Group Algebras with Minimal Strong Lie Derived Length

Ernesto Spinelli

Abstract. Let KG be a non-commutative strongly Lie solvable group algebra of a group G over a field K of positive characteristic p. In this note we state necessary and sufficient conditions so that the strong Lie derived length of KG assumes its minimal value, namely $\lceil \log_2(p+1) \rceil$.

1 Introduction

Let KG be the group algebra of a group G over a field K. As usual, we regard it as a Lie algebra under the Lie multiplication [a,b]:=ab-ba for all $a,b\in KG$. We put $\delta^{(0)}(KG):=\delta^{[0]}(KG):=KG$ and define by induction $\delta^{[n+1]}(KG):=[\delta^{[n]}(KG),\delta^{[n]}(KG)]$, where this symbol denotes the additive subgroup generated by all the Lie commutators [a,b] with $a,b\in \delta^{[n]}(KG)$, and $\delta^{(n+1)}(KG)$ as the associative ideal generated by $[\delta^{(n)}(KG),\delta^{(n)}(KG)]$.

We say that KG is strongly Lie solvable if there exists an integer n such that $\delta^{(n)}(KG) = 0$; in this case, the minimal integer m such that $\delta^{(m)}(KG) = 0$ is called the strong Lie derived length of KG and denoted by $dl^L(KG)$. In a similar manner we define the Lie derived length of KG, denoted by $dl_L(KG)$. Clearly $\delta^{[n]}(KG) \subseteq \delta^{(n)}(KG)$ for all non-negative integers n. Thus a strongly Lie solvable group algebra KG is Lie solvable and $dl_L(KG) \le dl^L(KG)$. But, as stressed in [1], the equality does not always hold. In fact, let G be a 2-group of maximal class of order 2^n with $n \ge 5$ and let K be a field of characteristic 2. Then G contains an abelian subgroup of index 2 and, by [6, Theorem 1], $dl_L(KG) \le 3$, whereas $dl^L(KG) = n - 1$.

Let G be a non-abelian group. It is well known (see [8, Theorem V.5.1]) that KG is strongly Lie solvable if and only if K has positive characteristic p and the commutator subgroup of G is a finite p-group. I. B. S. Passi, D. S. Passman, and S. K. Sehgal stated necessary and sufficient conditions so that the group algebra KG is Lie solvable [5]. According to these results, the Lie solvability of KG occurs if and only if KG is strongly Lie solvable, under the assumption that p is odd. Instead, this is not true when p = 2; for instance, the group algebra \mathbb{F}_2S_3 , where \mathbb{F}_2 is the field of two elements and S_3 the symmetric group on three letters, is Lie solvable of length 3, but not strongly Lie solvable.

Very little is known about the Lie derived length of non-commutative group algebras. The most remarkable works in this area are the papers by A. Shalev [10,11], which gave life to a range of new questions. In particular, if K is a field of positive characteristic p, then $\lceil \log_2(p+1) \rceil \leq dl_L(KG)$, where the left-hand side of

Received by the editors December 14, 2005; revised May 16, 2006. AMS subject classification: Primary: 16S34; secondary: 17B30. Keywords: group algebras, strong Lie derived length. ©Canadian Mathematical Society 2008.

292 E. Spinelli

the inequality denotes the upper integral part of $\log_2(p+1)$ (see [10, Theorem A]). Moreover, this bound is actually the correct one [10]. Indeed, if G is a nilpotent group whose commutator subgroup has order p, $dl_L(KG) = \lceil \log_2(p+1) \rceil$. By virtue of [1, (2)], this is also the value of $dl^L(KG)$. Hence the lower bound by Shalev is the best possible also for the strong Lie derived length of a group algebra. The aim of this note is to establish necessary and sufficient conditions so that this bound is achieved.

If *m* is a positive integer, define recursively

$$g(0,m) := 1, \quad g(t,m) := g(t-1,m) \cdot 2^{m+1} + 1 \ (t \in \mathbb{N});$$

moreover, if k is a non-negative integer, we denote by $q_{k,m}$ and $\epsilon_{k,m}$ the quotient and the remainder of the Euclidian division of k-1 by m+1, respectively. Finally, if G is a group, G' denotes its commutator subgroup and, if S is a subgroup of G, we use $C_G(S)$ for its centralizer in G.

The main result that we prove is the following.

