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Group Algebras with Minimal
Strong Lie Derived Length

Ernesto Spinelli

Abstract. Let KG be a non-commutative strongly Lie solvable group algebra of a group G over a field K

of positive characteristic p. In this note we state necessary and sufficient conditions so that the strong

Lie derived length of KG assumes its minimal value, namely ⌈log2(p + 1)⌉.

1 Introduction

Let KG be the group algebra of a group G over a field K. As usual, we regard
it as a Lie algebra under the Lie multiplication [a, b] := ab − ba for all a, b ∈
KG. We put δ(0)(KG) := δ[0](KG) := KG and define by induction δ[n+1](KG) :=

[δ[n](KG), δ[n](KG)], where this symbol denotes the additive subgroup generated by
all the Lie commutators [a, b] with a, b ∈ δ[n](KG), and δ(n+1)(KG) as the associative
ideal generated by [δ(n)(KG), δ(n)(KG)].

We say that KG is strongly Lie solvable if there exists an integer n such that

δ(n)(KG)= 0; in this case, the minimal integer m such that δ(m)(KG) = 0 is called the
strong Lie derived length of KG and denoted by dlL(KG). In a similar manner we de-
fine the Lie derived length of KG, denoted by dlL(KG). Clearly δ[n](KG) ⊆ δ(n)(KG)
for all non-negative integers n. Thus a strongly Lie solvable group algebra KG is Lie

solvable and dlL(KG) ≤ dlL(KG). But, as stressed in [1], the equality does not always
hold. In fact, let G be a 2-group of maximal class of order 2n with n ≥ 5 and let K

be a field of characteristic 2. Then G contains an abelian subgroup of index 2 and,
by [6, Theorem 1], dlL(KG) ≤ 3, whereas dlL(KG) = n − 1.

Let G be a non-abelian group. It is well known (see [8, Theorem V.5.1]) that KG is
strongly Lie solvable if and only if K has positive characteristic p and the commutator
subgroup of G is a finite p-group. I. B. S. Passi, D. S. Passman, and S. K. Sehgal stated
necessary and sufficient conditions so that the group algebra KG is Lie solvable [5].

According to these results, the Lie solvability of KG occurs if and only if KG is strongly
Lie solvable, under the assumption that p is odd. Instead, this is not true when p = 2;
for instance, the group algebra F2S3, where F2 is the field of two elements and S3 the
symmetric group on three letters, is Lie solvable of length 3, but not strongly Lie

solvable.
Very little is known about the Lie derived length of non-commutative group al-

gebras. The most remarkable works in this area are the papers by A. Shalev [10, 11],
which gave life to a range of new questions. In particular, if K is a field of pos-

itive characteristic p, then ⌈log2(p + 1)⌉ ≤ dlL(KG), where the left-hand side of
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the inequality denotes the upper integral part of log2(p + 1) (see [10, Theorem A]).
Moreover, this bound is actually the correct one [10]. Indeed, if G is a nilpotent

group whose commutator subgroup has order p, dlL(KG) = ⌈log2(p + 1)⌉. By virtue
of [1, (2)], this is also the value of dlL(KG). Hence the lower bound by Shalev is the
best possible also for the strong Lie derived length of a group algebra. The aim of this
note is to establish necessary and sufficient conditions so that this bound is achieved.

If m is a positive integer, define recursively

g(0, m) := 1, g(t, m) := g(t − 1, m) · 2m+1 + 1 (t ∈ N);

moreover, if k is a non-negative integer, we denote by qk,m and ǫk,m the quotient and
the remainder of the Euclidian division of k − 1 by m + 1, respectively. Finally, if G

is a group, G ′ denotes its commutator subgroup and, if S is a subgroup of G, we use

CG(S) for its centralizer in G.

The main result that we prove is the following.

Theorem 1 Let KG be a non-commutative strongly Lie solvable group algebra over

a field K of positive characteristic p. Let n be the positive integer such that 2n ≤ p <
2n+1 and s, q (q odd) the non-negative integers such that p − 1 = 2sq. The following

statements are equivalent:

(i) dlL(KG) = ⌈log2(p + 1)⌉;

(ii) p and G satisfy one of the following conditions:

(a) p = 2, G ′ has exponent 2 and an order dividing 4 and G ′ is central;

(b) p ≥ 3 and G ′ is central of order p;

(c) 5 ≤ p < 2n+2/3, G ′ is not central of order p and |G/CG(G ′)| = 2m with

m ≤ s a positive integer such that p ≤ 2ǫn−m,m · g(qn−m,m + 1, m).

