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Abstract

Increasing penetration of variable and intermittent renewable energy resources on the energy grid poses a challenge
for reliable and efficient grid operation, necessitating the development of algorithms that are robust to this uncertainty.
However, standard algorithms incorporating uncertainty for generation dispatch are computationally intractable
when costs are nonconvex, andmachine learning-based approaches lack worst-case guarantees on their performance.
In this work, we propose a learning-augmented algorithm, RML, that exploits the good average-case
performance of a machine-learned algorithm for minimizing dispatch and ramping costs of dispatchable generation
resources while providing provable worst-case guarantees on cost.We evaluate the algorithm on a realistic model of a
combined cycle cogeneration plant, where it exhibits robustness to distribution shift while enabling improved
efficiency as renewables penetration increases.

Impact Statement

We confront the challenge of designing efficient and robust algorithms for grid operation with the paradigm of
learning-augmented algorithms, which leverage the excellent performance of machine learning while provably
guaranteeing worst-case performance bounds and providing significant computational speedups over standard
algorithms. Beyond the setting of generation dispatch, we propose that learning-augmented algorithms hold
promise for safely utilizing the power of machine learning in a broader array of energy and sustainability-related
control and optimization tasks.

1. Introduction

The need to reduce greenhouse gas emissions to mitigate the impacts of anthropogenic climate change is
driving an energy transition characterized by large amounts of renewable generation resources being added
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to the grid. The variability of solar and wind energy and a relative scarcity of large-scale energy storage
require the operation of dispatchable resources, such as fossil fuel generation, to balance out the
fluctuations in renewable energy production and maintain reliable grid operation. However, conventional
fossil fuel generators incur significant additional costs from the frequent cycling and ramping they must
perform under high penetration of renewables, due both to decreased fuel efficiency and increased
maintenance required from operating in this regime (Troy et al., 2010). Moreover, most dispatchable
resources are limited in their ramp rate, and thus under high penetrations of renewables, such resources
must be operated in a manner that anticipates system ramp needs, taking into account the high costs of
frequent ramping while ensuring adequate supply to meet demand.

Operating generation optimally requires minimizing fuel costs while accounting for the intertemporal
coupling of decisions, including both ramp costs and ramp limits. A natural approach for this problem is
model predictive control (MPC), an algorithm that utilizes near-term forecasts of demand and other
conditions to choose decisions thatminimize aggregate cost over a fixed lookahead horizon (Morari&Lee,
1999). In addition to theoretical work confirming its good performance (e.g., Lin et al., 2021), MPC
performs well in practice and has been deployed in a number of energy and sustainability-related domains,
including control of wind turbines and solar photovoltaics (Lio et al., 2014; Sultana et al., 2017), smart
buildings (Carli et al., 2020; Killian & Kozek, 2016), energy storage (Meng et al., 2015; Morstyn et al.,
2018), and electric vehicle charging (Lee et al., 2018). Moreover, several regional power system operators
in the US use MPC to settle the real-time electricity market (Ela & O’Malley, 2016), and it is widely
understood that such lookahead algorithms will play an increasingly important role in enabling power
systems to reliably absorb renewable energy volatility (Hua et al., 2019; Zhao et al., 2020).

However, MPC suffers computational complexity that grows exponentially with the lookahead
horizon if the system model or costs are nonconvex, such as in the case of combined cycle generators
(Bjelogrlic, 2000). In practice, it is thus typically necessary to use heuristic solvers that operate on a faster
timescale but generally produce suboptimal decisions (Cao et al., 2017; Deng et al., 2015; Kelman et al.,
2013). One promising avenue for overcoming the computational complexity of nonconvex MPC to
enable improved performance in practice is the development of machine learning (ML) models that
imitate its behavior, bypassing the need to solve an independent nonconvex optimization problem to
generate each decision. This approach of “learning to control/optimize” has seen significant recent
interest in the ML, control, and power systems communities (Fioretto et al., 2020; Kotary et al., 2021;
Nellikkath & Chatzivasileiadis, 2022; Pan et al., 2022; Pon Kumar et al., 2018; Spielberg et al., 2017;
Zhang et al., 2023).While several works develop approaches to guarantee constraint satisfaction for ML
controllers (e.g., Zhang et al., 2023), none of these learning-based approaches come with a priori
guarantees on their cost under distribution shift or on out-of-sample problem instances, jeopardizing
their performance at deployment time. To counter this potential for poor performance and enable the
reliable deployment of learned proxies for MPC in real-world settings, this work proposes an algorithm
to robustify the behavior of such an ML proxy. We follow the paradigm of the emerging literature on
learning-augmented algorithms (e.g., Lee et al., 2021; Lykouris and Vassilvtiskii, 2018; Purohit et al.,
2018), specifically building upon the line of work (Antoniadis et al., 2020; Christianson, Handina, et al.,
2022; Christianson et al., 2023; Li et al., 2022; Rutten et al., 2023) designing algorithms for online
optimization with switching costs, a generalization of the dispatch problem, that can exploit the
performance of an ML algorithm while providing worst-case guarantees on cost.