Theorem 1 Let KG be a non-commutative strongly Lie solvable group algebra over a field K of positive characteristic p. Let n be the positive integer such that $2^n \le p < 2^{n+1}$ and s, q (q odd) the non-negative integers such that $p-1=2^sq$. The following statements are equivalent:

- (i) $dl^L(KG) = \lceil \log_2(p+1) \rceil$;
- (ii) p and G satisfy one of the following conditions:
 - (a) p = 2, G' has exponent 2 and an order dividing 4 and G' is central;
 - (b) $p \ge 3$ and G' is central of order p;
 - (c) $5 \le p < 2^{n+2}/3$, G' is not central of order p and $|G/C_G(G')| = 2^m$ with $m \le s$ a positive integer such that $p \le 2^{\epsilon_{n-m,m}} \cdot g(q_{n-m,m} + 1, m)$.

Actually, F. Levin and G. Rosenberger characterized Lie metabelian modular group algebras and showed that this condition is equivalent to saying that the group algebra is strongly Lie metabelian [3]. Moreover, M. Sahai [7] classified group algebras over fields of odd characteristic whose strong Lie derived length is at most 3. Thus they already completed the special cases p = 2, 3, 5, 7. Here we shall give an independent proof also for these values of p.

Shalev observed that if G is the dihedral group of order 2p (p > 2) and K a field of characteristic p, then, by [10, Theorem C(2)], the value of $dl_L(KG)$ is $\lceil \log_2(3p/2) \rceil$ and, if $2^n for some integer <math>n \ge 2$, one has that $dl_L(KG) = \lceil \log_2(p+1) \rceil$ (the same result was obtained in the theorem of [1] replacing $dl_L(KG)$ by $dl^L(KG)$). Thus he showed that groups G satisfying $dl_L(KG) = \lceil \log_2(p+1) \rceil$ are not necessarily nilpotent with commutator subgroup of order p. Moreover, he stressed that "their complete characterization may be a delicate task". Our main theorem gives a contribution in this direction. In fact, the groups G for which $dl_L(KG) = \lceil \log_2(p+1) \rceil$ are not only of the type described by Shalev. In particular, in the case in which G is not nilpotent, it is not necessary that the elements that do not centralize G' act by inversion on G'. Indeed, let

$$G := \langle x, y \mid x^{17} = y^8 = 1 \ y^{-1}xy = x^2 \rangle$$

and let *K* be a field of characteristic 17. Then we have $dl_L(KG) = dl^L(KG) = 5$ and $|G/C_G(G')| = 8$.

The notation that we shall use is rather standard: if G is a group, $\zeta(G)$ denotes the center of G and $\gamma_i(G)$ the i-th term of its lower central series. If S, T, U are subsets of G, the symbol (S, T) means the subgroup generated by all the elements $s^{-1}t^{-1}st$, where s belongs to S and t to T, and we set (S, T, U) := ((S, T), U). Moreover, if m is a positive integer, $G^m := \langle x^m \mid x \in G \rangle$ and C_m denotes the cyclic group of order m. Finally, if K is a field and $x := \sum_{g \in G} x_g g$ is an element of the group algebra KG, set $aug(x) := \sum_{g \in G} x_g$.

2 Proof of Theorem 1

Let KG be the group algebra of a group G over a field K of positive characteristic p. According to a well-known result (see [8, Lemma I.2.21]), the augmentation ideal $\omega(G)$ is nilpotent if and only if G is a finite p-group. In particular, we consider a sequence of (normal) subgroups of G by setting

$$\forall n \in \mathbb{N} \quad \mathfrak{D}_n(G) := G \cap (1 + \omega(G)^n).$$

The *n*-th term of this series is called the *n*-th *dimension subgroup* of *G*. For the basic results about the series of the dimension subgroups we refer the reader to [4]. For our purposes, we confine ourselves to recalling that it is possible to describe the $\mathfrak{D}_m(G)$'s in the following manner:

(2.1)
$$\mathfrak{D}_m(G) = \begin{cases} G & \text{if } m = 1, \\ (\mathfrak{D}_{m-1}(G), G) \cdot \mathfrak{D}_{\lceil \frac{m}{p} \rceil}(G)^p & \text{if } m \ge 2. \end{cases}$$

Put $p^{d_k} := |\mathfrak{D}_k(G) : \mathfrak{D}_{k+1}(G)|$, where $k \ge 1$. Then Jennings's theory [2] provides a formula for the computation of the nilpotency index of the augmentation ideal, namely

(2.2)
$$t(G) = 1 + (p-1) \sum_{m \ge 1} m d_m.$$

In particular, if *G* is a direct product of cyclic groups of order p^{n_1}, \ldots, p^{n_k} respectively, the nilpotency index of the augmentation ideal is given by

(2.3)
$$t(G) = 1 + \sum_{i=1}^{k} (p^{n_i} - 1).$$

Before proving the main result, we present a lemma giving a fairly good estimation of the terms of the strong Lie derived series of the group algebra of a particular group.

