
5. The pharmacist did not receive the prescription produced by the doctor.

These situations cause the failure of one or more organizational goals. We use these failures to dis-
criminate between alternative exceptions and how to handle them. At the level of the organizational
specification, we specified a notification policy (Listing 7) and added it to the scheme in Listing 1, with

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 9

target follow_therapy and with activation condition unfulfilled(obligation(_, _, done(_, follow_therapy,
_), _)). In our scenario the deadline was missed, and indeed this condition corresponds to the condition
type ‘goal delay’ in Table 1 (the scheme reference is omitted for brevity).

Cases (1) and (2) are detected by goal prescribe not being satisfied. In these cases, the patient
is the one who must raise the exception, informing the doctor that the symptoms went lost: the
patient will supply the date of the sending so that the doctor will sort out what happened (the doc-
tor handles the exception). In Figure 3, this part is represented by the dotted red arrows. In the
notification policy, the exception is specified with the name exception_lost_symptoms (see Lines
3–8 in Listing 7). The report includes two arguments, the date and the list of symptoms, the raising
goal raise_exception_lost_symptoms that can be raised when condition not satisfied(_, prescribe)
holds, and the handling goal handle_exception_lost_symptoms. The raising and handling goals are
part of missions, see Lines 27–38 in Listing 7. Missions are associated with roles through the normative
specification at Lines 40–44 in Listing 1.

Cases (3) and (4) become of interest when prescribe is satisfied, but the patient has not received the
medicines. The patient should, in this cases, raise an exception toward the pharmacist (who will have
the role of exception handler). This is possible because in JaCaMo a goal state is a public observable
property of the organizational artifacts, so a patient can know whether a prescription was done by looking
at the state of the organizational goal prescribe. The patient will supply the date of the consult and the
doctor’s name, so that the pharmacist can sort out what happened.

The pharmacis has two handling goals because it may either be the case that the prescription was
filled (and the delivery failed), or the prescription for some reason has not been filled yet. The latter
case may be due to the pharmacist, who is late and will then solve the problem. However, it may also
be due to some error in the communication of the prescription from the doctor, which amounts to case
(5). In this case, the pharmacist will, in turn, raise an additional exception toward the doctor, containing
the patient’s and doctor’s names and the date of the consultation at issue, to solve the problem. This
can be done by declaring the failure of the pharmacist’s goal fill_prescription. In Figure 3, dotted blue
arrows capture cases (3) and (4), while dotted green arrows capture case (5). In the notification pol-
icy, exception_no_delivery includes the date and the name of the doctor, as arguments. It includes
the raising goal raise_exception_no_delivery that can be raised when the condition satisfied(_, pre-
scribe) holds. Such a condition corresponds to the type ‘goal achievement’ in Table 1. The exception
specification also includes two handling goals. The first, handle_exception_no_delivery, is used when
the pharmacist has filled the prescription. The second, handle_exception_no_delivery_no_fill, is used
when the pharmacist has not satisfied the goal fill_prescription, and will have to understand whether
it is its fault or a lack of communication from the doctor. This last case calls for the specification of a
further report, called exception_missing_prescription, which has two arguments: the patient’s name,
and the date of the consultation. It includes the raising goal raise_exception_missing_prescription
that can be pursued when satisfied(_, prescribe) and failed(_, fill_prescription). The handling goal,
handle_exception_missing_prescription, is up to the doctor.

1 <notification policy id=”np1” target=”follow therapy”
2 condition=”unfulfilled(obligation(, , done(, follow therapy,),))” type=”exception”>
3 <report id=”exception lost symptoms”>
4 <argument id=”date” arity=”1”/>
5 <argument id=”symptoms” arity=”1”/>
6 <raise goal id=”raise exception lost symptoms” when=”not satisfied(, prescribe)”/>
7 <handle goal id=”handle exception lost symptoms”/>
8 </report>
9 <report id=”exception no delivery”>

10 <argument id=”date” arity=”1”/>
11 <argument id=”doctor name” arity=”1”/>
12 <raise goal id=”raise exception no delivery” when=”satisfied(, prescribe) &
13 not raised(exception lost symptoms, ,)”/>

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

10 M. Baldoni et al.

28 <goal id=”consult”/> <goal id=”follow therapy”/>
29 <goal id=”raise exception lost symptoms”/> <goal id=”raise exception no delivery”/>
30 </mission>
31 <mission id=”mDoctor” min=”1” max=”1”>
32 <goal id=”prescribe”/> <goal id=”handle exception lost symptoms”/>
33 <goal id=”handle exception missing prescription”/>
34 </mission>
35 <mission id=”mPharmacist” min=”1” max=”1”>
36 <goal id=”fill prescription”/> <goal id=”handle exception no delivery”/>
37 <goal id=”handle exception no delivery no fill”/> <goal id=”raise exception missing prescription”/>
38 </mission>

17 <report id=”exception missing prescription”>
18 <argument id=”date” arity=”1”/>
19 <argument id=”patient name” arity=”1”/>
20 <argument id=”doctor name” arity=”1”/>
21 <raise goal id=”raise exception missing prescription”
22 when=”satisfied(, prescribe) & failed(, fill prescription) &
23 not raised(exception lost symptoms, ,)”/>
24 <handle goal id=”handle exception missing prescription”/>
25 </report>
26 </notification policy>
27 <mission id=”mPatient” min=”1” max=”1”>

14 <handle goal id=”handle exception no delivery” when=”satisfied(, fill prescription)”/>
15 <handle goal id=”handle exception no delivery no fill” when=”not satisfied(, fill prescription)”/>
16 </report>

Listing 7. Notification policy for the Therapy scenario.

2.3 Agent programming with exceptions
Now coming to agent programming, Listing 8 shows the extended implementation of the patient agent,
where the first two exceptions are raised.

1 +! consult
2 <- .send(doctor , tell , explain(symptoms ([fever ,headache]))).
3
4 +! follow_therapy : deliver(drugs(D))
5 <- // Take the medicine D.
6
7 +! follow_therapy : not deliver(drugs(_))
8 <- .wait ({+ deliver(drugs(_))});
9 !follow_therapy.

10
11 +! raise_exception_lost_symptoms
12 <- raiseException(exception_lost_symptoms ,

.)])]ehcadaeh,revef[(smotpmys,)"3202.30.32"(etad[31
14
15 +! raise_exception_no_delivery
16 <- raiseException(exception_no_delivery , [doctor_name(doctor), date("23.03.2023")]).

Listing 8. Excerpt of the patient agent’s code extended with exception handling.

