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ABSTRACT. The phenomena of solar activity are connected with a general magnetic field of-the Sun which 
is due to a dynamo process essentially determined by the a-effect and the differential rotation in the convection 
zone. A few observational facts are summarized which are important for modelling this process. The basic ideas 
of the solar dynamo theory, with emphasis on the mean-field approach, are explained, and a critical review of the 
dynamo models investigated so far is given. Although several models reflect a number of essential features of 
the solar magnetic cycle there are many open questions. Part of them result from lack of knowledge of the 
structure of the convective motions and the differential rotation. Other questions concern, for example, details of 
the connection of the a-effect and related effects with the convective motions, or the way in which the behaviour 
of the dynamo is influenced by the back-reaction of the magnetic field on the motions. 

1. Introduction 

It is widely believed that the phenomena of solar activity are closely coupled with a general magnetic 
field of the Sun, and that the 11 years activity cycle is connected with a magnetic cycle. Let us first give 
a crude idea of the general magnetic field of the Sun. Its dominant constituent is a toroidal, that is, belt-
shaped field confined to the convection zone. It is in the main symmetric about the rotation axis and 
possesses opposite orientations in the two hemispheres or, in other words, shows antisymmetry about 
the equatorial plane. In addition to the toroidal field there is a much weaker poloidal field, which 
penetrates not only the convection zone but continues in the atmosphere. To have a very simple picture it 
may be assumed to be again symmetric about the rotation axis and to show antisymmetry about the 
equatorail plane as, for example, dipole or octupole fields do; this assumption ignores, of course, any 
sectorial structure of the general magnetic field. The magnetic cycle occurs as an interplay of the toroidal 
and the poloidal field, which change their magnitudes and their orientations with a period of 2 x 11 
years, that is, 22 years. 

The general magnetic field of the Sun is usually attributed to dynamo processes, that is, to the 
interaction of fluid motions and magnetic fields in the convection zone. This idea was already proposed 
by Larmor (1919). Its elaboration, however, proved to very complicated. A part of the difficulties, as is 
attested by Cowling's theorem (1934), is due to the fact that a dynamo cannot work with completely 
axisymmetric magnetic fields. 
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It is easy to understand that, as a consequence of the differential rotation of the convection zone, a 
toroidal magnetic field is generated from a given poloidal field. The crucial question is the regeneration 
of the poloidal from the toroidal field. Parker (1955) elaborated the idea that the regeneration is achieved 
by the cyclonic motions in the convection zone. Within the framework of mean-field electrodynamics 
established by Steenbeck, Krause and Radler (1966) the influence of small-scale motions on large-scale 
magnetic fields has been systematically investigated. Within this scope the effect of cyclonic motions 
occurs as a contribution to the a-effect, that is, to a large-scale electromotive force caused by small-scale 
helical motions, which possesses components parallel or antiparallel to the large scale magnetic field. 
The a-effect is not only able to generate a poloidal from a toroidal field but also a toroidal from a 
poloidal field. 

The a-effect and the differential rotation are considered as the basic elements of the solar dynamo. 
The resulting scheme of couplings between the toroidal and poloidal magnetic fields includes the 
possibilities of the aco and the a2-dynamos, which correspond to the cases where the a-effect or the 
differential rotation is negligible in the generation of the toroidal field, respectively. There are good 
reasons to assume that the solar dynamo is of aco-type rather than a2-type. 

In the following we first summarize a few characteristics of the solar convection zone and some 
observational results on solar magnetic fields. We then turn to kinematic solar dynamo models, in which 
the back-reaction of the magnetic field on the fluid motion is ignored.explain the basic ideas of mean-
field electrodynamics and discuss some general aspects of solar mean-field dynamo models as well as 
some problems that occur in this context. Finally we consider dynamo models which include the back-
reaction of the magnetic field, discuss the extension of the mean-field concept to such models and 
mention a few attempts to gain understanding of the complex nonlinear behaviour of dynamos. 

Being aware that our paper covers only a few aspects of the solar dynamo problem we want to point 
out other review articles, e.g., by Parker (1979), Stix (1981), Belvedere (1983), Ruzmaikin (1985) or 
Gilman(1986). 

2. Convection zone characteristics 

2.1. GENERAL 

Unfortunately only the upper boundary of the solar convection zone is more less accessible to direct 
observations. Most of our knowledge on the deeper layers originates from stellar structure calculations, 
mainly based on mixing length theory. According to such calculations it seems reasonable to assume 
that the convection zone extends over the outer 30% of the solar radius. 

For the solar dynamo process the convective motions and the differential rotation of the convection 
zone are of particular interest. We summarize here a few relevant findings. Recent reviews of these 
subjects are, e.g., by Gilman (1986) and Stix (1989). 