Lemma 2 Let K be a field of characteristic p > 3 and let G be a group whose commutator subgroup has order p. Suppose that $|G/C_G(G')| = 2^m$ for some integer m. For all non-negative integer n,

$$\delta^{(n+1)}(KG) = \omega(G')^{2^{\epsilon_{n-m,m}} \cdot g(q_{n-m,m}+1,m)} \cdot KG.$$

294 E. Spinelli

Proof We proceed by induction on n. For n=0, $\epsilon_{n-m,m}=0$ and $q_{n-m,m}=-1$. Then $\delta^{(1)}(KG)=\omega(G')\cdot KG$, and the statement holds. Assume now that $n\geq 0$ and, for all non-negative integers j, set $a_j:=2^{\epsilon_{n-m+j,m}}\cdot g(q_{n-m+j,m}+1,m)$. By induction hypothesis, we have

$$\delta^{(n+2)}(KG) = [\delta^{(n+1)}(KG), \delta^{(n+1)}(KG)]KG$$

= $[\omega(G')^{a_0} \cdot KG, \omega(G')^{a_0} \cdot KG]KG.$

Set $C := C_G(G')$. The action of G on G' by conjugation embeds G/C into the automorphism group $\operatorname{Aut}(G')$ of G'. In particular, $\operatorname{Aut}(G') \cong C_{p-1}$. Therefore, G/C is cyclic (and $m \le \eta$ if $p = 2^{\eta}q + 1$ for a suitable integer η and an odd integer q). Let z be the generator of G' and αC the generator of G/C. To obtain the statement, it is sufficient to prove that

$$(2.4) [(z-1)^{a_0}, (z-1)^{a_0}\alpha] \in \omega(G')^{a_1} \cdot KG \setminus \omega(G')^{a_1+1} \cdot KG,$$

under the assumption that $a_0 < t(G') = p$.

Suppose first that $\epsilon_{n-m+1,m} = 0$. Let r < p be the integer such that $\alpha^{-1}z\alpha = z^r$. Clearly, it holds that

$$(2.5) \forall t < m \quad 1 - r^{2^t} \not\equiv 0 \pmod{p},$$

otherwise $|G/C| < 2^m$, in contradiction with our assumption. It is easily checked that

$$(2.6) \forall s \in \mathbb{N} [(z-1)^s, \alpha] = (z-1)^s (1 - (1+z+\cdots+z^{r-1})^s)\alpha.$$

According to (2.6),

$$[(z-1)^{a_0},(z-1)^{a_0}\alpha]=(z-1)^{2a_0}(1-(1+z+\cdots+z^{r-1})^{a_0})\alpha.$$

Put

$$x := 1 - (1 + z + \dots + z^{r-1})^{2^{m-1} \cdot g(q_{n-m+1,m},m)}$$
$$y := 1 + (1 + z + \dots + z^{r-1})^{2^{m-1} \cdot g(q_{n-m+1,m},m)}.$$

Since in this case $\epsilon_{n-m,m}=m$ and $q_{n-m,m}=q_{n-m+1,m}-1$, one has at once that $1-(1+z+\cdots+z^{r-1})^{a_0}=xy$. By standard computations we obtain that

$$(2.7) y = (1-z)w,$$

where $\operatorname{aug}(w) = (r-1)(p+1) \cdot g(q_{n-m+1,m}, m) \cdot 2^{m-2}$. Since $g(q_{n-m+1,m}, m) < p$, we have that p does not divide $\operatorname{aug}(w)$. Thus w is a unit of KG. In particular, by (2.7), it follows that p divides $\operatorname{aug}(y) = 1 + r^{2^{m-1} \cdot g(q_{n-m+1,m},m)}$, hence p cannot divide $\operatorname{aug}(x)$, which means that x is a unit of KG. Therefore

$$[(z-1)^{a_0},(z-1)^{a_0}\alpha] \in \omega(G')^{2a_0+1} \cdot KG \setminus \omega(G')^{2a_0+2} \cdot KG.$$

But

$$2a_0 + 1 = 2^{\epsilon_{n-m,m}+1} \cdot g(q_{n-m,m}+1,m) + 1$$

= $2^{m+1} \cdot g(q_{n-m,m}+1,m) + 1 = g(q_{n-m+1,m}+1,m) = a_1,$

and this proves (2.4).