The first three plans allow the agent to pursue its assigned goals from the functional decomposition,
while the last two are related to exception handling. More in detail, as soon as the scheme execution starts
the agent receives two obligations: to pursue goals consult and follow_therapy. The obligations are
automatically mapped onto the agent internal goals and the corresponding plans are activated. It is worth
noting that the agent is able to successfully complete the plan at Line 7 only if the drugs are received from
the pharmacist (see the plan context). Should this not happen before five days, the obligation to achieve
goal follow_therapy would become unfulfilled. Consequently, the notification policy in Listing 7 would
be triggered (see line 1). This causes the emission of new obligations concerning the raising/handling
of exceptions.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 11

In our case, the patient is able to raise two exceptions (exception_lost_symptoms and
exception_no_delivery), but it will actually raise only one of the two, depending on the context. The
last two plans in the agent code serve this purpose: the agent raises the appropriate exception by means
the primitive raiseException(...) (Lines 12 and 16), which takes in input a list of arguments that com-
plies with the expected report specification. Such arguments are made available to the handler agents as
observable properties of the organizational artifacts.

When raising exception_lost_symptoms, the agent will have to provide the consultation date and
the symptoms, while when raising exception_no_delivery, the agent will have to provide the date and
the doctor’s name. The reason is that the first exception is to be handled by the doctor, while the second by
the pharmacist. Since the pharmacist may receive prescriptions from multiple doctors, the information
is needed to identify the right one. This example shows that report arguments encode relevant contextual
information that must be provided from the raiser to the handler in order to allow the latter to cope with
the exception at hand.

The achievement of a raising goal implies the emission of an obligation toward the agents that
should achieve the associated handling goals. In our example, the raising of exception_lost_symptoms
enables the handling goal handle_exception_lost_symptoms, which is in charge to the doctor. The
exception exception_no_delivery, in turn, encompasses two different handling goals (in charge to the
pharmacist). As explained the two goals are enabled in different circumstances, that are specified by the
when condition.

Listing 9 below reports the code of the pharmacist agent, extended for handling the
exception_no_delivery, raised by the patient.

1 +! fill_prescription : send(prescription(P))
2 <- // prepare parcel for drugs D in prescription P
3 .send(patient , tell , deliver(drugs(D))).
4
5 +! handle_exception_no_delivery : send(prescription(P))
6 <- // prepare parcel for drugs D in prescription P
7 .send(patient , tell , deliver(drugs(D))).
8
9 +! handle_exception_no_delivery_no_fill : send(prescription(P))

10 <- // prepare parcel for drugs D in prescription P
11 .send(patient , tell , deliver(drugs(D)));
12 goalAchieved(fill_prescription).
13
14 +! handle_exception_no_delivery_no_fill : not send(prescription(_))
15 <- goalFailed(fill_prescription).
16
17 +! raise_exception_missing_prescription
18 : raised(exception_no_delivery , Args)[raiser(Patient)] &
19 .member(date(Date),Args) & .member(doctor_name(Doctor),Args)
20 <- raiseException(exception_missing_prescription ,

.)])rotcoD(eman_rotcod,)tneitaP(eman_tneitap,)etaD(etad[12
22
23 +send(prescription(_)) : goalState(_, fill_prescription , _, _, failed)
24 <- resetGoal(fill_prescription).

Listing 9. Excerpt of the pharmacist agent’s code extended with exception handling.

The plans at Lines 5, 9, and 14 target the handling goals. The first one is triggered when the agent,
which has filled the prescription, receives the exception that was raised by the patient. This means that
the drugs went lost before reaching the patient. The exception is handled by organizing another delivery
of the prescribed drugs.

The remaining two plans capture cases (4) and (5) in Example 2. Here the pharmacist did not fill the
prescription. This could be due to many reasons, we consider two alternatives: (1) the preparation for
some reason was delayed and (2) the pharmacist did not receive the prescription from the doctor. The
two plans in Listing 9 tackle the two cases. While in the first case the exception is handled totally and

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

12 M. Baldoni et al.

directly by the pharmacist that will simply fill the delayed prescription, the second case is more complex.
The agent cannot activate the plan to achieve the goal fill_prescription because the context at Line 1
does not hold. The agent, thus, marks the organizational goal as failed by means of the goalFailed(...)
operation, at Line 15. This operation is provided by our the extended infrastructure and allows
agents to proactively signal the failure of their organizational goals. The failure triggers the rais-
ing of a further exception (the last one specified in the notification policy). According to the policy,
exception_missing_prescription must be raised by the pharmacist and handled by the doctor. The
plan at Line 17 allows the agent to raise the exception. It is worth noting that the pharmacist may lever-
age the arguments provided beforehand by the patient while raising the previous exception (see the plan
context). In this case, the date of the prescription and the patient’s and doctor’s names are forwarded to
the doctor.

Finally, Listing 10 shows the doctor’s code, extended with exception handling. The agent includes
two plans that allow it to handle both the exceptions raised by the patient and by the pharmacist. To
do so, the agent must achieve the corresponding handling goals. Here, we see again that the agent can
leverage the information provided by the exception (i.e., the list of lost symptoms) to determine what
has to be done.

1 +! prescribe : explain(symptoms(S))
2 <- !computePrescription(S,P);
3 .send(pharmacist , tell , send(prescription(P))).
4
5 +! computePrescription(S,P)
6 <- // analyze symptoms S, recover the patient ’s history ...
7 // write prescription P
8
9 +! handle_exception_lost_symptoms

10 : raised(exception_lost_symptoms , Args)[raiser(Patient)] &
11 .member(date(D), Args) & .member(symptoms(S), Args)
12 <- !computePrescription(S,P);
13 .send(pharmacist , tell , send(prescription(P)));
14 goalAchieved(prescribe).
15
16 +! handle_exception_missing_prescription : explain(symptoms(S))
17 <- !computePrescription(S,P);
18 .send(pharmacist , tell , send(prescription(P))).

Listing 10. Excerpt of the doctor agent’s code extended with exception handling.

3. Exceptions as part of the organization infrastructure
To include exception handling as a primitive mechanism in JaCaMo1, and so allow the specification and
the execution of MAOs with exceptions, we had to work at three different levels:

1. Specification level: we had to provide the means to enrich the specification of an organization
with a set of notification policies;

2. Normative level: we had to enable the enforcement of the normative behavior, yielded by
notification policies, by issuing obligations to achieve raising and handling goals;

3. Infrastructural level: we had to enrich the organizational infrastructure with the functionalities
needed by agents to actually raise and handle exceptions.