1.1. Contributions

Our contributions are twofold. First, we propose a learning-augmented algorithm RML for online
optimization with switching costs that achieves the best deterministic performance bound in the setting of
general nonconvex cost functions. Specifically, when provided with an ML algorithm for the problem as
well as a heuristic baseline algorithm, for any desired ϵ,δ> 0, our algorithm achieves a cost at most
1þ ϵþδð Þ times the cost incurred by the ML algorithm while maintaining a worst-case cost bound of
O C

δþD
ϵ

� �
, where C is the cost of the heuristic baseline andD is the diameter of the decision space. In other
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words, RML achieves performance that is close to that of ML, yet robust in comparison to the
chosen baseline algorithm. This is the best-known tradeoff for deterministic algorithms, as all prior
deterministic learning-augmented algorithms with bounded worst-case robustness paid at least three
times the cost of the ML algorithm (Antoniadis et al., 2020).1 Second, we empirically evaluate the
performance of RML on a realistic model of a combined cycle cogeneration power plant under
increasing penetration of renewable energy. We find that an ML-based approach can improve computa-
tion time over MPC by three orders of magnitude, and while the performance of a pure ML approach
suffers in response to distribution shift, our algorithm RML takes advantage of the good perform-
ance of ML in the nominal case (improving over the baseline by 10–15%) while preserving robustness to
distribution shift. Moreover, RML can achieve better performance than both the pureML approach
and the baseline approach when there is increasing renewable penetration.

Our work has the potential for both direct and downstream impact on the problem of climate change.
Our results suggest that using RML for real-world grid operation could yield modest but tangible
efficiency improvements, leading to reduced emissions. Moreover, RML’s robustness guarantees
and lookahead use could enable greater penetration of renewables whilemaintaining grid reliability.More
generally, we see great promise in using learning-augmented algorithms like RML to achieve
efficiency improvements without sacrificing robustness in other energy and sustainability-related
domains where MPC is widely used (Carli et al., 2020; Killian & Kozek, 2016; Lee et al., 2018; Lio
et al., 2014; Meng et al., 2015; Morstyn et al., 2018; Sultana et al., 2017).

2. Model and Preliminaries

We consider the problem of operating a combined cycle cogeneration power plant to meet both electricity
and steam demand in the presence of exogenous variable renewable generation; see Figure 1 for a
schematic. Specifically, we consider a plant with three gas turbines and a single steam turbine; we index
the gas and steam turbines as 1,2,3f g and 4f g, respectively. At each time t∈ 1,…,Tf g, the plant operator

Figure 1. Schematic of the cogeneration power plant model. The plant operator chooses how much
electricity (yellow arrow) and steam (blue arrow) the three gas turbines (left cooling tower) produce, as
well as how much steam is directed to the steam turbine (right cooling tower) to produce additional
electricity. At each time t, ambient conditions (e.g., temperature) together with electricity and steam
demand are represented by the vector θt, and electricity and steam dispatch decisions are represented
by the vector xt.

