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Abstract

In the early 2000s, Ramakrishna asked the question: for the elliptic curve
E: y2 =x —x,

what is the density of primes p for which the Fourier coefficient a,(E) is a cube modulo p?
As a generalisation of this question, Weston—Zaurova formulated conjectures concerning the
distribution of power residues of degree m of the Fourier coefficients of elliptic curves E/Q
with complex multiplication. In this paper, we prove the conjecture of Weston—Zaurova for
cubic residues using the analytic theory of spin. Our proof works for all elliptic curves E
with complex multiplication.

2020 Mathematics Subject Classification: 11R44, 11N35, 11G0S5, 11G15 (Primary);
11R37, 11F80 (Secondary)

1. Introduction
For the elliptic curve

E:y2=x3—x,

with complex multiplication by Q(i) and error terms
ap(E) =p+1-— |E(Fp)|’

are there infinitely many primes p = 1 mod 12 such that a,(E) is a cubic residue modulo p?
This question was formulated by Ramakrishna in the early 2000s. At that time, the question
was perceived as interesting yet inaccessible. Note that it is natural to restrict to primes
p=1mod 12. Indeed, for p =3 mod 4, we have a,(E)=p+ 1if p> 5, so a,(E) is a cube
modulo p. Furthermore, all elements of I, are automatically cubes if p =2 mod 3, so in
particular a,(E) is once more a cube modulo p.
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In 2005, Weston [16] formulated a family of conjectures inspired by the question, but
only for elliptic curves without complex multiplication. In a subsequent paper, Weston
and Zaurova considered the analogous conjectures for elliptic curves over (Q with complex
multiplication. Write wg for the number of roots of unity contained in a number field K.

CONJECTURE 1-1 (Weston—Zaurova [17, conjecture 3-1]). Let E be an elliptic curve over Q
with complex multiplication by an imaginary quadratic field K. Let m be an integer coprime
with wk. Then the density of primes p =1 mod m with a,(E) # 0 for which ay(E) is an mth
power residue modulo p is 1/m. Furthermore, the density is independent of any Chebotarev
class P contained in the set of primes p =1 mod m with a,(E) # 0 in the sense that if the
primes are restricted to P, the relative density remains 1/m.

Note that, for all but finitely many primes, p = 1 mod m and the reduction of E at p being
ordinary is equivalent to p splitting completely in K(&,).

In [16, 17], Weston and Zaurova prove the special cases of the conjecture to which clas-
sical techniques are applicable. In particular, they settle the case when K = Q(+/—3) and
m =3 by using that K contains the third roots of unity so that the classical cubic reciprocity
law is available. For this reason, we exclude the field K = Q(+/—3) in the statements of this
paper.

In contrast, the classical techniques do not apply to the case K =Q(i) and m =3, and
therefore the original question for the curve E : y?> = x> — x remained open. In this paper,
we answer Ramakrishna’s question in the affirmative, and prove that among the primes
p =1 mod 3 for which E : y> = x> — x has ordinary reduction (equivalently, p = 1 mod 4 for
p >5), the density of a,(E) being a cubic residue modulo p is 1/3. In addition, we prove
Conjecture 1-1 for all elliptic curves with complex multiplication (CM) by an imaginary
quadratic field K = Q(v/—d) where d # 3 in the case of cubic power residues (i.e. m = 3).
We do not need the curves to be defined over @, nor do we need them to have CM by a
maximal order; it suffices that they have CM by some order O in K and are defined over the
ring class field L of O.

To prove the main theorems of this paper, we extend the analytic theory of spin to cubic
symbols over totally imaginary biquadratic fields. Our results are unconditional, as we do
not need to assume any standard conjectures on short character sums. This is atypical for
results on spin symbols, which are most often conditional on such conjectures.

THEOREM 1-2. Let K be an imaginary quadratic field satisfying gcd (3, wx) = 1, or equiv-
alently K # Q(&3). For any prime p that splits completely in K as (77), where T is the
conjugate of w, and where 7 lies below a prime ideal p in K(3), there is a well-defined

cubic spin symbol of the form
[Pl = (ﬁ)
P/ k)3

Furthermore, there is a constant C > 0 such that for all X > 100

> i< cx'em,
Nk(z3)/0P)<X
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One readily checks that the symbol does not depend on the choice of generator , see
Proposition 2-3. The last part of Theorem 1-2 lies much deeper and its proof occupies the
majority of this paper.