Figure 4 illustrates the general picture of JaCaMo organizational component enriched with all the
newly introduced elements (in orange the major changes). In particular, we extended three components:
(i) the organizational specification, (ii) the normative program, and (iii) the organizational artifacts.
In JaCaMo, organizational specifications are written in XML. At runtime, the XML specification is

1The full code of JaCaMo extended with exception handling, together with some examples, is available in the official Moise
repository, in a dedicated branch: https://github.com/moise-lang/moise. We are currently working on integrating the extension
into the official JaCaMo release.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://github.com/moise-lang/moise
https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 13

o
o
o

o
o
o

�
�
�
�

�
�
�
�

o
o
o
o
o
o

�
�
�
�
�
�

o
�

Figure 4. General architecture of JaCaMo’s organizational component. The parts affected by our
extension are highlighted in orange

translated into a set of NOPL normative programs, which address groups and schemes. The organization
management infrastructure is, then, realized through a set of artifacts, upon which the agents can operate.
Such artifacts allow agents to interact with the organization, by perceiving its observable state and by
executing operations (JaCaMo’s normative interpreter relies on these artifacts).

In order to capture exceptions and allow the interpretation of our extended normative program, we
extended a specific class of artifacts for scheme management. Furthermore, we included a set of addi-
tional operations made available to the agents. The runtime functioning of our proposed extension is
structured as follows.

3.1 Encoding notification policies in the normative program
Notification policies are specified in XML, but need to be translated into norms and rules to be
interpreted by the normative system at runtime. To allow this to happen, we introduced some new orga-
nizational facts which allow capturing the notification policy structure. Table 2 lists them, together with
an explanation of their meaning. So, for instance, notificationPolicy(NP, Target, Condition) is used
to capture the fact that NP is a notification policy that concerns the goal Target and is activated when
the specified condition holds (for instance, when the target goal fails). These facts, however, are not
sufficient because we also need to capture dynamic facts that occur at runtime. These dynamic facts are
produced as a consequence of specific operations performed by agents on some artifacts and regard the
raising and handling goals.

For example, we just mentioned that a notification policy condition may amount to the failure of
some goal, but standard JaCaMo only allows agents to mark goals as achieved, and hence we had

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

14 M. Baldoni et al.

Table 2. Normative facts capturing notification policies

Fact Meaning
notificationPolicy(NP, Target, Condition) Notification policy with id NP targeting goal Target;

Condition is the logical formula mapped from the
policy attribute, as described in Table 1

report(E, NP) Report for exception E defined within a notification
policy NP

reportArgument(E, Functor, Arity) Report argument—a ground first order
predicate—with functor Functor and arity Arity
associated with exception E. Multiple report
arguments, each one with a different functor and
arity may be defined for a given exception E

raisingGoal(RG, E, When) Raising goal RG in the scope of a report for
exception E. When is the logical formula mapped
from the goal enabling condition. If no when
attribute is specified, the condition is set to true

handlingGoal(HG, E, When) Handling goal HG in the scope of report for
exception E, with a When enabling condition (as
for raising goals)

to extend it to widen the set of goal states. In particular, we introduced the new artifact operation
goalFailed(G), by which an agent can signal the failure of goal G. As a consequence, the dynamic fact
failed(S, G) is added in the normative state. Such a fact can appear in conditions triggering notification
policies.

3.2 Enabling and accomplishing raising goals
At runtime, the normative systems checks, for each report in an active notification policy (i.e., with
Condition satisfied), the presence of applicable (exception) raising goals. That is, raising goals whose
when clause holds. This check is performed by means of the following rule.

1 enabled(S, RG) :-
2 raisingGoal(RG , E, When) &
3 notificationPolicy(NPol , _, Condition) &
4 report(E, NPol) &
5 Condition &
6 When &
7 goal(_, RG, Dep , _, NP, _) & NP \== 0 &
8 ((Dep = dep(or,PRG) & (any_satisfied(S, PRG) | all_released(S, PRG))) |
9 (Dep = dep(and , PRG) & all_satisfied_released(S, PRG))).

A raising goal RG is enabled when the Condition defined for the policy it belongs to, as well as its
local When condition, hold, provided that its dependencies (preconditions) are satisfied. The predicate
dep(...) is built-in NOPL and encodes the dependencies of a given goal, that is, the other goals that must
be achieved (or released) before the goal can be pursued. Dependencies are deduced automatically from
the functional decomposition.

Once a raising goal is enabled, the normative system issues an obligation to the involved agent(s).
Although this mechanism is common to all goals, raising goals are special because they produce
a piece of knowledge—an exception—that is compliant with the report that is given in the noti-
fication policy, to which the raising goal at issue belongs. To perform this, we introduced a new
artifact operation: raiseException(E, Args) allows an agent to raise an exception E with a list of
arguments Args. Arguments are a set of ground predicates having the structures specified by facts
reportArgument(E, Functor, Arity) for the report for exception E. The operation adds to the normative

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 15

state the dynamic fact raised(E, Ag, Args), where Ag is the name of the agent executing the operation
and Args are the provided exception arguments. Note that the raised exception, together with its argu-
ments is also made available to the other agents as an artifact observable property which has the shape
raised(E, Args)[raiser(Ag)].

3.3 Enabling and accomplishing handling goals
Raised exceptions must be handled, so, when an exception is raised, the normative system looks for
handling goals that are enabled. This is done by means of the following rule.

1 enabled(S, HG) :-
2 handlingGoal(HG , E, When) &
3 When &
4 raised(E, _, _) &
5 raisingGoal(RG ,E,_) &
6 satisfied(S,RG) &
7 goal(_, HG, Dep , _, NP, _) & NP \== 0 &
8 ((Dep = dep(or, PHG) & (any_satisfied(S, PHG) | all_released(S, PHG))) |
9 (Dep = dep(and , PHG) & all_satisfied_released(S, PHG))).

Similarly to raising goals, a handling goal is enabled if its When condition holds, and if the precon-
dition goals are satisfied. We additionally require that an exception has actually been raised, and that
the corresponding raising goal has been satisfied. In this way, we ensure that the agent to which the
handling goal is assigned, is able to take advantage of the information provided by way of the raising
goal. It is possible that many handling goals are concurrently enabled for the same raised exception.
Obligations are, then, issued for each enabled handling goal. The involved agents can leverage the infor-
mation, encoded by the raised exception, to enact the most appropriate countermeasures and handle the
exception.