Actually, F. Levin and G. Rosenberger characterized Lie metabelian modular group
algebras and showed that this condition is equivalent to saying that the group algebra
is strongly Lie metabelian [3]. Moreover, M. Sahai [7] classified group algebras over

fields of odd characteristic whose strong Lie derived length is at most 3. Thus they
already completed the special cases p = 2, 3, 5, 7. Here we shall give an independent
proof also for these values of p.

Shalev observed that if G is the dihedral group of order 2p (p > 2) and K a field of
characteristic p, then, by [10, Theorem C(2)], the value of dlL(KG) is ⌈log2(3p/2)⌉
and, if 2n < p < 2n+2/3 for some integer n ≥ 2, one has that dlL(KG) = ⌈log2(p+1)⌉
(the same result was obtained in the theorem of [1] replacing dlL(KG) by dlL(KG)).
Thus he showed that groups G satisfying dlL(KG) = ⌈log2(p + 1)⌉ are not necessarily
nilpotent with commutator subgroup of order p. Moreover, he stressed that “their

complete characterization may be a delicate task”. Our main theorem gives a contri-
bution in this direction. In fact, the groups G for which dlL(KG) = ⌈log2(p + 1)⌉
are not only of the type described by Shalev. In particular, in the case in which G is
not nilpotent, it is not necessary that the elements that do not centralize G ′ act by

inversion on G ′. Indeed, let

G := 〈x, y | x17
= y8

= 1 y−1xy = x2〉
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and let K be a field of characteristic 17. Then we have dlL(KG) = dlL(KG) = 5 and
|G/CG(G ′)| = 8.

The notation that we shall use is rather standard: if G is a group, ζ(G) denotes the
center of G and γi(G) the i-th term of its lower central series. If S, T,U are subsets
of G, the symbol (S, T) means the subgroup generated by all the elements s−1t−1st ,
where s belongs to S and t to T, and we set (S, T,U ) := ((S, T),U ). Moreover, if m is

a positive integer, Gm := 〈xm | x ∈ G〉 and Cm denotes the cyclic group of order m.
Finally, if K is a field and x :=

∑

g∈G xgg is an element of the group algebra KG, set

aug(x) :=
∑

g∈G xg .

2 Proof of Theorem 1

Let KG be the group algebra of a group G over a field K of positive characteristic p.
According to a well-known result (see [8, Lemma I.2.21]), the augmentation ideal
ω(G) is nilpotent if and only if G is a finite p-group. In particular, we consider a

sequence of (normal) subgroups of G by setting

∀n ∈ N Dn(G) := G ∩ (1 + ω(G)n).

The n-th term of this series is called the n-th dimension subgroup of G. For the basic
results about the series of the dimension subgroups we refer the reader to [4]. For our
purposes, we confine ourselves to recalling that it is possible to describe the Dm(G)’s

in the following manner:

(2.1) Dm(G) =

{

G if m = 1,

(Dm−1(G), G) · D⌈ m
p
⌉(G)p if m ≥ 2.

Put pdk := |Dk(G) : Dk+1(G)|, where k ≥ 1. Then Jennings’s theory [2] provides
a formula for the computation of the nilpotency index of the augmentation ideal,
namely

(2.2) t(G) = 1 + (p − 1)
∑

m≥1

mdm.

In particular, if G is a direct product of cyclic groups of order pn1 , . . . , pnk respectively,
the nilpotency index of the augmentation ideal is given by

(2.3) t(G) = 1 +

k
∑

i=1

(pni − 1).

Before proving the main result, we present a lemma giving a fairly good estimation
of the terms of the strong Lie derived series of the group algebra of a particular group.

Lemma 2 Let K be a field of characteristic p > 3 and let G be a group whose commu-

tator subgroup has order p. Suppose that |G/CG(G ′)| = 2m for some integer m. For all

non-negative integer n,

δ(n+1)(KG) = ω(G ′)
2ǫn−m,m ·g(qn−m,m+1,m)

· KG.
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Proof We proceed by induction on n. For n = 0, ǫn−m,m = 0 and qn−m,m = −1.
Then δ(1)(KG) = ω(G ′) · KG, and the statement holds. Assume now that n ≥ 0 and,

for all non-negative integers j, set a j := 2ǫn−m+ j,m · g(qn−m+ j,m + 1, m). By induction
hypothesis, we have

δ(n+2)(KG) = [δ(n+1)(KG), δ(n+1)(KG)]KG

= [ω(G ′)
a0 · KG, ω(G ′)

a0 · KG]KG.