1 Antoniadis et al. (2020) and Christianson et al. (2023) also consider randomized algorithms for online optimization with
switching costs, obtaining bounds on expected algorithm performance.While these bounds can improve upon those of deterministic
algorithms in the case of largeD, we restrict our focus in this work to deterministic algorithms in order to obtain guarantees that hold
with certainty, rather than in expectation.
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observes an electricity demand (net of renewables) dt ∈ℝþ and a steam demand qt ∈ℝþ. In response,

they choose energy dispatch setpoints p ið Þ
t ∈ p

i
,pi

h i
and steam dispatch setpoints s ið Þ

t ∈ si,si½ � for all the
turbines i¼ 1,…,4, where p

i
,pi are the lower and upper bounds, respectively, for the energy dispatch,

and si,si are the lower and upper bounds, respectively, for the steam dispatch. Note that while the gas
turbines i¼ 1,2,3 produce steam, and thus have positive steam dispatches, the steam turbine i¼ 4
consumes steam, so s 4ð Þ

t < 0. The plant operator’s goal is to minimize the total cost of its dispatch decisions
and its cost for ramping electricity generation while producing sufficient electricity and steam to meet
demand. Formally, the plant operator faces the following constrained minimization problem:

min
p1,…,pT ∈ ½p,p�
s1,…,sT ∈ s,s½ �

XT
t¼1

f t pt,stð Þþα∥pt�pt�1∥1 (2.1)

s:t:
X4
i¼1

p ið Þ
t ¼ dt for all t¼ 1,…,T (2.2)

X4
i¼1

s ið Þ
t ¼ qt for all t¼ 1,…,T , (2.3)

where pt ¼ p ið Þ
t

� �4
i¼1

, st ¼ s ið Þ
t

� �4
i¼1

, f t is a per-round fuel cost function that may depend on ambient

conditions such as temperature, pressure, and humidity, and α is a parameter determining the extent
to which ramping energy generation is penalized. Importantly, the demands dt, qt and the cost
functions f t are not all known in advance, so the plant operator cannot solve problem (2.1) all at
once. Instead, the plant operator only knows the current timestep’s problem parameters f t, dt, and qt
exactly, though they may have (possibly noisy) access to predictions of these parameters in a short
lookahead window.

The cogeneration dispatch problem we consider can be formulated as a specific instance of the more
general problem of online optimization with switching costs (Chen et al., 2016). Abstractly, online
optimization with switching costs can be considered as a game in which at each time t∈ 1,…,Tf g,
a decision-maker receives a vector θt ∈ℝn parametrizing a cost function f �;θtð Þ :ℝd !ℝþ. In response,
the decision-maker must choose a decision xt ∈ℝd and incurs the hitting cost f xt;θtð Þ as well as the
switching cost ∥xt�xt�1∥ resulting from that decision, where ∥ �∥ is some norm. We assume that the
decision xt does not impact future parameters θτ for τ > t. In the context of the cogeneration dispatch
application, θt is a vector containing all ambient conditions such as temperature, pressure, humidity, and
the electricity and steam demands dt, qt at time t, xt is a vector including the plant operator’s energy and
steam dispatch decisions at time t, and the function f maps ambient conditions and generator dispatches to
a fuel cost while penalizing violation of constraints including capacity limits and supply–demand balance.
The switching term ∥xt�xt�1∥ represents the ramping cost.2 The problem is online, meaning that the
decision-maker only has access to the parameters θ1,…,θt that have been revealed by time twhenmaking
the decision xt. However, the decision-maker may have access to (possibly inaccurate) forecastsbθtþ1∣t,…,bθtþw ∣ t of parameters within a lookahead window of length w∈ℕ, which can help them
anticipate and reduce future switching costs. Such forecasts could be obtained using standard ML
methods for predicting near-term weather or energy demand.

2Note that while in (2.1) only ramping energy decisions yields a ramp cost, in this model all dispatch decisions in the vector xt are
penalized by the ramp cost. However, since the norm ∥ �∥ can be arbitrary, we canmodel the cogeneration application bymaking the
penalty for ramping the steam decisions arbitrarily small.
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We consider two standard algorithms for the problem of online optimization with switching costs.
The first, G, is a myopic algorithm that simply chooses the decision xt that minimizes f �;θtð Þ at
each time t. This algorithm has worst-case cost guarantees under mild assumptions on the structure of the
cost function f (Zhang et al., 2021), and it resembles the single-stage dispatch algorithm widely used by
power system operators. Its behavior is characterized formally as follows:

GREEDY : θt ↦ argmin
x∈ℝd

f x;θtð Þ¼: xt:

That is, G can be viewed as a function that, when provided with parameter vector θt ∈ℝn,
returns the minimizer of f �;θtð Þ as a dispatch decision. Note that, since we assume that f �;θtð Þ
penalizes all constraints from the original cogeneration problem formulation, G will necessarily
satisfy these constraints.