As a corollary, for any elliptic curve E with complex multiplication by an imaginary
quadratic field K, we prove asymptotics with a power saving error term for the primes p that
split completely in K(¢3) such that a,(E) is a cubic residue modulo p. Let us now explain
what we mean by a,(E) in this context.

Let E be an elliptic curve with CM by an order O in an imaginary quadratic field K and
let L be the ring class field of O. Assume that E is defined over L. If we take a prime 3
above p where E has good reduction, we may introduce the quantity

ap(E)=p+1—|EOL/P)I. (1-1)

If O* = {+£1} and if P’ is another prime of L above p, it is a classical result of Deuring that
aqg(E)2 :aqy(E)z, i.e. agpz(E) is determined up to sign (for a reference, see our Lemma
2-2). Therefore asp(E) being a cube modulo p does not depend on the choice of prime
PB. A somewhat more involved argument gives the same result if O ={+£1, +i}, see
Proposition 2-3.

Since it is possible to impose arbitrary congruence conditions when handling spin sym-
bols, we are able to get density results even when imposing arbitrary abelian splitting
conditions.

COROLLARY 1-3. Let E be an elliptic curve with complex multiplication by an order O in
an imaginary quadratic field K different from Q(¢3). Suppose E is defined over the ring class
field L of O. Then

#{p <X,p=1mod 3, p splits in L : ap(E) is a cube modulo p} 1 o 1
#{p <X,p=1mod 3, p splits in L} 3 X1/3200 |

Here asy(E) is defined as in equation (1-1) with *B an arbitrary prime of L above p.

If'P is a Chebotarev class of rational primes defined by a splitting condition in an abelian
extension of K(¢3) containing L and projecting trivially in Gal(L/Q), then the result remains
valid when the set of primes is restricted to p with p € P.

The Chebotarev density theorem gives the density of unramified primes with given split-
ting behavior in a number field. However, several examples arise naturally in number theory
concerning the splitting behavior of primes in fields that depend on the prime itself, and in
such instances, Chebotarev is insufficient. Instead, these types of questions often fall in the
realm of spin symbols.

One example is the theory of level-raising. Level-raising goes back to work of Ribet in
the 1980s on modular forms and their associated odd Galois representations. In the late 90s,
Ramakrishna [11] initiated the study of an analogous theory of level-raising in the context
of even Galois representations. Ramakrishna observed that level-raising at p is possible if
and only if p splits correctly in a field depending on p.

More generally, in the theory of lifting Galois representations, the key objects controlling
the situation are the so-called Selmer and dual Selmer groups. The ranks of Selmer groups
can be modified by introducing ramification at new, auxiliary primes, given that such a prime
splits correctly in a field that generally depends on p itself.
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For an imaginary quadratic field K and a prime p, we let K" (p) be the maximal abelian
extension of K killed by m and unramified away from p. We prove the following density
theorem on the splitting of primes p in the number fields K" (p) that depend on p. In the
statement of Theorem 1-4, the splitting condition on p is imposed to control the size of the
maximal abelian extension of K unramified away from p.

Our next theorem is a prototypical example of this type of question: splitting of p in
a number field depending on p. In order to state it, we let m be a prime and let ¢, be a
primitive mth root of unity. Let F be a number field, and define

Vg = {x € F* : (x) =J™ for some fractional ideal J},

where (x) is the fractional ideal generated by x € F*. We define the m-governing field of F
to be the field F(¢,, &/ Vy). These types of governing fields have been extensively studied in
the literature, see for example [3, 4] for background material on governing fields.

THEOREM 1-4 (Splitting in number fields that depend on the prime). Let K be an imaginary
quadratic field and let m > 3 be a prime such that gcd (m, wg) = 1. Let O be an order in K,
and let p be a prime that splits completely in the ring class field of O and the m-governing
field of K. Let K" (p) be the maximal m-elementary abelian extension of K unramified away
from p, and let f(p, K" (p)/Q) be the inertial degree at p in K" (p)/Q. Then [p] =1 if and
only if f(p. K™ (p)/Q) = 1.