Set C := CG(G ′). The action of G on G ′ by conjugation embeds G/C into the auto-

morphism group Aut(G ′) of G ′. In particular, Aut(G ′) ∼
= C p−1. Therefore, G/C is

cyclic (and m ≤ η if p = 2ηq + 1 for a suitable integer η and an odd integer q). Let
z be the generator of G ′ and αC the generator of G/C . To obtain the statement, it is
sufficient to prove that

(2.4) [(z − 1)a0 , (z − 1)a0α] ∈ ω(G ′)
a1 · KG \ ω(G ′)

a1+1
· KG,

under the assumption that a0 < t(G ′) = p.
Suppose first that ǫn−m+1,m = 0. Let r < p be the integer such that α−1zα = zr .

Clearly, it holds that

(2.5) ∀t < m 1 − r2t

6≡ 0 (mod p),

otherwise |G/C| < 2m, in contradiction with our assumption. It is easily checked
that

(2.6) ∀s ∈ N [(z − 1)s, α] = (z − 1)s(1 − (1 + z + · · · + zr−1)s)α.

According to (2.6),

[(z − 1)a0 , (z − 1)a0α] = (z − 1)2a0 (1 − (1 + z + · · · + zr−1)a0 )α.

Put

x := 1 − (1 + z + · · · + zr−1)2m−1·g(qn−m+1,m,m),

y := 1 + (1 + z + · · · + zr−1)2m−1·g(qn−m+1,m,m).

Since in this case ǫn−m,m = m and qn−m,m = qn−m+1,m − 1, one has at once that
1 − (1 + z + · · · + zr−1)a0

= xy. By standard computations we obtain that

(2.7) y = (1 − z)w,

where aug(w) = (r−1)(p + 1) · g(qn−m+1,m, m) ·2m−2. Since g(qn−m+1,m, m) < p, we
have that p does not divide aug(w). Thus w is a unit of KG. In particular, by (2.7), it

follows that p divides aug(y) = 1 + r2m−1·g(qn−m+1,m,m), hence p cannot divide aug(x),
which means that x is a unit of KG. Therefore

[(z − 1)a0 , (z − 1)a0α] ∈ ω(G ′)
2a0+1

· KG \ ω(G ′)
2a0+2

· KG.
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But

2a0 + 1 = 2ǫn−m,m+1 · g(qn−m,m + 1, m) + 1

= 2m+1 · g(qn−m,m + 1, m) + 1 = g(qn−m+1,m + 1, m) = a1,

and this proves (2.4).

Finally, suppose that ǫn−m+1,m 6= 0. First of all, we notice that a standard induction
argument allows expressing (2.6) in the following manner:

(2.8) ∀s ∈ N [(z − 1)s, α] =

∑

i, j≥0
i+ j=s−1

αz(zr − 1)i(zr−1 − 1)(z − 1) j .

Directly by (2.8) we obtain

[(z − 1)s, (z − 1)sα] =

s−1
∑

i=0

αz(1 + z + · · · + zr−1)s+i(1 + z + · · · + zr−2)(z − 1)2s.

Set v :=
∑s−1

i=0 (1 + z + · · · + zr−1)s+i . Clearly, aug(v) = rs ·
∑s−1

i=0 ri . For the first part

of the proof, p divides
∑β−1

i=0 ri , where β := 2m · g(qn−m,m + 1, m). By combining this
with (2.5) and the fact that 0 ≤ ǫn−m,m ≤ m − 1, we obtain that p does not divide
∑a0−1

i=0 ri . Then, in this case, v is a unit of KG, thus

[(z − 1)a0 , (z − 1)a0α] ∈ ω(G ′)
2a0 · KG \ ω(G ′)

2a0+1
· KG.

Since ǫn−m,m + 1 = ǫn−m+1,m and qn−m+1,m = qn−m,m, we obtain that

2a0 = 2ǫn−m,m+1 · g(qn−m,m + 1, m) = a1,

and this completes the proof.

Now we are in position to establish the main result.