The second algorithm we consider is model predictive control (MPC). MPC solves a lookahead
optimization problem using near-term predictions of parameters to choose a decision. Formally, at time t,
given the perfectly known current parameter vector θt and forecastsbθtþ1∣t,…,bθtþw∣t of parameters over the
nextw timesteps,MPC chooses its decision as the optimal solution of the following optimization problem:

MPC :Θ ↦ argmin
x∈ℝd

y1,…,yw ∈ℝd

f x;θtð Þþ
Xw
τ¼1

f yτ;bθtþτ ∣ t

� �
þ∥yτ �yτ�1∥¼: xt (2.4)

where y0 :¼ x and we have concatenated the parameter vectors θt,bθtþ1∣t,…,bθtþw∣t

� �
into a single entity

Θ∈ ℝnð Þwþ1 for brevity. Note that only the minimizer x corresponding to the decision made for time t is
binding, i.e., the chosen decision xt is simply the optimal x in the above optimization; all of the other
variables y1,…,yw are ignored after the solution is obtained. Note that, similar to GREEDY, MPC produces
decisions that satisfy the constraints of the original cogeneration problem.

As previously discussed, MPC can be computationally prohibitive if f �;θð Þ is nonconvex. However,
there has been a great deal of recent work on learning proxies for power systems-related constrained
optimization problems that operate more quickly than traditional optimization solvers (Donti et al., 2020;
Park &Van Hentenryck, 2023; Zhang et al., 2023). Following this approach, in our work, we train anML
model to approximate the input–output behavior of MPC in an unsupervised fashion. That is, given
a datasetD¼ Θif gNi¼1 of cost function parameters, we train a neural networkML : ℝnð Þwþ1 ! ℝd

� �wþ1
to

minimizeMPC’s lookahead objective (2.4) on average over this dataset. We employ the method of Zhang
et al. (2023) and include a gauge map in the output layer of the network to ensure that the network always
produces decisions that satisfy the capacity limits and supply–demand balance constraints for both energy
(2.2) and steam (2.3).

While this unsupervised training approach may yield low empirical error on the training set and the
gaugemap ensures constraint satisfaction, this does not guarantee that theML algorithmwill performwell
on out-of-sample instances or under distribution shift. In the next section, we introduce an algorithm to
address this challenge and provide provable cost guarantees for the learned proxy ML.

We conclude this section with some notation. For an algorithm A producing decisions x1,…,xT ,
define ALGt :¼ xt as A’s decision at time t, and define CALG s, tð Þ :¼Pt

τ¼s f xτ ;θτð Þþ∥xτ �xτ�1∥ as
A’s cost from time s through t. For brevity, we write the total cost as CALG :¼ CALG 1,Tð Þ.

3. Algorithm

We propose in Algorithm 1 a novel algorithm, RML, that “robustifies” the algorithmML, giving a
sequence of dispatch decisions with cost that can be bounded in terms of the costs incurred by both ML
and G. RML behaves as follows: it begins by followingML’s decisions, but if ML surpasses
a cost threshold andG is performing relativelywell, RMLwill switch to followingG’s
decisions (line 8). However, if G begins to perform worse relative to ML, then RML will
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switch back to following ML (line 15). The specific thresholds for switching are determined by
the parameters ϵ,δ> 0, which reflect the algorithm’s confidence in ML. That is, when ϵ and δ are small
(close to 0), RML will spend more time following the decisions of ML; on the other hand, when ϵ
and δ are large, RML will spend more of its time following the decisions of G. Tuning of ϵ
and δ thus enables the plant operator to choose the particular tradeoff they wish to achieve between
exploiting the (typically excellent) performance of ML and obtaining worst-case performance guarantees
comparable to that of G, even in cases of distribution shift.

Algorithm 1: The algorithm ROBUSTML ϵ,δð Þ. Note that all algorithms are assumed to begin in the same
initial state x0, so a0 ¼ r0 ¼ x0 (where a0 ¼ML0 and r0 ¼GREEDY0).

Ourmain analytic result on the performance of RML is the following bound on its cost. Note that
we assume that the decision space has diameter D, so ∥MLt�GREEDYt∥≤D for all t∈ 1,…,Tf g.