In particular, the achievement of a handling goal could make no longer needed the goal whose failure
triggered the exception. In such a case, the failed goal must be skipped. The new artifact operation
goalReleased(G) allows agents to release an organizational goal G. It adds to the normative state the
fact released(S, G). Executing this operation allows the appointed agents to notify the organization
that the exception was handled. The execution of the scheme S can proceed because G is not of interest
anymore. This allows resuming the process, aimed at the achievement of the organizational goal, which
would, otherwise, remain stuck.

It is worth noting that releasing a failed goal is just a possibility. For instance, as an alternative the
handling agent could decide to retry its achievement by resetting it, after the restoration of a consistent
context. Of course, the choice for the best way to handle an exception is up to the agent that should
handle it.

3.4 Norms for dealing with exceptions
As a final step, we had to provide the normative program with the norms needed to issue obligations
toward agents for raising and handling goals and to ensure a set of properties that guarantee the correct
functioning of the exception handling mechanism. To illustrate, some of these norms ensure that only
designated agents can raise or handle specific exceptions, or that an exception can be raised only if the
condition of the enclosing notification policy actually holds. We recall that a norm is composed of a
name, a set of facts that represent the activation condition of the norm, and a consequence condition.
The consequence of a norm activation can be either the emission of an obligation or a failure. In the
latter case, this results in the failure of the action that triggered the norm.

The first addition concerns the achievement of raising and handling goals, which is to be coordinated
through obligations by the normative system—as for any other organizational goal. In order to allow a

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

16 M. Baldoni et al.

proper management, we had to modify the standard built-in norm for goal achievement, as reported in
Listing 11: the norm does not issue anymore obligations concerning goals marked as failed or released
(Lines 8–9).

1 // agents are obliged to fulfill their enabled goals
2 norm ngoal:
3 committed(A, M, S) & mission_goal(M, G) &
4 ((goal(_, G, _, achievement , _, D) & What = satisfied(S, G)) |
5 (goal(_, G, _, performance , _, D) & What = done(S, G, A))) &
6 well_formed(S) &
7 not satisfied(S, G) &
8 not failed(_, G) &
9 not released(_, G) &

10 not super_satisfied(S, G)
11 -> obligation(A, (enabled(S, G) & not failed(S, G)),What ,‘now ‘ + D).

Listing 11. NOPL norm issuing obligations to achieve goals.

Briefly, the norm says that if agent A is committed to mission M in scheme S and G is one of the
mission goals (Line 3), such that G is either an achievement or a performance goal2 (Lines 4–5), the
scheme is well-formed (Line 6), and G is ready to be achieved, then an obligation directed toward A to
achieve G must be emitted (Line 11). Note that in JaCaMo a scheme is well-formed when all the mission
minimum and maximum cardinalities are respected, that is, when all the needed role-player agents have
committed to their missions. Instead, a goal is considered ready for achievement as soon as it is enabled
and it has not been already achieved, marked as failed or released, or its super-goal has been achieved
(Lines 7–10).

We finally added some regimented norms to ensure consistency in the treatment of raising and han-
dling goals. Regimented norms in Moise are those norms that result in a failure if the norm preconditions
are not holding when the norm is triggered. Such norms ensure that agents cannot perform undesired
actions. Specifically, the newly introduced norms are needed in order to ensure that agents only raise
and handle exception that follow the specification. They can be divided into three groups: (i) norms that
govern when exception can be raised, (ii) norms that govern what agents can raise exceptions, and (iii)
what shape raised exceptions need to have.

The first group of norms deals with the fact that agents should be prevented from marking as “failed”
goals that are not enabled, yet. Similarly, we also impose that exceptions can only be raised when an
exceptional situation actually occurs, and not arbitrarily by the agents. The norm in Listing 12 regiments
a failure if an agent tries to mark as failed an goal which is not enabled.

1 norm fail_not_enabled_goal:
2 failed(S, G) &
3 mission_goal(M, G) &
4 not mission_accomplished(S, M) &
5 not enabled(S, G)
6 -> fail(fail_not_enabled_goal(S, G)).

Listing 12. NOPL norm regimenting goal failure.

The norm in Listing 13, in turn, ensures that fact raised(E, Ag, Args) is asserted into the state of the
organization only when the condition of the corresponding notification policy holds. It is worth noting
that we allow the condition not to hold if the raising goal has been already achieved by some agent
(Line 5).

2Note that Moise has the following goal types: achievement, performance, maintenance. Please, refer to Moise official
documentation for further details.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 17

1 norm exc_condition_not_holding:
2 raised(E, Ag, Args) &
3 report(E, NP) &
4 notificationPolicy(NP, _, Condition) &
5 not (raisingGoal(RG, E, _) & (Condition | done(S, RG, Ag)))
6 -> fail(exc_condition_not_holding(S, E, Ag, Condition)).

Listing 13. NOPL norm regimenting exception raising conditions.

The rationale is that, after a successful handling of the exception the critical condition will likely stop
holding. Nonetheless, the fact raised(E, Ag, Args), together with done(S, RG, Ag), keeps track of the
fact that an exceptional situation occurred (and has been handled). done(S, G, Ag) is a built-in NOPL
dynamic fact that is added to the normative program to denote that agent Ag has achieved goal G in
scheme S.

The second group of norms ensure that only the designated agents can raise exceptions. The norm
in Listing 14 inhibits the raising of exceptions by agents not committed to the mission including the
corresponding raising goal.

1 norm exc_agent_not_allowed:
2 raised(E, Ag, Args) &
3 report(E, _) &
4 mission_goal(M, RG) &
5 raisingGoal(RG , E, _) &
6 not committed(Ag, M, S)
7 -> fail(exc_agent_not_allowed(S, E, Ag)).

Listing 14. NOPL norm regulating agents allowed to raise exceptions.

Finally, the last group of norms checks that exceptions, that are raised, are compliant with the spec-
ification. This check is not trivial and requires a number of rules. First of all, since raising goals must
produce an exception (which is a piece of knowledge), they can be marked as “achieved” only when the
corresponding exception has been provided by the raising agent.

The norm in Listing 15 ensures that a raising goal is marked as ‘achieved’ only when the correspond-
ing raised(...) fact has been asserted. More in detail, a raising goal RG is not marked as achieved in
those cases when the fact done(S, RG, Ag) is added to the normative state but the related exception has
not been raised (see Line 5), because the goal achievement operation fails.

1 norm ach_rais_goal_exc_not_raised:
2 done(S, RG, Ag) &
3 raisingGoal(RG , E, _) &
4 not super_goal(SG, RG) &
5 not raised(E, _, _)
6 -> fail(ach_rais_goal_exc_not_raised(G, E, Ag)).