2.2. THE CONVECTIVE MOTIONS 

There are two clearly defined patterns of convective motion visible at the solar surface. They 
correspond to granulation and supergranulation. For the granulation the typical length scales are about 1 
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to 2.10^ km, the time scales about 5 min, and the velocities about 1 km/s. For the supergranulation the 
corresponding values are 3.104 km, 20 h, and 0.3 to 0.5 km/s. 

Moreover, there is some evidence of another pattern, called mesogranulation, with a typical length 
scale between those of granulation and supergranulation, namely about 5 to 10.103 km, a time scale of 
about 2 h, and rather low velocities of about 60 m/s. 

We note that there have been many attempts to identify much larger structures like "giant cells" but 
their existence is still questionable. Recently an interpretation of observational results by "toroidal 
convection rolls" was proposed (Ribes et al. 1985, Ribes and Laclare 1988). 

The convective motions in deeper layers are a matter of theoretical investigation only, and there are 
still considerable uncertainties. 

2.3. THE DIFFERENTIAL ROTATION 

As can be seen from the motion of several tracers, sunspots for example, the equatorial regions of the 
solar surface rotate faster than the polar regions. The angular velocity £2 of the surface, as inferred from 
Doppler shift measurements, can be represented by 

n = A-Bcos26-Ccos4d (2.1) 

where A, B, C are positive coefficients, which slightly vary with the phase of the cycle, and 0 is the 
colatitude. 

Roughly, we have B/A _ 0.1 and C/A _ 0.2, which implies that the angular velocity near the poles is 
by about 30% lower than at the equator. The dependence of A, B and C on the phase corresponds to 
torsional oscillations. 

The angular velocity inside the convection zone has so far been only a matter of theoretical 
investigations. Although at least a part of the theories is well elaborated they contain assumptions that 
remain to be checked. The results are controversal even with respect to the sign of the radial derivative 
of £2. Recently some conclusions concerning the angular velocity inside the convection zone and below 
could be drawn from helioseismological observations. These observations seem to rule out the concept 
in which £2 is constant on cylindrical surfaces. They are, however, compatible with the assumption that 
£2 shows no radial variation inside the convection zone but, within a small layer at its bottom or below, 
turns into a value corresponding to a rigid body rotation. In this layer there inevitably exist strong radial 
derivatives of £2 which change sign in dependence on the latitude (see Gilman et al. 1989). 

3. Observational results on magnetic fields 

3.1. GENERAL 

Let us proceed now to observational results which provide us with some information about the 
toroidal and poloidal constituents of the general magnetic field of the Sun. We shall explain a few 
important aspects and refer again to the comprehensive presentations by Gilman (1986) and Stix (1989). 
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3.2. MAGNETIC FLUX TUBES 

We first mention the remarkable discovery that the magnetic flux at the solar surface, and presumably 
also in deeper layers, is not more or less homogeneously distributed over the solar plasma but 
concentrated in very thin flux tubes (Stenflo 1973). These flux tubes, whose diameters are small 
compared with the length scales of granulation, can generally not be resolved by observing the Zeeman 
splitting of a single line. Their properties have been concluded by measuring ratios of Zeeman splittings 
of neighbouring lines. 

Typical diameters of these flux tubes are 100 to 300 km, typical life times 5 min to 2 h, and typical 
flux densities 2000 gauss. There are estimates according to which 90% or more of the total flux 
emerging from the Sun is contained in these flux tubes. 

3.3. THE TOROIDAL MAGNETIC FIELD 

Essential conclusions concerning the toroidal magnetic field can be drawn from the distribution of 
sunspots on the solar surface. Sunspots are assumed to occur if the magnetic flux concentration 
immediately under the solar surface, which is mainly determined by the toroidal field, exceeds a certain 
bound. They are formed with flux tubes which, as a result of magnetic bouyancy, emerge at the surface. 
The diameters of sunspots are comparable to the length scale of the supergranulation, that is, 3.104 km, 
the life times are about 1 or 2 months, and the magnetic flux densities about 2000 gauss. 

The distribution of the sunspots with respect to latitude and time is represented by the Maunder 
butterfly diagram. It shows that the occurrence of sunspots is restricted to lower latitudes up to about + 
40 degrees, with a maximum at ± (15...20) degrees. In the course of an 11 years activity cycle sunspots 
occur at first mainly at the highest of these latitudes but later at lower latitudes. This indicates that the 
belts of maximum toroidal field are in latitudes lower than ± 40 degrees and show an equatorward 
migration. 

The magnetic polarities of sunspots in bipolar groups follow Hale's rules. The leading and the 
following spots show opposite magnetic polarities. At a given time, the polarities of, for example, the 
leading spots coincide in one hemisphere but differ from those in the other hemisphere. In a given 
hemisphere, these polarities change from one 11 years activity cycle to the next. This indicates that the 
toroidal field belts in the two hemispheres have opposite orientation and that the orientations change 
with a 22 years period, which defines the magnetic cycle. 