Theorem 3.1. The algorithm RML (Algorithm 1) achieves cost bounded as

CROBUSTML ≤ min 1þ ϵþδð ÞCML, 1þ1þ ϵ
δ

� �
CGREEDY þ 1þ2

ε

� �
D

� 	
:

We present a proof of Theorem 3.1 in Section 6. In particular, the theorem tells us that by selecting ϵ,δ
arbitrarily small, RMLcan achieve performance arbitrarily close to that achieved byML, at the cost
of possibly worse performance relative to G. However, by selecting moderate ϵ,δ, it is possible to
trade off the exploitation of MLwith robustness with respect to G’s performance. Moreover, rather
than selecting fixed ϵ,δ a priori to achieve a particular, fixed tradeoff, it is possible to apply techniques
from online learning to optimally tune these parameters in an adaptive fashion (see, e.g., Khodak et al.,
2022; Li et al., 2022; Zeynali et al., 2021).

It is also important to note that the above result does not depend in any crucial way on the choice of the
algorithm G. That is, the plant operator can choose any strategy as their baseline “robust”
algorithm, including heuristic methods that are currently employed in practice, and the performance
bound given by Theorem 3.1 on Algorithm 1 will hold, with CGREEDY replaced by the cost of the operator’s
chosen strategy. Thus, Algorithm 1 gives a method for power plant operators to take advantage of
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machine learning’s good performance while maintaining worst-case guarantees relative to their existing
strategies, whatever they may be.

4. Experimental Results and Discussion

We investigate the performance of our algorithm for cogeneration dispatch on a modified form of the
CogenEnv environment from SustainGym, a reinforcement learning benchmarks suite (Yeh et al.,
2023); all of the code, models, and data employed in conducting experiments can be found at https://
doi.org/10.5281/zenodo.13623809. This cogeneration plant has behavior modeled in a black-box
fashion via neural networks, and thus the fuel cost is differentiable as a function of the dispatch
decisions. We train an ML model to replicate the behavior of MPC with lookahead w¼ 6 in an
unsupervised fashion as described in the previous section. The model is trained on a dataset of 100 days
of ambient conditions (temperature, pressure, humidity) and municipal demands for energy and steam
on a 15 minute basis. To solve for the G and MPC decisions, we use sequential least-squares
programming in SciPy (Virtanen et al., 2020).

We begin by comparing the runtimes of G, MPC, and ML to produce a day’s worth of dispatch
decisions on an AWS EC2 instance with 4 virtual CPU cores and an NVIDIAT4 GPU (Figure 2). We find
that while G can produce a day of dispatches in about 30 seconds,MPCwith lookaheadw¼ 6 takes

Figure 2.Number of seconds (mean and standard deviation) for each algorithm to produce a day’s worth
of dispatch decisions.

Figure 3. Cost of each algorithm under increasing noise σ on the lookahead predictions, normalized by
G’s cost. Curves indicate mean cost and shaded regions cover ± one standard deviation. Several
choices of parameters are shown for RML: ϵ¼ δ¼ 0:1 (top left), ϵ¼ δ¼ 0:4 (top right), ϵ¼ δ¼
0:7 (bottom left), ϵ¼ δ¼ 1:0 (bottom right).
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nearly 100 times as long (�45 minutes). On the other hand, ML is three orders of magnitude faster than
MPC, returning a day’s worth of decisions in under two seconds on average. This is unsurprising, since
while G andMPC require solving optimization problems to produce dispatch decisions,ML simply
requires a neural network’s forward pass.

We next examine the performance of ML, G, and RML on the baseline system
(no renewables) when the lookahead predictions are unreliable, as in the case when there is distribution

shift. That is, we compare the setting of perfect predictions (i.e., bθtþ1∣t ¼ θtþ1,…,bθtþw∣t ¼ θtþw) to settings
with i.i.d. Gaussian noise and increasing standard deviation σ on the predictions
(i.e., bθtþ1∣t ¼ θtþ1þ ztþ1∣t,…,bθtþw∣t ¼ θtþwþ ztþw∣t, with zτ∣t �i:i:d:N 0,σIð Þ). We show the results in
Figure 3 for several choices of the RML parameters ϵ,δ. In particular, we observe that while ML
performs better than G when predictions are good (σ ≤ 30), its performance degrades significantly
as the noise grows (σ! 100). Nonetheless, for the cases of larger ϵ and δ – specifically, ϵ¼ δ¼ 0:7 and
ϵ¼ δ¼ 1:0 –RMLgracefully transitions between the good performance ofML for small σ to nearly
matching or beating the performance of G in the large σ regime. Thus, even though the quality of
predictions is unknown a priori, RML exploits the good performance of ML when predictions are
good while preserving robustness in the worst case. Notably, however, this is not the case when ϵ¼ δ is
small, as can be seen in the top row of Figure 3; in this case, RML stays too close to the ML
algorithm, and its performance suffers as a result.