Finally, suppose that $\epsilon_{n-m+1,m} \neq 0$. First of all, we notice that a standard induction argument allows expressing (2.6) in the following manner:

(2.8)
$$\forall s \in \mathbb{N} \quad [(z-1)^s, \alpha] = \sum_{\substack{i,j \ge 0 \\ i+j=s-1}} \alpha z (z^r - 1)^i (z^{r-1} - 1) (z-1)^j.$$

Directly by (2.8) we obtain

$$[(z-1)^{s},(z-1)^{s}\alpha] = \sum_{i=0}^{s-1} \alpha z(1+z+\cdots+z^{r-1})^{s+i}(1+z+\cdots+z^{r-2})(z-1)^{2s}.$$

Set $v := \sum_{i=0}^{s-1} (1+z+\cdots+z^{r-1})^{s+i}$. Clearly, $\operatorname{aug}(v) = r^s \cdot \sum_{i=0}^{s-1} r^i$. For the first part of the proof, p divides $\sum_{i=0}^{\beta-1} r^i$, where $\beta := 2^m \cdot g(q_{n-m,m}+1,m)$. By combining this with (2.5) and the fact that $0 \le \epsilon_{n-m,m} \le m-1$, we obtain that p does not divide $\sum_{i=0}^{a_0-1} r^i$. Then, in this case, v is a unit of KG, thus

$$[(z-1)^{a_0}, (z-1)^{a_0}\alpha] \in \omega(G')^{2a_0} \cdot KG \setminus \omega(G')^{2a_0+1} \cdot KG.$$

Since $\epsilon_{n-m,m} + 1 = \epsilon_{n-m+1,m}$ and $q_{n-m+1,m} = q_{n-m,m}$, we obtain that

$$2a_0 = 2^{\epsilon_{n-m,m}+1} \cdot g(q_{n-m,m}+1,m) = a_1,$$

and this completes the proof.

Now we are in position to establish the main result.

Proof of Theorem 1 First we prove that (i) implies (ii). Assume that p is even. If $dl^L(KG) = 2$, since $\lceil \log_2(t(G') + 1) \rceil \le dl^L(KG)$ (see [1]), it follows at once that $t(G') \le 3$. By virtue of (2.2), $0 \le d_1 \le 2$. In the case in which $d_1 = 0$, by applying (2.1), we obtain that $\mathfrak{D}_j(G') = G'$ for all positive integers j, which is clearly impossible. Hence $d_1 > 0$ and the upper bound for t(G') forces $d_j = 0$ for every $j \ge 2$. As a consequence, G' is elementary abelian. By (2.3) it is easily checked that either $G' \cong C_2$ or $G' \cong C_2 \times C_2$.

When the first case occurs, G is nilpotent. Then we suppose $G'\cong C_2\times C_2$ and verify that G' is central. Assume, if possible, that G is not nilpotent. If x and y are the generators of G', then $\delta^{(2)}(KG)=\omega(G')\cdot\omega(\gamma_3(G))\cdot KG+\omega(\gamma_3(G))\cdot\omega(G')\cdot KG\neq 0$, since $(x-1)(y-1)\in\delta^{(2)}(KG)$, and this is a contradiction. The same argument proves that G cannot be nilpotent of class 3 and the statement (a) holds.

296 E. Spinelli

Let p be odd and assume, if possible, that $|G'| = p^n$ for some n > 1. By [1] and [9, Proposition 3.2] we obtain:

$$dl^{L}(KG) \ge \lceil \log_{2}(t(G') + 1) \rceil > \lceil \log_{2}(p+1) \rceil.$$

Thus, assume that |G'|=p. By [10, Lemma 4.1], G has a section H/N, where N leq H leq G, such that either H/N is nilpotent of class two with commutator subgroup of order p or $H/N = E \rtimes \langle \alpha \rangle$, where E is an elementary abelian p-group and α is an automorphism of E of prime order $d \neq p$. We claim that when the first case occurs, G is nilpotent. Now for a question of order: H' = G' and $\gamma_3(H) = \langle 1 \rangle$, otherwise $H' = \gamma_3(H) \leq N$ and thus H/N is abelian, in contradiction with our assumption. Since $(H', H) = (H, G, H) = (G, H, H) = \langle 1 \rangle$, by the three-subgroups lemma we have $(H, H, G) = \gamma_3(G) = \langle 1 \rangle$ and the claim follows.