The sunspot activity can be measured, for example, by the Wolf relative sunspot number. This 
number shows no completely periodic time dependence. There are significant differences between the 
cycles and typically stochastic features. In particular, there are long-term variations clearly indicated by 
the grand minima as, for example, the Maunder and Spflrer minima in the 17th and 15 century. These 
variations of the sunspot activity presumably indicate variations of the underlying magnetic field. 

The sunspots are not the only indicators of the toroidal magnetic field. There are, for instance, the 
ephemeral active regions, which are small bipolar regions with life times and magnetic fluxes much 
smaller than those of sunspots, and which occur also in higher latitudes, namely up to * (50...60) 
degrees. 
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3.4. THE POLOIDAL MAGNETIC FIELD 

The poloidal magnetic field, by contrast with the toroidal field, is very hard to observe, for its flux 
density is 1 to 2 gauss only. 

One interesting feature of the poloidal field known from observation is the polarity reversals at the 
poles. They have been observed directly since 1957/58. There is, in addition, some indirect evidence of 
such reversals. They can be concluded from the motion of lines of zero radial field towards the poles. 
These lines are the places were prominences occur, and systematic observations of prominences are 
available since 1870. 

A simple relation has been found between the polarities of the poloidal field at the poles and the 
orientations of the toroidal field in the latitudes of maximum sunspot activity during the reversal. If, at a 
pole, negative polarity changes into positive polarity, the toroidal field in the same hemisphere points 
eastward, and the same applies with opposite field directions. Let us denote the magnetic flux density of 
the general field by B and refer to spherical coordinates r, 9,0, corresponding to radius, colatitude and 
longitude. Then we have during a reversal 

(dBrldt)pole.(B$) 
maximum'' 

0 (3.1) 
Direct measurements of the poloidal magnetic field at the whole solar surface have been carried out at 

the Mount Wilson and Kitt Peak observatories since 1959. The results revealed a phase relation between 
the poloidal and the toroidal magnetic field in the latitudes of maximum sunspot activity. The maximum 
of the radial field component precedes that of the toroidal field by a phase angle of (0.85...1) 7t. We 
therefore have almost always 

(Br . B<p)maximum < 0 (3.2) 
The observational material on the poloidal field gained since 1959 has been used for an analysis of the 

space and time structure of this field (Stenflo and Vogel 1986, Stenflo and Giidel 1987). In this analysis 
the radial field component was represented by 

Br(e,<p,t) = £ X J ^cr(co)Yf(e,(p)exp(im<p) 
/>0|m|<l/~ (3 3) 

where the Yi (6,<P) are spherical harmonics, and co the frequency that occurs in the Fourier analysis 
of the time dependance. Conclusions were mainly drawn from the power spectrum of the coefficients 
^•"(CD). 

Let us first consider the axisymmetric part of B r given by the contributions with m=0. For this part 
there is a striking difference between the contributions with odd or even 1, which correspond to 
antisymmetry or symmetry about the equatorial plane, respectively. The contributions with odd 1 are 
generally larger compared with those with even 1. In particular, the contributions with 1=5,7, and 9 are 
remarkably large. For odd 1 there is a clearly dominant period near 22 years. For even 1 this period also 
appears but is by no means dominant compared with some much shorter periods. 

Since the differential rotation renders the definition of the longitude coordinate system difficult the 
situation with the non-axisymmetric part of B-, that is, with the contributions with m*0, is rather 
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complex. These contributions are related to the sectorial structure of the solar magnetic field. No 
noticeable difference between odd and even 1 has been found. The same applies to odd or even 1-m, 
which correspond to antisymmetry or symmetry about the equatorial plane, respectively. 

4. Cinematic dynamo models 

4.1. BASIC EQUATION 

When studying the dynamo process in the Sun theoretically, we consider the solar plasma simply as 
an electrically conducting fluid and use Maxwell's equations in the magnetohydrodynamic 
approximation. The magnetic flux density B is then governed by the equations 

curl (ncurl B - uxB) + -=r- = 0 ,A . , 
dt (4.1a) 

divB = 0 (4.1b) 

where e is the magnetic diffusivity and u the velocity of the fluid motion. At first we consider the 
motion to be given, that is, restrict ourselves to the kinematic aspect of the dynamo problem. 

4.2. MEAN-FIELD ELECTRODYNAMICS 

As explained above, the solar magnetic field as well as the motions of the convective zone show 
complex structures in space and time, which can hardly be taken into account in detail. It proved useful 
to discuss the dynamo process in terms of mean-field electrodynamics. We briefly explain some basic 
ideas; for more details see, e.g., Krause and RSdler (1980) orRadler (1980). 