Listing 15. NOPL norm regulating the achievement of raising goals.

Note that raising goals may be composite, encompassing multiple subgoals, just like standard orga-
nizational goals. In this case, before achieving the root goal, all subgoals must be completed. When a
raising goal is composite and require multiple subtasks, we require that the exception is actually raised
before marking the root goal as achieved (see Listing 15, Line 4).

The norm in Listing 16 ensures that exceptions can be raised only by following a well-defined report
specification.

Note that a fact of kind raised(...) can be asserted only when the right number of corresponding
arguments has been asserted. Of course, each of them must comply with the expected format. This

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

18 M. Baldoni et al.

1 norm exc_unknown:
2 raised(E, Ag, Args) &
3 not report(E, _)
4 -> fail(exc_unknown(S, E, Ag)).

Listing 16. NOPL norm regimenting the raising of unknown exceptions.

is verified by the norms in Listings 17–19. The one in Listing 17 ensures that the arguments of a
raised(E, Ag, Args) predicate are ground predicates, i.e., they do not contain variables.

1 norm exc_arg_not_ground:
2 raised(E, Ag, Args) &
3 report(E, _) &
4 .member(Arg , Args) &
5 not .ground(Arg)
6 -> fail(exc_arg_not_ground(S, E, Arg)).

Listing 17. NOPL norm regimenting exception arguments groundness.

The norm in Listing 18 ensures that all the relevant information is provided, that is, that all the
required arguments are instantiated.

1 norm exc_arg_missing:
2 raised(E, Ag, Args) &
3 report(E, _) &
4 reportArgument(E, ArgFunctor , ArgArity) &
5 not (. member(Arg , Args) & Arg = ..[ArgFunctor , T, A] & .length(T, ArgArity))
6 -> fail(exc_arg_missing(S, E, ArgFunctor , ArgArity)).

Listing 18. NOPL norm regulating the absence of required exception arguments.

Like in Prolog, the NOPL construct P = ..[F, T, A], used at Line 5, extracts the functor F, terms T, and
eventually annotations A from a predicate P. The norm triggers a failure if at least one of the arguments
specified for E does not unify with one of the terms in the list Args of dynamic fact raised(E, Ag, Args).
Indeed, this means that some of the information the agent was requested to provide is still missing.

The last norm, Listing 19 regiments the prohibition, for agents, to include undesired arguments when
raising of an exception.

1 norm exc_arg_unknown:
2 raised(E, Ag, Args) &
3 report(E, _) &
4 .member(Arg , Args) &
5 Arg = ..[ArgFunctor , T, A] &
6 .length(T, ArgArity) &
7 not reportArgument(E, ArgFunctor , ArgArity)
8 -> fail(exc_arg_unknown(S, E, Arg)).

Listing 19. NOPL norm prohibiting undesired exception arguments.

The norm is triggered if an exception E is raised by some agent with a set of arguments Args and
(at least) one of the arguments included in Args does not follow the specification for exception E (i.e.,
a corresponding reportArgument(...) fact is not present, see Lines 4–7). The result of all these norms
is a failure in the exception raising action.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 19

4. Related work
Exception handling has been addressed in several papers of the MAS literature with different perspec-
tives and purposes. Current proposals, however, do not capture the roles of the exception raiser and
handler as primitive elements, and hence either they do not scale up or they violate the agents’ autonomy.

Platon et al. (Platon, 2007; Platon et al., 2007b,a, 2008) look at exception handling as a tool that
an individual agent can activate internally to preserve self-control despite the occurrence of exceptions.
Jadescript (Petrosino et al., 2022, 2023) follows a similar approach. Here exceptions are special kinds
of events that may occur internally to an agent and embody significant deviations from the nominal
course of events (e.g., behavior failures). The language provides features to allow agents to detect and
treat such kind of events. In contrast, our proposal considers exception handling as a social concern,
addressed thanks to the cooperation of agents, which are assigned explicit (raising and handling) goals
and can collaborate thanks to an unambiguous specification of exceptions.

A distributed perspective is taken by the guardian (Miller & Tripathi, 2004), a global entity that
orchestrates the exception handling actions of a set of agents. When an exception is detected, the guardian
applies a recovery rule that usually entails some exception handling procedures by the affected agents. In
Klein and Dellarocas (1999), Dellarocas and Klein (2000), Klein and Dellarocas (2000), a decentralized
evolution of the guardian model is proposed, where sentinels, equipped with handlers, may be plugged
into the agents in case of an exception, in a coupled way. Sentinels communicate with agents using
a predefined language for querying about exceptions and for describing exception resolution actions.
Agents, for their part, are required to implement a minimal set of interfaces to report on their own
behavior and modify their actions, according to the prescriptions given by the sentinels. Our proposal
does not rely on special components such as sentinels or guardians, but seamlessly integrates exception
handling into the agents themselves. However, the use of notification policies as specific constructs
for specifying exceptions and their handling, allows a designer to keep separate the normal, expected
behavior of an agent from its exceptional counterpart. This helps both the design and the maintenance
of the agents themselves.

SARL (Rodriguez et al., 2014) is a general-purpose agent-oriented programming language and plat-
form, which supports the notion of holonic multi-agent system (Gerber et al., 1999; Schillo & Fischer,
2002; Fischer et al., 2003). A multi-agent system in SARL is a collection of agents interacting together in
a collection of shared distributed spaces. An agent may be equipped with one or more behaviors, which
map a collection of perceptions represented by events to a sequence of actions. Recently, the authors
introduced a specific kind of event that represents any failure that an agent could handle, if interested
(SARL.io, 2023). Each time an agent needs to be notified about a failure (e.g., during the execution
of its tasks), an occurrence of this event type is fired in the internal context of the agent, which may
then handle it through some suitable behavior. One major limitation of the approach is that no explicit
organization is set up for handling exceptions, In other words, no specific social structure is established
among the agents, and hence, no mutual expectation about the handling of any failure event is possible
(i.e., a failure event could pass uncaught legitimately). To overcome this issue, SARL spaces should be
explicitly used to realize a social structure supporting exception handling as discussed in Baldoni et al.
(2022, 2023b, 2025).