In particular, for m =3, among the primes p splitting completely in the ring class field
of O and the 3-governing field, the set of primes p of residue field degree 1 at any prime in
K®(p) above p has density 1/3.

In this theorem, we are using implicitly that the density results on spin symbols remain
valid when the class of primes considered is restricted to Chebotarev classes defined by
Chebotarev conditions in abelian extensions of K(¢3). We expect that it is possible to prove
the Weston—Zaurova conjecture for all power residues m by applying techniques from the
joint distribution of spins from Koymans—Milovic [6]. However, such results would be
conditional on short character sum conjectures.

Below, we state a corollary of Theorem 1-2.

COROLLARY 1-5. Let € be a prime, and let
p: Gal(@Q/Q) — GL (2, Z)

be a Galois representation arising from the Galois action on £°°-torsion points of an elliptic
curve over Q with complex multiplication by an imaginary quadratic field Q(~/—d) where
d # —3. Let S be the smallest set of places containing £ and the archimedean place of Q
such that p is unramified outside S. For primes p € S, let Frob, be any lift of Frobenius to
Gal(@p /Qp). Among the primes p =1 mod 3 splitting completely in the ring class field of
Endc (E),

trace (o( Frob, )) € Z

is a cube modulo p one third of the time.

Our method of proof of Theorem 1-2 relies on a version of Vinogradov’s sieve extended
to totally imaginary biquadratic fields. In [2], Friedlander—Iwaniec—-Mazur—Rubin intro-
duced quadratic spin symbols of primes in totally real, cyclic number fields (satisfying some
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additional technical conditions) and proved equidistribution of such symbols by extending
Vinogradov’s sieve to totally real, cyclic fields. In general, their results are conditional on
standard conjectures on short character sums (denoted C,, in their paper where 7 is the degree
of the totally real cyclic number field), and their results are only unconditional in the case
n = 3. In this paper, we extend the methods in [2] to cubic spin symbols over biquadratic,
totally imaginary fields of degree 4 over Q. It is natural to compare this to work of Merikoski
[8], although we should warn the reader that his spin symbol is not the same as ours.

Our main analytic accomplishment is to make our equidistribution results unconditional
in this setting. To make our results unconditional, we follow a similar strategy strategy as
employed previously by Koymans—Milovic [5] and Piccolo [10]. However, unlike the works
[5, 10], we do not assume that our biquadratic field has class number 1 and we deal with
cubic symbols instead of quartic symbols.

2. General spin symbols

In this section we introduce our cubic spin symbol of interest, and relate it to a,(E). This
symbol is a natural generalisation of the spin symbol introduced in [2]. In fact, it turns out
that the algebraic part of our theory readily generalises to all m, not just m = 3. We start by
identifying a family of spin symbols, indexed by m, capturing whether the error terms a,(E)
are power residues modulo m. This is achieved in Proposition 2-3. We will then relate this
to splitting of p in a number field depending on p, see Lemma 2-10.

2-1. Power residue symbols

We shall briefly recall the required theory of power residue symbols that we need. Let M
be a number field always containing a fixed primitive mth root of unity that we denote ¢,,.
For o € Oy and p a prime of M not dividing m, we define (o/p)ar,» as the unique element
in (&) U {0} satisfying

o Nmyo®-1
— =a  m mod p.
p M,m

We multiplicatively extend this to all ideals / coprime to m.
For our application, the case m = 3 is particularly important. We will use the following
weak form of cubic reciprocity.

PROPOSITION 2-1. Let M be a number field containing (3. Take elements «, B € Oy and
assume that 8 is coprime to 3. Then the cubic residue symbol (a/B)m 3 depends only on the
congruence class of B modulo 27aOy;. Moreover, if « is also coprime to 3, we have

(5=
B ms " \a M3

where |1 depends only on the congruence classes of o and 8 modulo 270y.