Within this framework each field quantity F, like B or u , is understood as a superposition of a mean 
part, F, showing more or less smooth dependence on the space and time coordinates, and a fluctuating 
part, F'. The mean part F is defined as a proper average of F, which may be over space or time, or may 
also be an ensemble average. It has to be required that certain averaging rules, the Reynolds rules, 
apply. This, in turn, generally implies requirements concerning the length or time scales of F. 

From equations (4.1) we obtain equations for the mean magnetic flux density B, 

curl (Ticurl B - uxB - &) + -=r- = 0 
_ dt (4.2a) 

div B = 0 (4.2b) 

where u is the velocity of the mean motion, and fc* is a mean electromotive force caused by the 
fluctuating parts of motion and magnetic field, 

Sf= u'xB' (4 3) 

This electromotive force &at a given point in space and timeis determined by u , u' and B ina certain 
neighborhood of this point, and it depends linearily on B. Provided^ the variation of B in this 
neighbourhood is sufficiently weak, that is, the length and time scales of B are sufficiently large, &"can, 
relative to Cartesian coordinates, be represented in the form 
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The tensorial coefficients ajj and ty^ are determined by u and u' but do no longer depend onB. 

In the very simple case in which u is equal to zero and u' corresponds to homogeneous isotropic 
turbulence, e takes the form 

Zf=aB- PcurlB (4 5 ) 

with two constants a and P which are determined by u'. The term aB describes the a-effect, that is, 
an electromotive force parallel or antiparallel to the mean magnetic field. The coefficient a and thus the 
a-effect are, however, only non-zero if the turbulence lacks mirror-symmetry. For turbulences on 
rotating bodies the mirror-symmetry is generally violated because of the action of Coriolis forces. The 
deviation from mirror-symmetry can, for example, be indicated by a non-zero helicity of the motions. 
The term -|3curlB gives rise to introducing a "turbulent" electric conductivity or a 
corresponding"turbulent" magnetic diffusivity r\j defined by rjj = T] + P-

In (4.2a), this contribution to r\ can be disregarded if r\ is replaced by r|.x 

Returning to the general case we note that (4.4) can be written in the form 
y= -aB - fkurlB - dxcurlB - ... / 4 g) 

Now a and P are symmetric tensors, y and 5 vectors, all depending on u and u'. The term -aB 
describes an anisotropic a-effect, and -yxB a transport of mean magnetic flux different from that by a 
mean motion, covering also effects discussed as "turbulent diamagnetism" or "pumping" of magnetic 
flux. The term -p.curlB gives rise to introduce an anisotropic "turbulent" electric conductivity or 
corresponding magnetic diffusivity, and -SxcurlB covers in particular the "coxj-effect", which, like the 
a-effect, in combination with differential rotation allows dynamo action. We note that curlB is 
connected with the antisymmetric part of the tensor 3BJ/3XJ. For the sake of simplicity the terms 
connected with the symmetric part of dB j/3x: are not given explicitely in (4.6). 

An important problem in the elaboration of mean-field electrodynamics consists in the calculation of 
the electromotive force ff, or of the quantities a, p,... for given u and u'. Most of the results available 
have been derived in the second-order correlation approximation, often called "first-order smoothing", 
which neglects all higher-order correlations of u'. 

4.3. TRADITIONAL SPHERICAL KINEMATIC MEAN-FIELD DYNAMO MODELS 

On the basis explained here a number of spherical mean-field dynamo models have been elaborated. 
In all cases it is assumed that the mean magnetic flux density B in a rotating spherical fluid body is 
governed by equations (4.2) and (4.6) with more or less simple assumptions on u , a, p,...As a rule, 
the surroundings of the body are considered to be free space, and it is required that B inside the body 
fits continuously to an irrotational solenoidal field in this external region. 

In almost all cases it is assumed that u , u' and r\ are symmetric about the equatorial plane and the 
rotation axis, and steady. For u and t\ this should be understood in the usual sense, for u' in the sense 
of the invariance of all averaged quantities under reflexions of the u'-field about the equatorial plane, 
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under rotations about the rotation axis, and under time shift. If if contains, for example, contributions 
like odB or pcurlB, then, owing to these assumptions, a is antisymmetric and p symmetric about the 
equatorial plane, and both are symmetric about the rotation axis and steady. 

These assumptions further imply that the solutions of the equations governing B have the form of the 
real part of 

Bexp(im<p + (X+ico)t) M 7) 

or are superpositions of such solutions. B is a complex field which is either antisymmetric or 
symmetric about the equatorial plane, symmetric about the rotation axis and steady, m is a non-negative 
integer, q> again the longitudinal coordinate, and X and co are real constants. As usual the symmetry of 
such solutions is characterized by Am or Sm, where A or S stand for antisymmetry or symmetry about! 
the equatorial plane and m is the integer introduced above describing the longitudinal variation. Simple ; 
examples of AO or S1 -symmetry are the fields of central dipoles parallel or perpendicular to the rotation 
axis, and an example of SO-symmetry is the field of a central quadrupole symmetric about that axis. 
Depending on kind and intensity of the induction effects the solutions in general exponentially grow or 
decay; X is the growth rate. Of course, the marginal case deserves special interest, in which the 
solutions neither grow nor decay, that is, X = 0. In this case they may be steady or oscillatory, where co 
defines the frequency. For axisymmetric solutions, m=0, oscillatory behaviour implies real changes of 
the field configuration in the course of a period, for non-axisymmetric solutions, m*0, simply a rotation 
of the field configuration. 