A drawback of the approach cited above is that no clear semantics is given to such a social structure.
In Singh (2000), a social semantics for agent communication languages is presented. The work provides
a foundational framework for understanding how agents exchange commitments and obligations during
interactions, framing communication in terms of social relationships and norms. This aligns well with
our approach to exception handling in MAS, where norms and obligations are central to defining how
exceptions are raised and handled. Nonetheless, the approaches differs in scope. While we leverage
the organization metaphor to provide the boundaries of the context where norms are defined, in Singh
(2000) agents are peers that dynamically create commitments among each other as socially meaningful
events that yield expectations on their behavior. Social commitments, indeed, are a valid conceptual
tool to model responsibilities in MAS, also concerning the handling of exceptions. They are used, for

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

20 M. Baldoni et al.

instance, in Jain et al. (1999), where agents face exceptional interactions by adjusting their commitments
at runtime (i.e., by possibly canceling and creating new commitments). In Kalia and Singh (2015),
Mallya and Singh (2005) exceptions are modeled via commitment-based protocols. Exceptions amount
to commitments being violated. The flexibility of commitments allows creating preference structures
over runs, and also merging specific handling protocols inside runs. Anticipated exceptions, occurring
during the execution of an interaction protocol (i.e., deviations from the normal flow that occur often
enough and are part of the model), are dealt with by specifying a hierarchy of preferred runs. Preferences
can, then, be used to define exceptional runs. Exception handlers are treated as runs just like protocols.
Handlers can be spliced inside a given protocol when an exceptional run is detected. The approach also
deals with non-anticipated exceptions (i.e., exceptions that are not part of the process model). Exception
handlers, in this case, are constructed dynamically from a basic set of protocols. The approach, however,
does not scale-up well, as the authors state, splicing exception handlers at runtime requires a search
through a library of handlers, that can be computationally demanding. On the other hand, inducing a
preference structure over runs requires considerable design-time effort and extensive domain specific
knowledge.

Similar considerations can be made for Mandrake (Christie V et al., 2022) and Bungie (Christie
et al., 2021), two approaches to realize fault-tolerant agent interaction. They exploit several patterns for
extending information-based protocols so as to optimize the way in which missing messages are detected
and resent. One major difference between these approaches and ours lies in the fact that (Christie et al.,
2021; Christie V et al., 2022) focus on failures affecting the exchange of messages among the agents,
whereas our approach focuses on exceptions affecting the achievement of organizational goals. This has
a substantial impact on the way in which an exception is conceptualized and handled. Recently, proposals
have been made (Baldoni et al., 2025a,b; Chopra et al., 2025) for integrating information protocols with
Jason. This line of research may provide a good starting point for integrating also exception.

Exception handling in interaction protocols has also been considered in Gutierrez-Garcia et al.
(2009), where both interaction protocols and exception handlers are modeled through obligations.
Exceptions are seen as abnormal situations in which agents cannot release an obligation. The obli-
gation is canceled and, similarly to Mallya and Singh (2005), a handler is sought for in a repository.
Exception handlers are modeled in terms of new obligations to be issued. This approach differs from
ours for two main reasons: (1) it is not framed in an organizational dimension and (2) exceptions are not
first-class objects specified since the design phase, but are just as abnormal situations emerging during
the enactment of an interaction protocol.

The treatment of exceptions is of interest also in the perspective of self-adaptive systems. For instance,
the Rainbow architecture (Garlan et al., 2009) aims at facing unexpected events and provides mecha-
nisms to monitoring a target system and its environment, detecting events that denote opportunities for
adaptation, selecting a course of actions to address these opportunities, and apply changes. Once a prob-
lem is detected in the system (i.e., a violation of an architectural constraint), an adaptation strategy that
suits the problem is selected and the framework coordinates the execution of that strategy. The approach
bears some analogies with concept of notification policy in our proposal. However, the two approaches
are substantially different in nature. In Garlan et al. (2009), the whole adaptation process is carried out by
the components constituting the proposed architecture, that is, it is not part of the system at hand. In our
approach, on the contrary, exception handling is embodied into the agents, leveraging their distributed
nature. At the same tame, Rainbow does not take into account the autonomy of system’s components.

5. Discussion and conclusion
In this paper we have presented an exception handling mechanism for MAOs that is seamlessly inte-
grated with organizational concepts, such as responsibilities, goals and norms. This allows us to exploit
the normative system of an organization not only for coordinating the expected, correct, behavior of the
system, but also the exceptional behaviors. Robustness and correctness are complementary concepts:
while correctness is ‘the ability of software products to perform their exact tasks, as defined by their

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 21

specification.’ (Meyer, 1988), robustness guarantees that if exceptional cases do arise, the system will
terminate its execution cleanly. We have shown that, by introducing a proper infrastructure, both proper-
ties can be supported by the normative system uniformly. This makes the treatment of exceptions, from
their raising to their handling, an integral part of a MAO model, enabling a systematic and homogeneous
treatment of exceptions, and simplifying the implementation of the agents, as we have exemplified in
JaCaMo. We see exception handling in distributed systems as having an intrinsically social nature. From
a practical point of view, the social aspect is captured by means of notification policies that specify, at
the design of the organization, anticipated exceptions and how these have to be treated by cooperating
agents. Notification policies are, thus, a software engineering tool, supporting the construction of robust,
loosely coupled distributed systems, and with high cohesive components. Low coupling is achieved by
limiting the interaction between the raising and handling agents to the exception itself, whose structure
is part of the organization specification. The raising agent does not even need to know who will handle
the exception. On the other hand, high cohesion is promoted because the designer has the flexibility to
ascribe the goals of raising and handling exceptions to the agents that have the right functionalities to
accomplish them. As we have shown, these tasks can even amount to complex goals, whose sub-goals
are distributed among many agents.

The treatment of exceptions presented in this paper has some similarities with that of accountabil-
ity introduced in Baldoni et al. (2021, 2023a). In both cases, we allow a designer to complement the
functional decomposition with additional social structures (i.e., notification policies and accountability
agreements, respectively). The two concepts, however, are substantially different in scope. Exceptions,
borrowed from Software Engineering, are suitable for treating perturbations anticipated at design time
by activating predetermined handlers. Accountability, instead, defines feedback ‘channels’ that agents
can exploit at runtime to get information of interest falling outside their reach, and then take actions.
In this second case, the decision about whether to request for an account rests on the agent that in an
accountability agreement plays the role of accountability taker (a-taker). That is, the interaction through
accountability is not triggered by the occurrence of an exception, but from an internal decision taken
by an a-taker agent. As a future direction of research we are currently working on designing a unified
framework that will allow dealing both with exceptions and accountability.

Acknowledgments. The work of Cristina Baroglio and Stefano Tedeschi is part of the project NODES which has received funding
from the MUR—M4C2 1.5 of PNRR funded by the European Union—NextGenerationEU (Grant agreement no. ECS00000036).

