A NOTE ON THE CONSTRUCTION OF PROJECTIVE PLANES FROM GROUPS

P. B. KIRKPATRICK

1. Introduction. André (1) gave a construction for translation planes from abelian groups possessing "congruences" of subgroups. Schwerdtfeger (3) constructed the plane over a field F from the group \mathscr{G}_F of substitutions $x \to ax + b$ ($a, b \in F; a \neq 0$). In this note we describe a construction (inspired by Schwerdtfeger's work), from groups, of planes which are duals of near-field planes.

If a plane is (l, m)-transitive (cf. 2, p. 67) for some pair of distinct lines l, m, then the central collineations ϕ with axis m and centre on l may be identified with the "proper" points (that is, points not on l or m) of the plane once an origin O is chosen (not on l or m):

$$\phi \leftrightarrow O^{\phi}$$
.

Thus, the "proper" part of the plane may be considered as a group, isomorphic to the group of substitutions $x \to ax + b$ ($a \neq 0$) over the system K^0 obtained by reversing multiplication in the near-field K attached to the dual plane.

Every (l, m)-transitive plane $(l \neq m)$, except the trivial plane of order 2, may be obtained by the construction to be described in § 2; (l, l)-transitive planes are, of course, translation planes.

2. A construction for (l, m)-transitive planes. Schwerdtfeger (3) constructed the plane over a field F as follows: he took as points the elements of \mathscr{G}_F and as lines cosets of centralizers $\mathscr{C}(X)$ of elements X of \mathscr{G}_F . A projective plane with two lines removed is obtained. The plane is completed by taking as new points classes of "left-parallel" lines [left cosets of a line $\mathscr{C}(X)$] and classes of "right-parallel" lines [right cosets].

Provided $F \not\cong GF(2)$, \mathscr{G}_F satisfies the following condition on a group \mathscr{G} :

(*) $\mathcal G$ contains two non-trivial subgroups $\mathcal H$ and $\mathcal H$ such that

- (i) $\mathscr{H} \triangleleft \mathscr{G}$,
- (ii) $\mathscr{H} \cap \mathscr{H} = 1$,
- (iii) $\mathscr{H} \cup (\bigcup_{H \in \mathscr{H}} H^{-1} \mathscr{H} H) = \mathscr{G},$
- (iv) for all $A \notin \mathscr{H}, B \notin \mathscr{H}, (A\mathscr{H}B) \cap \mathscr{H}$ contains exactly one element.

Received March 13, 1968.

1083

To see this, take \mathscr{H} to be the normal subgroup of substitutions $x \to x + b$, and \mathscr{H} the centralizer in \mathscr{G}_F of some element $A \notin \mathscr{H}$.

Since the centralizer of any element of $\mathscr{G}_{\mathbf{F}}$ outside \mathscr{H} is conjugate to \mathscr{H} , the lines of the incomplete plane are the sets $A\mathscr{H}B$ $(A, B \in \mathscr{G}_{\mathbf{F}})$ and the cosets of \mathscr{H} . \mathscr{H} is the centralizer of any $H \in \mathscr{H}$, $H \neq 1$. The lines $A\mathscr{H}B$ and $C\mathscr{H}D$ are left-parallel if $A\mathscr{H} = C\mathscr{H}$, right-parallel if $\mathscr{H}B = \mathscr{H}D$. The cosets of \mathscr{H} are both left-parallel and right-parallel to each other.

Note that $\mathscr{H}\mathscr{H} = \mathscr{G}$ is an immediate consequence of (i) and (iii).

Now let \mathscr{G} be any group satisfying (*). It is easily verified that a projective plane with two lines removed is obtained if we take as points the elements of \mathscr{G} and as lines the sets $A\mathscr{H}B$ $(A, B \in \mathscr{H})$ and the cosets of \mathscr{H} . The line joining points P and Q $(P \neq Q)$ is found as follows: if $QP^{-1} \in \mathscr{H}$, the line is $P\mathscr{H}$; otherwise (by (iii)) $QP^{-1} \in H^{-1}\mathscr{H}H$ for some $H \in \mathscr{H}$, and the required line is $(H^{-1}\mathscr{H}H)P$.

We adjoin a line l_0 whose points are the left-parallel classes, and a line l_{∞} whose points are the right-parallel classes.

The resulting projective plane II is (l_0, l_{∞}) -transitive. For, let X be a fixed element of \mathscr{G} . Then the permutation $G \to XG$ on \mathscr{G} induces a collineation of II which is central, having l_{∞} as axis and $l_0 \cap (H^{-1}\mathscr{H}H)$ $[X \notin \mathscr{H}]$ or $l_0 \cap \mathscr{H}$ $[X \in \mathscr{H}]$ as centre, where $H^{-1}\mathscr{H}H$ is, when $X \notin \mathscr{H}$, the line joining 1 and X.

It follows that the plane dual to Π is (L, M)-transitive for some pair of distinct points L, M; that is, can be coordinatized by an associative V-W system (near-field) K (cf. **2**, p. 103), if we write the equation of a line with slope m as y = mx + b. Π can therefore be coordinatized with the system K^0 obtained by defining a new multiplication * thus: a * b = ba. Instead of the right distributive law (x + y)z = xz + yz of K we have in K^0 the left distributive law.

Taking $OY = l_0$, $XY = l_{\infty}$, any collineation with axis l_{∞} and centre on l_0 is induced by a map

$$(x, y) \rightarrow (\sigma x, \sigma y + \rho)$$

for some $\sigma, \rho \in K^0$, with $\sigma \neq 0$. Therefore, \mathscr{G} is isomorphic to the group of substitutions $y \to \sigma y + \rho$ ($\sigma \neq 0$) over K^0 .

Now let Π' be any plane, except the plane of order 2, which is (l, m)-transitive for some pair of distinct lines l, m. Let \mathscr{G}' be the group of collineations with axis m and centre on l, \mathscr{H}' the subgroup consisting of the $(l \cap m, m)$ collineations, \mathscr{H}' the subgroup consisting of the (L, m)-collineations, where Lis any point not equal to $l \cap m$ on l. Then \mathscr{G}' satisfies condition (*). For the plane of order 2, \mathscr{H}' and \mathscr{H}' are trivial subgroups of \mathscr{G}' ($\mathscr{H}' = 1, \mathscr{H}' = \mathscr{G}'$), and hence condition (*) is not satisfied. Thus our construction yields all (l, m)-transitive planes $(l \neq m)$ except the trivial plane of order 2; and we have incidentally identified the groups satisfying condition (*).

PROJECTIVE PLANES

References

- 1. J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156-186.
- 2. G. Pickert, Projektive Ebenen (Springer, Berlin, 1955).
- 3. H. Schwerdtfeger, Projective geometry in the one-dimensional affine group, Can. J. Math. 16 (1964), 683-700.

University of Sydney, Sydney, Australia