Proof of Theorem 1 First we prove that (i) implies (ii). Assume that p is even. If

dlL(KG) = 2, since ⌈log2(t(G ′) + 1)⌉ ≤ dlL(KG) (see [1]), it follows at once that
t(G ′) ≤ 3. By virtue of (2.2), 0 ≤ d1 ≤ 2. In the case in which d1 = 0, by applying
(2.1), we obtain that D j(G ′) = G ′ for all positive integers j, which is clearly impos-
sible. Hence d1 > 0 and the upper bound for t(G ′) forces d j = 0 for every j ≥ 2.

As a consequence, G ′ is elementary abelian. By (2.3) it is easily checked that either
G ′ ∼

= C2 or G ′ ∼
= C2 ×C2.

When the first case occurs, G is nilpotent. Then we suppose G ′ ∼
= C2 × C2 and

verify that G ′ is central. Assume, if possible, that G is not nilpotent. If x and y are the
generators of G ′, then δ(2)(KG) = ω(G ′) ·ω(γ3(G)) ·KG+ω(γ3(G)) ·ω(G ′) ·KG 6= 0,
since (x − 1)(y − 1) ∈ δ(2)(KG), and this is a contradiction. The same argument
proves that G cannot be nilpotent of class 3 and the statement (a) holds.
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Let p be odd and assume, if possible, that |G ′| = pn for some n > 1. By [1]
and [9, Proposition 3.2] we obtain:

dlL(KG) ≥ ⌈log2(t(G ′) + 1)⌉ > ⌈log2(p + 1)⌉.

Thus, assume that |G ′| = p. By [10, Lemma 4.1], G has a section H/N , where N E

H ≤ G, such that either H/N is nilpotent of class two with commutator subgroup of
order p or H/N = E ⋊ 〈α〉, where E is an elementary abelian p-group and α is an

automorphism of E of prime order d 6= p. We claim that when the first case occurs,
G is nilpotent. Now for a question of order: H ′

= G ′ and γ3(H) = 〈1〉, otherwise
H ′

= γ3(H) ≤ N and thus H/N is abelian, in contradiction with our assumption.
Since (H ′, H) = (H, G, H) = (G, H, H) = 〈1〉 , by the three-subgroups lemma we

have (H, H, G) = γ3(G) = 〈1〉 and the claim follows.

Hence, if we assume that G is not nilpotent, there exists a section of the second

type. By [10, Theorem C] one has at once that d = 2 and dL(KG) ≥ ⌈log2(3p/2)⌉.
Since the equality ⌈log2(3p/2)⌉ = ⌈log2(p + 1)⌉ is true if and only if p < 2n+2/3, it
remains only to study the action by conjugation of G over G ′ when the last inequality
holds.

Set C := CG(G ′). As a first step we verify that G/C has order a power of 2. Let G

be a counterexample. Then G/C contains an element αC of prime order r 6= 2. Let
L := 〈α, G ′〉. Clearly, L ′

= G ′; in particular, L is also a counterexample. Thus we

may replace G by L and assume that G = G ′〈α〉. Since αr centralizes both G ′ and
α, we must have αr ∈ ζ(G). Moreover 〈αr〉 ∩ G ′

= 〈1〉, otherwise G ′ ≤ 〈αr〉 and
thus αC = C . But now G/〈αr〉 is also a counterexample. We may therefore replace

G by G/〈αr〉 and assume that G is the semidirect product of G ′ and α, where α has
order r. In this situation [10, Theorem C(1)] implies that dlL(KG) > ⌈log2(p + 1)⌉,
contradicting our assumptions.

Obviously, if |G/C| = 2m, then m ≤ s. Now we recall that 2n < p < 2n+1 and by
invoking Lemma 2, we obtain that

δ(⌈log2(p+1)⌉)(KG) = δ(n+1)(KG) = ω(G ′)
2ǫn−m,m ·g(qn−m,m+1,m)

· KG,

and, since t(G ′) = p, it vanishes if and only if p ≤ 2ǫn−m,m · g(qn−m,m + 1, m), and the
proof of the first implication is complete.

Conversely, we suppose that one of the conditions (a)–(c) holds and show that,
under these assumptions, dlL(KG) = ⌈log2(p + 1)⌉. Now when G is nilpotent, the
above equality is a direct consequence of (2.3) and [1, (2)], otherwise the result fol-

lows at once from Lemma 2.
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