References
Alderson, D. L. & Doyle, J. C. 2010. Contrasting views of complexity and their implications for network-centric infrastructures.

IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 40(4), 839–852.
Baldoni, M., Baroglio, C., Chiappino, G., Micalizio, R. & Tedeschi, S. 2022. Exception handling in SARL as a responsi-

bility distribution. In The 13th International Conference on Ambient Systems, Networks and Technologies (ANT)/The 5th
International Conference on Emerging Data and Industry 4.0 (EDI40), Procedia Computer Science 201, 795–800. Elsevier.
https://doi.org/10.1016/j.procs.2022.03.112

Baldoni, M., Baroglio, C., Galland, S., Micalizio, R., Outay, F. & Tedeschi, S. 2025. Interaction protocols in an imperative
agent-oriented programming language: the case of BSPL and SARL. In Proceedings of 24th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2025, IFAAMAS, Detroit, Michigan, USA.

Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. 2021. Reimagining robust distributed systems through accountable MAS.
IEEE Internet Computing 25(6), 7–14. https://doi.org/10.1109/MIC.2021.3115450

Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. 2022. Exception handling as a social concern. IEEE Internet Computing
26(6), 33–40. https://doi.org/10.1109/MIC.2022.3216272

Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. 2023a. Accountability in multi-agent organiza-
tions: from conceptual design to agent programming. Autonomous Agents and Multi-Agent Systems 37(1).
https://doi.org/10.1007/s10458-022-09590-6

Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. 2023b. Towards exception handling in the SARL agent platform. In
Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection, 403–408.
Springer. https://doi.org/10.1007/978-3-031-37616-0_33

Baldoni, M., Christie V, S. H., Singh, M. P. & Chopra, A. K. 2025a. Orpheus: engineering multiagent systems via communicating
agents. In Proceedings Thirty-Nineth AAAI Conference on Artificial Intelligence, AAAI 2025, Philadelphia, Pennsylvania,
USA.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1016/j.procs.2022.03.112
https://doi.org/10.1109/MIC.2021.3115450
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1007/s10458-022-09590-6
https://doi.org/10.1007/978-3-031-37616-0_33
https://doi.org/10.1017/S0269888925000050

22 M. Baldoni et al.

Baldoni, M., Christie V, S. H., Singh, M. P. & Chopra, A. K. 2025b. Orpheus: programming protocol-based BDI agents. In
Proceedings of 24th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2025, Demonstration
Track, IFAAMAS, Detroit, Michigan, USA.

Bauer, B., Müller, J. & Odell, J. 2001. Agent UML: a formalism for specifying multiagent software systems. Software Engineering
and Knowledge Engineering 11(3), 207–230.

Boella, G., van der Torre, L. & Verhagen, H. 2008. Introduction to the special issue on normative multiagent systems. Autonomous
Agents and Multi-Agent Systems 17(1), 1–10. https://doi.org/10.1007/s10458-008-9047-8

Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A. & Santi, A. 2013. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming 78(6), 747–761.

Boissier, O., Bordini, R. H., Hübner, J. & Ricci, A. 2020. Multi-Agent Oriented Programming: Programming Multi-agent Systems
Using JaCaMo. MIT Press.

Bordini, R. H., Hübner, J. F. & Wooldridge, M. 2007. Programming Multi-Agent Systems in AgentSpeak Using Jason. John Wiley
& Sons.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. 2004. Tropos: an agent-oriented soft-
ware development methodology. Autonomous Agents and Multi-Agent Systems 8(3), 203–236. https://doi.org/10.1023/
B:AGNT.0000018806.20944.ef

Chopra, A. K., Baldoni, M., Christie V, S. H. & Singh, M. P. 2025. Azorus: commitments over protocols for BDI agents. In
Proceedings of 24th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2025, IFAAMAS,
Detroit, Michigan, USA.

Christie V., S., Chopra, A. K. & Singh, M. P. 2021. Bungie: Improving fault tolerance via extensible application-level protocols.
Computer 54(5), 44–53. https://doi.org/10.1109/MC.2021.3052147

Christie V, S., Chopra, A. K. & Singh, M. P. 2022. Mandrake: multiagent systems as a basis for programming fault-tolerant decen-
tralized applications. Autonomous Agents and Multi-Agent Systems 36(1), 16. https://doi.org/10.1007/s10458-021-09540-8

Corkill, D. D. & Lesser, V. R. 1983. The use of meta-level control for coordination in distributed problem solving network. In
Proceedings of the 8th International Joint Conference on Artificial Intelligence (IJCAI’83), 748–756. William Kaufmann.

Dardenne, A., van Lamsweerde, A. & Fickas, S. 1993. Goal-directed requirements acquisition. Science of Computer Programming
20(1), 3–50.

Dellarocas, C. & Klein, M. 2000. An experimental evaluation of domain-independent fault handling services in open multi-agent
systems. In Proceedings Fourth International Conference on MultiAgent Systems, 95–102. IEEE.

Dignum, V. 2009. Handbook of research on multi-agent systems: Semantics and dynamics of organizational models.
Esteva, M., Rodríguez-Aguilar, J.-A., Sierra, C., Garcia, P. & Arcos, J. L. 2001. On the formal specification of electronic

institutions. In Agent Mediated Electronic Commerce: The European AgentLink Perspective, 126–147. Springer Berlin
Heidelberg.

Fischer, K., Schillo, M. & Siekmann, J. 2003. Holonic multiagent systems: a foundation for the organisation of multiagent systems.
In Holonic and Multi-Agent Systems for Manufacturing, Lecture Notes in Computer Science 2744, 71–80. Springer.

Garlan, D., Schmerl, B. & Cheng, S.-W. 2009. Software Architecture-Based Self-Adaptation, 31–55. Springer.
Gerber, C., Siekmann, J. & Vierke, G. 1999. Holonic multi-agent systems, Technical report, Deutsches Forschungszentrum für

Künstliche Intelligenz GmbH.
Goodenough, J. B. 1975a. Exception handling design issues. SIGPLAN Notices 10(7), 41–45. https://doi.org/

10.1145/987305.987313
Goodenough, J. B. 1975b. Exception handling: issues and a proposed notation. Communications of the ACM 18(12), 683–696.

https://doi.org/10.1145/361227.361230
Goodenough, J. B. 1975c. Structured exception handling. In Proceedings of the 2nd ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, POPL’75, 204–224. ACM. https://doi.org/10.1145/512976.512997
Goodwin, J. 2015. Learning Akka. Packt Publishing Ltd.
Gupta, M. 2012. Akka Essentials. Packt Publishing Ltd.
Gutierrez-Garcia, J. O., Koning, J. & Ramos-Corchado, F. 2009. An obligation approach for exception handling in interaction

protocols. In 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 3,
497–500. IEEE.