We further examine the performance of the algorithms under increasing penetration of wind energy,
displaying the results in Figure 4.We find that the efficiency improvement ofMLoverGwidens for
moderate wind penetration (up to 200 MW), highlighting the value of using lookahead alongside ML to
increase efficiency when renewable generation leads to more frequent ramp events. Notably, however,
ML’s performance gets closer to that of G when wind penetration nears 400 MW, possibly
reflecting the challenge of adequately anticipating future ramp needs in a high-renewables environment
even when equipped with moderate lookahead. Nonetheless, we find that when ϵ¼ δ¼ 1:0, RML
yields uniformly improved performance over both ML and G and thus enables better efficiency
even in challenging high-renewables scenarios. While surprising, this improvement highlights that
adaptive switching between the ML and G algorithms enables RML to exploit each
algorithm when it performs well, leading to better average performance than either algorithm.

Figure 4. Cost of each algorithm under increasing wind penetration, normalized by G’s cost.
Curves indicate mean cost and shaded regions cover ± one standard deviation. Several choices of
parameters are shown for RML: ϵ¼ δ¼ 0:1 (top left), ϵ¼ δ¼ 0:4 (top right), ϵ¼ δ¼ 0:7 (bottom
left), ϵ¼ δ¼ 1:0 (bottom right).
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5. Conclusions

In this work, we proposed a learning-augmented algorithm, RML, for the operation of cogeneration
plants with ramp costs, finding that it effectively balances exploitation of the good performance of
machine-learned algorithms with worst-case robustness in cases of distribution shift. In particular,
RML allows for taking advantage of lookahead predictions without suffering the computational
complexity of MPC, and depending on how its parameters are tuned, it can yield performance that
uniformly improves on both a pure ML approach and existing baseline algorithms used in practice.

Several interesting avenues remain open for future work. First, it would be interesting to apply RML
to larger energy systemswithmore generators to examine how performance gains scale on larger systems.
Second, while RML currently accounts for ramping costs in its performance guarantee, it does not
ensure the satisfaction of strict ramp limits, which constrain the operation ofmany dispatchable generators
in the real world. As such, extending the algorithm to allow for such strict limits would be a valuable step
toward real-world algorithm deployment. Finally, while in this work, we trained the ML model to mimic
MPC, there are numerous variants of MPC that are explicitly designed for greater robustness, e.g.,
Bemporad and Morari (1999), Christianson, Werner, et al. (2022), Langson et al., (2004), and Schwarm
and Nikolaou (1999). It would be interesting to examine how such robustified MPC variants perform
when input to a learning-augmented algorithm such as RML and whether they can improve both
average and worst-case performance.

6. Proof of Theorem 3.1

We begin by showing CROBUSTML ≤ 1þ ϵþδð ÞCML. Note that the algorithm consists of phases in which
RML first coincides with ML, and then switches to following G, before switching back to
ML, and so on. We will assume that RML ends the instance coinciding with ML, so xT ¼ aT ; the
case in which RML ends at rT is similar. Let ti denote the timestep in which RML switches
from G back to ML for the ith time, with t0 :¼ 1 since RML always begins by following
ML. Similarly, let mi denote the timestep in which RML switches from ML to G for the ith
time. Clearly, we have 1¼ t0 < m1 < t1 < ⋯ < mk < tk ≤ T , for some k∈ℕ. Even though RML
ends atML, definemkþ1 :¼ Tþ1 for notational simplicity. Then the cost of RMLmay bewritten as

CROBUSTML ¼
Xm1�1

τ¼1

f τ aτð Þþ∥aτ �aτ�1∥

þ
Xk
i¼1

f mi
rmið Þþ∥rmi �ami�1∥þ

Xti�1

τ¼miþ1

f τ rτð Þþ∥rτ � rτ�1∥

 

þ f ti atið Þþ∥ati � rti�1∥þ
Xmiþ1�1

τ¼tiþ1

f τ aτð Þþ∥aτ �aτ�1∥

!