In the simplest models a-effect and differential rotation are taken into account in the form 

&= aB, a = -a{r) cosd (4.8a,b) 

u = Qxr, (2 = Q(r)z (4.8c,d) 

where 0 is again the colatitude, r the radius vector and z the unit vector parallel to the rotation axis. 
The ratio of the two induction effects can be characterized by 

a0 9 = 
AQl (4.9) 

where aQ and AQ are typical values of a and of the variation of CI, and 1 is the thickness of the layer 
where the dynamo process takes place. Roughly speaking, the limits q « 1 and 9 » 1 correspond to 
the ccco and a-regimes of a dynamo, in which a-effect or differential rotation, respectively, no longer 
contribute essentially to the generation of the toroidal field from the poloidal field. 

Using those simple assumptions on STand u Steenbeck and Krause (1969a,b) elaborated <f model of 
an aco-dynamo, which reflects already some essential features of the solar magnetic fields, and also a 
model of an a -dynamo, which was discussed in view of planetary magnetic fields. Later on a number of other 
models of the same kind, or with somewhat more general assumptions concerning % and u have been 
investigated, e.g. by Deinzer and Stix (1971), Krause (1971), Stix (1971, 1973, 1976a,b), Levy 
(1972), Roberts (1972), Roberts and Stix (1972), KOhler (1973), Deinzer, von Kusserow and Stix 
(1974), Jepps (1975), RSdler (1975, 1986a), Yoshimura (1975b), Ivanova and Ruzmaikin (1977), 
Busse (1979), Busse and Miin (1979), Belvedere et al. (1980a,b) Rudiger (1980), Weisshaar (1982), 
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Yoshimura et al. (1984a,b,c), Schmitt (1987), Brandenburg (1988), Brandenburg and Tuominen 
(1988) and Brandenburg et al. (1989e). 

Let us briefly summarize a few features of ccco and a-dynamos revealed by those investigations. In 
aco-dynamos the generation of axisymmetric magnetic fields is in general favoured over that of non-
axisymmetric fields (see also section 4.5). The toroidal part of an axisymmetric field is much stronger 
than its poloidal part. In the marginal case both steady and oscillatory axisymmetric fields proved to be 
possible. In cc2-dynamos, however, there is no such discrimination between the two field types. 
Depending on, e.g., the anisotropy of the cc-effect axisymmetric or non-axisymmetric fields can be 
favoured. The toroidal and poloidal parts of a field have the same order of magnitude. Only in very 
exceptional cases oscillatory axisymmetric fields have been found (RSdler and Brauer 1987). 

We note that, in addition to the ccco and a -mechanisms other dynamo mechanisms have been 
investigated, which are based on a combination of induction effects covered by the terms -p.curlB or -
8xcurlB~in (4.6), e.g., the "coxj-effect", and differential rotation (Radler 1969,1976,1980,1986a, Stix 
1976b). They are presumably less effective than the ccco and cc2-mechanisms and therefore ignored in the 
following. 

4.4. CONSTRAINTS ON SOLAR DYNAMO MODELS AND SOME CONCLUSIONS 

Let us now list a few observational constraints which should be met by kinematic mean-field models 
of the solar dynamo. 

(i) The magnetic field possesses mainly AO-symmetry. Its toroidal part is much stronger than its 
poloidal part. 

(ii) The magnetic field is oscillatory, with a period of about 22 years. 
(iii) The dependence of the toroidal magnetic field on latitude and time allow us to reproduce the 

butterfly diagram; in particular, the maxima of this field occur in latitudes lower than ±40 
degrees and migrate equatorward. 

(iv) The toroidal field in the latitudes of maximum activity and the poloidal field near the poles during 
its reversal satisfy the relation (3.1). 

(v) The toroidal and the poloidal field in the latitudes of maximum activity satisfy the phase relation 
: (3.2). 

(vi) If the radial field component is represented in the form (3.3) the coefficient Cjm are close to those 
i derived from observation. 

Of course, phenomena like the long-term variation of the sunspot activity cannot be comprehended by 
kinematic models. In a more general context observational constraints have recently been compiled by 
Tuominen etal. (1988). 

The constraints (i) and (ii) are met by a dynamo working in the co-regime rather than the a2-regime. 
That is the generation of the toroidal field is mainly due to differential rotation. 