Hagen, C. & Alonso, G. 2000. Exception handling in workflow management systems. IEEE Transactions on Software Engineering
26(10), 943–958. https://doi.org/10.1109/32.879818

Hewitt, C., Bishop, P. & Steiger, R. 1973. A universal modular actor formalism for artificial intelligence. In Proceedings of the
3rd International Joint Conference on Artificial Intelligence, IJCAI’73, Morgan Kaufmann Publishers Inc., 235–245.

Hübner, J. F., Boissier, O. & Bordini, R. H. 2009. A normative organisation programming language for organisation management
infrastructures. In Proceedings of the 5th International Conference on Coordination, Organizations, Institutions, and Norms
in Agent Systems, COIN’09, 114–129. Springer-Verlag.

Hübner, J. F., Boissier, O. & Bordini, R. H. 2010. From organisation specification to normative programming in multi-agent
organisations. In Computational Logic in Multi-Agent Systems, 117–134. Springer.

Hübner, J. F., Boissier, O. & Bordini, R. H. 2011. A normative programming language for multi-agent organisations. Annals of
Mathematics and Artificial Intelligence 62(1), 27–53.

Hübner, J. F., Boissier, O., Kitio, R. & Ricci, A. 2010. Instrumenting multi-agent organisations with organisational artifacts and
agents. Autonomous Agents and Multi-Agent Systems 20(3), 369–400.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1007/s10458-008-9047-8
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1145/987305.987313
https://doi.org/10.1145/987305.987313
https://doi.org/10.1145/361227.361230
https://doi.org/10.1145/512976.512997
https://doi.org/10.1109/32.879818
https://doi.org/10.1017/S0269888925000050

The Knowledge Engineering Review 23

Hübner, J. F., Sichman, J. S. & Boissier, O. 2007. Developing organised multiagent systems using the MOISE+ model: program-
ming issues at the system and agent levels. International Journal of Agent-Oriented Software Engineering 1(3/4), 370–395.
https://doi.org/10.1504/IJAOSE.2007.016266

ISO/IEC/IEEE 2010. ISO/IEC/IEEE International Standard - Systems and software engineering – Vocabulary. ISO/IEC/IEEE
24765:2010(E), 1–418.

Jain, A. K., Aparico IV, M. & Singh, M. P. 1999. Agents for process coherence in virtual enterprises. Communications of the
ACM 42(3), 62–69.

Kalia, A. K. & Singh, M. P. 2015. Muon: designing multiagent communication protocols from interaction scenarios. Autonomous
Agents and Multi-Agent Systems 29(4), 621–657.

Klein, M. & Dellarocas, C. 1999. Exception handling in agent systems. In Proceedings of the Third Annual Conference on
Autonomous Agents, AGENTS’99, 62–68, ACM.

Klein, M. & Dellarocas, C. 2000. A knowledge-based approach to handling exceptions in workflow systems. Computer Supported
Cooperative Work (CSCW) 9(3-4), 399–412.

Mallya, A. U. & Singh, M. P. 2005. Modeling exceptions via commitment protocols. In Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS’05, 122–129. ACM.

Meyer, B. 1988. Object-Oriented Software Construction, 2, Prentice Hall.
Miller, R. & Tripathi, A. 2004. The guardian model and primitives for exception handling in distributed systems. IEEE

Transactions on Software Engineering 30(12), 1008–1022.
Petrosino, G., Monica, S. & Bergenti, F. 2022. Robust software agents with the jadescript programming language. In Proceedings

of the 23rd Workshop “From Objects to Agents”, Genova, Italy, September 1–3, 2022, CEUR Workshop Proceedings 3261,
194–208. https://CEUR-WS.org. https://ceur-ws.org/Vol-3261/paper15.pdf

Petrosino, G., Monica, S. & Bergenti, F. 2023. Effective handling of exceptional situations in robust software agents. Intelligenza
Artificiale 17, 37–49. https://doi.org/10.3233/IA-230003

Platon, E. 2007. Modeling Exception Management in Multi-agent Systems. PhD thesis, Université Pierre et Marie Curie, France.
Platon, E., Sabouret, N. & Honiden, S. 2007a. Challenges for exception handling in multi-agent systems. In Software Engineering

for Multi-Agent Systems V , 41–56. Springer Berlin Heidelberg.
Platon, E., Sabouret, N. & Honiden, S. 2007b. A definition of exceptions in agent-oriented computing. In Engineering Societies

in the Agents World VII , 161–174. Springer Berlin Heidelberg.
Platon, E., Sabouret, N. & Honiden, S. 2008. An architecture for exception management in multiagent systems. International

Journal of Agent-Oriented Software Engineering 2(3), 267–289.
Ricci, A., Piunti, M., Viroli, M. & Omicini, A. 2009. Environment Programming in CArtAgO, 259–288. Springer US.
Rodriguez, S., Gaud, N. & Galland, S. 2014. Sarl: a general-purpose agent-oriented programming language. In 2014

IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 3,
103–110.

SARL.io 2023. Management of the failures and validation errors, sarl general-purpose agent-oriented programming language
(“specification“), http://www.sarl.io/docs/official/reference/Failures.html. Accessed: 2024-09-16.

Schillo, M. & Fischer, K. 2002. Holonic multiagent systems. Manufacturing Systems 8(13), 538–550.
Singh, M. P. 2000. A social semantics for agent communication languages. In Issues in Agent Communication, 31–45. Springer.
Wooldridge, M. 2009. An Introduction to Multiagent Systems. John Wiley & Sons.

https://doi.org/10.1017/S0269888925000050 Published online by Cambridge University Press

https://doi.org/10.1504/IJAOSE.2007.016266
https://CEUR-WS.org
https://ceur-ws.org/Vol-3261/paper15.pdf
https://doi.org/10.3233/IA-230003
http://www.sarl.io/docs/official/reference/Failures.html
https://doi.org/10.1017/S0269888925000050

	Introduction
	Exception handling in JaCaMo
	Specification of a basic organization
	Adding exceptions
	Agent programming with exceptions
	Exceptions as part of the organization infrastructure
	Encoding notification policies in the normative program
	Enabling and accomplishing raising goals
	Enabling and accomplishing handling goals
	Norms for dealing with exceptions
	Related work
	Discussion and conclusion