≤CML 1,m1�1ð Þþ
Xk
i¼1

CGREEDY mi, ti�1ð Þþ∥rmi�1�ami�1∥ð

þCML ti,miþ1�1ð Þþ∥ati�1� rti�1∥Þ
(6.1)

≤CML 1,m1�1ð Þþ2kDþ
Xk
i¼1

CGREEDY mi, ti�1ð ÞþCML ti,miþ1�1ð Þ (6.2)

≤ ð1þ ϵÞCMLþ
Xk
i¼1

CGREEDYðmi, ti�1Þ (6.3)

≤ ð1þ ϵþδÞCML (6.4)
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where (6.1) follows from the triangle equality on ∥rmi �ami�1∥ and ∥ati � rti�1∥, and (6.2) follows by the
diameter bound. The inequality (6.3) follows by line 6 of the algorithm, which states that the algorithm
will switch from followingML to followingGREEDY at time t only ifCML s, tð Þ≥ 2D

ϵ . Noting that at the start
of any timestep t, s is exactly

s¼ max
i:miþ1≤ t

miþ1

(with m0 :¼ 0 for notational convenience), it follows that for each i∈ k½ �, CML mi�1þ1,mið Þ≥ 2D
ϵ . Thus

2kD≤ ϵ
Xk
i¼1

CML mi�1þ1,mið Þ¼ ϵ �CML 1,mkð Þ≤ ϵ �CML:

Finally, (6.4) follows fromXk
i¼1

CGREEDY mi, ti�1ð Þ≤CGREEDY 1, tk�1ð Þ< δ �CML 1, tk�1ð Þ≤ δ �CML,

since by definition, xtk�1 ¼ rtk�1, which by line 12 of the algorithm means that
CGREEDY 1, tk�1ð Þ< δ �CML 1, tk�1ð Þ. Thus, we have proved the desired bound
CROBUSTML ≤ 1þ ϵþδð ÞCML.

We now turn to showing CROBUSTML ≤ 1þ 1þϵ
δ

� �
CGREEDY þ 1þ 2

ϵ

� �
D. First suppose RML finishes

the instance coinciding with ML, so xT ¼ aT . Let τ ∈ 0,…,T�1f g denote the last time at which
RML coincided with G, or that xτ ¼ rτ . Thus the cost can be bounded as

CROBUSTML ¼CROBUSTMLð1,τþ1ÞþCROBUSTMLðτþ2,TÞ
≤ ð1þ ϵþδÞCMLð1,τþ1ÞþCMLðτþ2,TÞ

(6.5)

≤ max 1þ1þ ϵ
δ

� �
CGREEDYð1,τþ1Þþ2D

ϵ
, 1þ1þ ϵ

δ

� �
CGREEDY

� 	
(6.6)

≤ 1þ1þ ϵ
δ

� �
CGREEDYþ2D

ϵ
(6.7)

where (6.5) follows via the previously proved inequalityCROBUSTML ≤ 1þ ϵþδð ÞCML, and (6.6) follows by
the fact (according to line 14 of the algorithm) that ROBUSTML switching fromGREEDY toML at time τþ1
means that CGREEDY ≥ δ �CML 1,τþ1ð Þ, as well as from the following observation: since ROBUSTML
coincides with ML between times τþ1 and T , line 6 of the algorithm tells us that either
CML τþ2,Tð Þ< 2D

ϵ or CGREEDY ≥ δ �CML.

Finally, suppose RML finishes the instance coinciding with G, so xT ¼ rT . Let
σ ∈ 0,…,T�1f g denote the last time at which RML coincided with ML, or that xσ ¼ aσ . By the
previous case’s inequality (6.7), we have

CROBUSTML¼ CROBUSTML 1,σð ÞþCROBUSTML σþ1,Tð Þ
≤ 1þ1þ ϵ

δ

� �
CGREEDY 1,σð Þþ2D

ϵ
þ f σþ1 rσþ1ð Þþ∥rσþ1�aσ∥þCGREEDY σþ2,Tð Þ

≤ 1þ1þ ϵ
δ

� �
CGREEDY 1,σð Þþ2D

ϵ
þDþCGREEDY σþ1,Tð Þ

≤ 1þ1þ ϵ
δ

� �
CGREEDYþ 1þ2

ϵ

� �
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