In our further discussion of the constraints listed above we assume an aco-dynamo for which ST and u 
are defined by (4.8) and a and d£2/dr do not change their signs all through the fluid body. In this case 
some remarkable conclusions can be drawn. Of course, these simple assumptions are presumably rather 
unrealistic but the conclusions can help us to understand more realistic models. We briefly return to the 

https://doi.org/10.1017/S0252921100068081 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100068081


394 

constraints (i) and (ii) and note that under the assumptions mentioned a preferrence of fields with A0-
symetry and oscillatory behaviour has been observed so far only if the signs of a in the northern 
hemisphere and of dii/dr are opposite. As far as constraint (iii) is concerned we consider only the 
migration of the maxima of the toroidal field. According to general results on dynamo waves 
(Yoshimura 1975a,1976) an equatorward migration occurs just under the same condition concerning the 
signs of a and diydr. Whereas constraint (iv) does not lead us to a simple conclusion, constraint (v) can 
only be fulfilled if a is positive in the northern hemisphere (Stix 1976b). Since, as inferred from (i) and 
(ii), and also from (iii), a and dii/dr have there opposite signs, dii/dr should be negative, that is, the 
angular valocity increases inward. The constraint (vi) has been considered so far only for one model 
(Brandenburg 1988), and we see no simple conclusions of general nature. 

4.5. SOME REMARKS CONCERNING THE FURTHER ELABORATION OF 
KINEMATIC MEAN-FIELD MODELS 

We have seen that the mean-field concept provides us with some basis for the understanding of the 
solar dynamo process, and very simple models yielded some promissing results. Further elaboration of 
mean-field models of the solar dynamo is however hampered by several difficulties. Part of them result 
from unsolved problems of the mean-field theory, others from lack of knowledge on convective 
motions, differential rotation, etc... There is at the moment no really comprehensive mean-field model of 
the solar dynamo. In the following we shall explain some of the problems that we are faced with in this 
context and some efforts to improve models. 

Let us first recall that the mean fields have to be defined so that the Reynolds rules apply. For many 
purposes it seems reasonable to define them by a time average over 1 or 2 years (Stix 1976a, 1981). 
One should bear in mind that then the Reynolds rules hold only in some approximation. With averages 
over the longitude or stastitical averages these rules apply exactly but some other difficulties occur (e.g., 
Radler 1981a). The finding that the magnetic flux is concentrated in thin tubes implies no objection to 
the applicability of the mean-fields more difficult. 

While the dependance of Sfon B given by (4.4) or (4.6) seems to be justified to a certain extend 
(Radler 1981a), there is considerable uncertainty as to how quantities like <x,p... depend on the motions. 
As mentioned above, most of the results available were derived in the second-order correlation 
approximation, which is not well justified for the solar convection zone. A recent investigation 
(Nicklaus and Stix 1988) demonstrates that corrections by fourth order correlations may change the 
results considerably; even the sign of the scalar a occuring with isotropic turbulence can change if 
higher approximations are used. Despite several results on the a-effect and related effects under more 
realistic conditions (e.g., Walder et al. 1980, Stix 1983, Schmitt 1985, Durney 1988) are further efforts 
necessary. 

Some discussions on the solar dynamo are based on the idea that the a-effect can simply be described 
by a scalar a which is essentially equal to -(l/3)u' curl(u') x, where u' curl(u') is the helicity of the 
fluctuating motions and x some turnover time. This idea implies, apart from the second-order correlation 
approximation and the restriction to the high-conductivity limit, the assumption of the isotropy of 
fluctuating motions and is thus rather questionable. In spherical dynamo models the generation of an 
axisymmetric toroidal field depends on the component a™ of the tensor a (Radler 1981b). Even if we 
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accept the second-order correlation approximation and the high conductivity limit it is not a^ but (1/3) 

trace (a) which is equal to (l/3)u curl(u') x, and these quantities coincide only in the isotopic case. In 

general, a^ may even vanish for non-zero trace (a). 

The magnetic flux which penetrates the plasma of the convection zone contributes to its buoyancy. 
The motions due to this magnetic buoyancy reduce the mean flux in the convection zone (e.g., 
Krivodubski 1984). With this mind, in several cases on the right-hand side of the induction equation 
(4.2a) an additional term -KB, with some positive coefficient K, has been introduced (e.g., De Luca and 
Gilman 1986). We should like to emphasize that this is hardly the correct way to comprehend the effect 
of magnetic buyancy. According to the derivation of (4.2a) from Maxwwell's equations any effect of 
motions must be described by if or Jf. 