Hence, if we assume that G is not nilpotent, there exists a section of the second type. By [10, Theorem C] one has at once that d = 2 and $d^L(KG) \ge \lceil \log_2(3p/2) \rceil$. Since the equality $\lceil \log_2(3p/2) \rceil = \lceil \log_2(p+1) \rceil$ is true if and only if $p < 2^{n+2}/3$, it remains only to study the action by conjugation of G over G' when the last inequality holds.

Set $C:=C_G(G')$. As a first step we verify that G/C has order a power of 2. Let G be a counterexample. Then G/C contains an element αC of prime order $r \neq 2$. Let $L:=\langle \alpha,G' \rangle$. Clearly, L'=G'; in particular, L is also a counterexample. Thus we may replace G by L and assume that $G=G'\langle \alpha \rangle$. Since α^r centralizes both G' and α , we must have $\alpha^r \in \zeta(G)$. Moreover $\langle \alpha^r \rangle \cap G' = \langle 1 \rangle$, otherwise $G' \leq \langle \alpha^r \rangle$ and thus $\alpha C=C$. But now $G/\langle \alpha^r \rangle$ is also a counterexample. We may therefore replace G by $G/\langle \alpha^r \rangle$ and assume that G is the semidirect product of G' and α , where α has order r. In this situation [10, Theorem C(1)] implies that $dl^L(KG) > \lceil \log_2(p+1) \rceil$, contradicting our assumptions.

Obviously, if $|G/C| = 2^m$, then $m \le s$. Now we recall that $2^n and by invoking Lemma 2, we obtain that$

$$\delta^{(\lceil \log_2(p+1) \rceil)}(KG) = \delta^{(n+1)}(KG) = \omega(G')^{2^{\epsilon_{n-m,m}} \cdot g(q_{n-m,m}+1,m)} \cdot KG,$$

and, since t(G') = p, it vanishes if and only if $p \le 2^{\epsilon_{n-m,m}} \cdot g(q_{n-m,m} + 1, m)$, and the proof of the first implication is complete.

Conversely, we suppose that one of the conditions (a)–(c) holds and show that, under these assumptions, $dl^L(KG) = \lceil \log_2(p+1) \rceil$. Now when G is nilpotent, the above equality is a direct consequence of (2.3) and [1, (2)], otherwise the result follows at once from Lemma 2.

References

- [1] F. Catino and E. Spinelli, *A note on strong Lie derived length of group algebras*. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. **10**(2007), no. 1, 83–86.
- [2] S. A. Jennings, *The structure of the group ring of a p-group over a modular field.* Trans. Amer. Math. Soc. **50**(1941), 175–185.
- [3] F. Levin and G. Rosenberger, *Lie metabelian group rings*. In: Group and Semigroup Rings. North-Holland Math. Stud. 126, North-Holland, Amsterdam, 1986, pp. 153–161.

- [4] I. B. S. Passi, *Group rings and their augmentation ideals*. Lectures Notes in Mathematics 715, Springer-Verlag, Berlin, 1979.
- [5] I. B. S. Passi, D. S. Passman, and S. K. Sehgal, Lie solvable group rings, Canad. J. Math. 25(1973), 748–757.
- [6] R. Rossmanith, Lie centre-by-metabelian group algebras in even characteristic. I. Israel J. Math. 115(2000), 51–75
- [7] M. Sahai, Lie solvable group algebras of derived length three. Publ. Mat. **39**(1995), no. 2, 233–240.
- [8] S. K. Sehgal, *Topics in group rings*. Monographs and Textbooks in Pure and Applied Math. 50. Marcel Dekker, New York, 1978.
- [9] A. Shalev, Dimension subgroups, nilpotency indices, and the number of generators of ideals in p-group algebras. J. Algebra 129(1990), 412–438.
- [10] $\frac{}{291-300}$, The derived length of Lie soluble group rings. I. J. Pure Appl. Algebra **78**(1992), no. 3,
- [11] _____The derived length of Lie soluble group rings. II. J. London Math. Soc. 49(1994), no. 1, 93–99.

Dipartimento di Matematica "E. De Giorgi", Università degli Studi di Lecce, 73100-Lecce, Italy e-mail: ernesto.spinelli@unile.it