Apart from the reasons explained above, the lack of knowledge on the convective motions and the 
differential rotation in deeper layers poses several problems for the construction of realistic solar 
dynamo models. There have been many attempts to meet observational constraints such as those 
formulated above, by more complex assumptions on the radial and latitudinal dependence of the cc-
effect and the differential rotation, and by taking into account anisotropics of the cc-effect and related 
effects (e.g., Krause and Steenbeck 1969a, Stix 1973, 1976, KOhler 1973, Yoshimura 1975, Ivanova 
and Ruzmaikin 1977, Belvedere et al. 1980a, Yoshimura et al. 1984a,b,c, Schmidt 1987, Brandenburg 
1988). We mention in particular a recent model in which in addition to an anisotropic cc-effect several 
related effects are included and an angular velocity inferred from helioseismological measurements is 
used (Brandenburg and Tuominen 1988). This model reflects rather well the latitudinal dependence of 
the toroidal magnetic field as derived from observations. 

It has been argued that the flux losses in the convection zone due to magnetic buoyancy do not allow 
a generation process of magnetic fields in this zone. For this and other reasons, models have been 
proposed in which this process is mainly localized at the bottom of the convective zone or in the 
overshoot layer below it (e.g., Glatzmaier 1985. De Luca and Gilman 1986, Gilman et al. 1989). 

In several models of aco-dynamos in addition to axisymmetric also non-axisymmetric magnetic fields 
have been considered (Krause 1971, Stix 1971, Roberts and Stix 1972, Ivanova and Ruzmaikin 1986a, 

: Ruzmaikin et al. 1988), which deserve some interest in view of the sectorial structure of the solar 
magnetic field. Under certain conditions comparable excitation conditions for axisymmetric and non-

i axisymmetric fields have been found. For general reasons this is only to be expected if the rotational 
shear is sufficiently small (Radler 1986a,b). It turned out that some of the models mentioned (Krause 
1971, Stix 1971, Ivanova and Ruzmaikin 1985, Ruzmaikin et al. 1988), which are in conflict to that, 
have to be revised (Radler et al. 1989). 

5. Dynamo models including the back-reaction of the magnetic field 
on the motion 

5.1. BASIC EQUATIONS 

So far we discussed the dynamo process assuming that the fluid motion is given. In particular, we 
ignored any back-reaction of the magnetic field on the motion. However, it is the back-reaction that 
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determines the magnitude to which the magnetic field grows and it can influence the geometrical 
structure and time behaviour of the field considerably. Changing our view we now consider the motion 
no longer given and assume that the velocity u obeys the Navier-Stokes equation and the mass balance, 

p ( ^ + (wV)u = -Vp + F + -1- curl(BxB) 
dt /i (5.1a) 

t + div(pU) = ° (5.1b) 
Here p is the mass density, p the pressure, and F stands for viscous or any other but electromagnetic 
forces; if F only means viscous forces we have, in Cartesian coordinates, 

1 dxj (5.2) 

with some stress tensor xlj. The term (1/u.) curlBxB describes the Lorentz force, where u. is the 

permeability of free space. For compressible fluids, equations (5.1) have to be supplemented by the 
equation of state and the energy balance, which we do not write down here. 

Compared to the kinematic dynamo problem posed by equations (4.1), the full dynamo problem 
defined by equations (4.1), (5.1) and some supplementary relations is much more complex. It is no 
longer a linear but an involved nonlinear problem. 

5.2. MEAN-FIELD MAGNETOHYDRODYNAMICS 

The mean-field concept introduced above with the kinematic dynamo problem can readily be extended 
to the full dynamo problem considered now; see, e.g., RSdler (1976). The equations (4.2) and (4.3) 
have then to be supplemented by corresponding equations derived from (5.1). We shall demonstrate 
here only the basic idea. To this end we restrict ourselves to incompressible fluids. From (5.1) we then 
obtain 

p(~ + (M'V)M = -Vp + F + 1 curl(BxB) + & 
^ dt y y. (5.3a) 

div(pu) = 0 (5.3b) 

where/is a mean force resulting from fluctuating motions and magnetic fields, 

^ - p (M'»V)«' + ±curl(B'xB) 
H (5.4) 

In the case of vanishing magnetic field these equations coincide with the Reynolds equations of 
hydrodynamic turbulence theory. We note that F and f appear only as their sum, and that this can be 
represented in the form 

' , + ^ ' " _dxj (5.5a) 

^ = - Pu'iuj (5.5b) 
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where ijj is the Reynolds stress tensor and XJ:M the Maxwell stress tensor resulting from the fluctuating 

magnetic field. 

In the same sense in which {fwas considered a quantity depending on B and its derivatives, if and S" 
are now to be understood as quantities depending on B, IF and their derivatives. We do not want to 
discuss the general aspects of such relations. We only mention that, for example, the dependence of e on 
B is now no longer linear. To explain this in some more detail we return to the simple case considered 
above in which u is equal to zero, u ' corresponds to a homogeneous isotropic turbulence, and SCthen 
is given by (4.5). Consider this turbulence to be due to any forces independent of the magnetic field but 
admit, in addition, Lorentz forces. The latter will influence the intensity of the turbulence and disturb its 
isotropy. Under these circumstances §f again contains a term aB but a now depends on B. It was 
shown that, under certain assumptions, a decreases with growing |B| (Riidiger 1974a). 

As already mentioned, in the case of vanishing magnetic field our equations reduce to Reynolds 
equations, we note that on this basis a comprehensive theory of the differential rotation has been 
developed (Riidiger 1989). 

5.3. NONLINEAR MEAN-HELD DYNAMO MODELS 

When starting from kinematic mean-field dynamo models and introducing the back-reaction of the 
magnetic field on the motion we have to consider a variety of new effects. All the coefficients defining 
the mean electromotive force %, for example oc,p\...occuring in (4.6), depend now on B. This concerns 
not only their magnitudes but also their tensorial structures. In addition, the velocity u of the mean 
motion is influenced by B. This may happen in a direct way via the Lorentz force (1/u) curlB xB or in 
an indirect way via the force f, that is, via the Reynolds stresses and via the Maxwell stresses of the 
fluctuating magnetic field. The mathematical problem posed by a kinematic dynamo model is linear in 
B. All the effects mentioned here disturb this linearity. 

Several mean-field dynamo models have been investigated which deviate from kinematic models with 
isotopic a-effect only in so far as a now depends on B and decays with growing |B|, sometimes 
referrred to as "a-quenching", e.g., by Stix (1972), Riidiger (1974b), Jepps (1975), Ivanova and 
Ruzmaikein (1977), Kleeorin and Ruzmaikin (1984), Krause and Meinel (1988), Brandenburg et al. 
(1988a,b,d) and RSdler and Wiedemann (1989). In ao)-models of that kind which, in its zero-field 
limit, show the symmetries discussed above about equatorial plane and rotation axis, axisymmetric 
oscillatory magnetic fields have been found which show no longer pure AO or SO-symmetry but contain 
both AO and SO-parts (Brandenburg et al. 1989a,b,d). The magnitude of these fields and its composition 
of AO and SO-parts vary, apart from the fundamental oscillation, also with a longer period. This is, of 
course, of interest in view of the long-term variation of the solar activity. However, in these models the 
possibility of non-axisymmetric fields has not been considered at all. As we know from a2-models the 
stability of an axisymmetric field may well be disturbed by non-axisymmetric fields (Radler and 
Wiedeman 1989). 

In some other models the back-reaction of the magnetic field on the mean motions via Lorentz-forces 
of the mean field was studied, e.g., by Malkus and Proctor (1975), De Luca and Gilman (1986), 
Brandenburg, et al. (1989a,b,d) and Belvedere and Proctor (1989). A reduction of both the a-effect and 
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the differential rotation by the back-reaction of the magnetic field was taken into account by Yoshimura 
(1978a,b). 

We further refer to a model by Brandenburg et al. (1989c) in which, starting from assumptionss 
concerning the turbulent motions in the solar convection zone, both the magnetic field and the 
differential rotation are computed, taking into account the two types of back-reaction considered above 
of the magnetic field on the motions. 

Incidentally, for some mean-field dynamo models the Lorentz-forces of the mean fields have been 
computed and discussed in view of the torsional oscillations (Yoshimura 1981, Rudigeret al. 1986). 

5.4. OTHER NONLINEAR DYNAMO MODELS 

Interesting studies of the solar dynamo problem beyond the mean-field approach have been done by 
Gilman and Miller (1981) and by Gilman (1983). For a spherical shell modelling the solar convection 
zone the full set of the magnetohydrodynamic equations governing B and u in the Bussinesq 
approximation has been integrated numerically. The model reflects several features of solar magnetic 
phenomena. In particular, it shows a magnetic cycle. However, the period is too short for describing 
the solar cycle, and the equartorward migration of the toroidal field belts as indicated by sunspots is not 
reproduced. It is not clear whether this is to be ascribed to the Boussinesq approximation, to the 
unsufficient consideration of the interaction between magnetic field and motion in small scales, or to 
other reasons. Similar results have been obtained with somewhat different assumptions by Glatzmaier 
(1985). 

There are also a few attempts to mimic features of the solar dynamo by a low-order set of non-linear 
ordinary differential equations. Ruzmaikin (1985) proposed a set of three first-order equations which 
form a Lorentz system and tried to find so some explanation of the stochastic nature of the solar activity. 
Preliminary results of an attractor analysis of the Wolf relative sunspot numbers obtained by Kurths 
(1987) indeed suggest that the underlying process can be described by a small number of equations, the 
number being estimated between 3 and 7. In dais context an investigation by Weiss (1985) on the 
chaotic behavior of dynamos, in which a system of seven first-order ordinary differential equations is 
considered, deserves some interest. 

I would like to thank my colleagues Drs. G. Riidiger and J. Staude (Potsdam) as well as Dr. A. 
Brandenburg (Helsinki) for many important suggestions. 
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