2-2. Power residues of degree m and spin

Let K be an imaginary quadratic field with maximal order Ok. For any order O of con-
ductor f in K, there is a unique abelian extension L/K called the ring class field of O. We
refer to [1, p. 179] for the definition of ring class fields.

https://doi.org/10.1017/S0305004125000428 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004125000428

6 PETER KOYMANS AND PETER VANG UTTENTHAL

We write o for the non-trivial element of Gal(K/Q). To keep our notation brief, we shall
frequently use conjugation to denote this automorphism, so that we may speak of « for
elements « but also of q for (prime) ideals g.

LEMMA 2-2. Let K be an imaginary quadratic field and let O be an order in K. Let L be
the ring class field of O, and let E be an elliptic curve over L with Endc (E) = O. Let p be a
prime that splits completely in L and *B be a prime in L above p (in particular, Or /B >~ F)).
Suppose E has good reduction at P. Then there is k € O such that p = kx and

ap(E)=p+1—|EQOL/P)| =k + K.
Proof. See [1, theorem 14-16].

PROPOSITION 2.3. Let K = Q(+/D) be an imaginary quadratic field and let m >3 be any
odd integer such that gcd (m,wg) = 1. Let M = Q(D, &) and let

Gal(M/Q) = Gal(K/Q) x Gal(Q(5n)/Q) = {1,0} x (Z/mZ)".

Let O be an order in K and let E be an elliptic curve defined over the ring class field of O
with Endc (E) = O. Let p =1 mod m be a prime that splits completely in the ring class field
of O. According to Lemma 2-2, there exists k € O such that

P =KK
and
ap(E) =« + &,

where B is a prime of L above p.
Let q = () and let p be a prime in M above q.

M,m M,m

($),.-G)
p M,m p M,m,

[ «®» [] = M

Ifue O, then

reGal(M/K) reGal(M/K)
aOm q0m (o) (Z)mZ)*

|
l

qq Q(&m) K

——

pO
l
|

p Q
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so the spin symbol is well-defined, i.e. is independent on the choice of generator k for q.
Furthermore, [p] =1 if and only if asg(E) is an mth power residue modulo p.

Proof. Since p=1 mod m, p splits completely in Q(&,,). Since we assume p splits com-
pletely in K, we conclude that p splits completely in M. Since p lies above q, o (p) lies above
o(q) =q. In M, the primes q and § decompose as follows:

Ou= [] 0. TOu=c@Ou= [] t®).
reGal(M/K) reGal(M/K)

Since ged (m, wg) =1 by assumption, we see that all elements of O are mth powers
in K. We conclude that the spin symbol [p] is independent of the choice of x. Using that
k =0 mod p, we have by Lemma 2-2

=(3),,~ (), (%57).
p M,m p M.m p M,m

Hence [p] = 1 if and only if agz(E) is an mth power residue modulo p. Now, Oy /p > F, so
asp(E) is an mth power modulo p if and only if ag (E) is an mth power modulo p.

2-3. Definition of the spin symbol

Let K = Q(+/—d) be an imaginary quadratic field with d > 0 squarefree. We will assume
that d # 3. The field M := K(¢3) will play an important role throughout the paper. We fix
the following data associated to M:

(1) welet {ny,...,na} be an integral basis for Oy with n; = 1;

(2) the torsion subgroup of Oy, is generated by (2 if d =1, and otherwise the torsion
subgroup is generated by ¢e;

(3) we pick two disjoint collections of prime ideals py, ..., p; and q1, . . ., g, coprime to
6d, where each collection is a set of representatives for the class group CI(M) of M.
We let

h h
Fe=TTwi]Jar  f:= Nuyad. @1
=1 j=1
Then f is principal. Furthermore, we may choose p1, ..., pn, q1, - - . , g5 in such a way

that the norm f of | is squarefree.

The field M is a Galois extension of Q with Galois group isomorphic to the Klein four
group, say {1, o, 7, o t}, which we depict diagrammatically as

M =K({3)

w>

Q(%) K=Q(W-d) Q(V3d)

\\\\g////
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Let p be a completely split prime ideal of M. If pt(p) is a principal ideal of K, we define
a symbol

[p]:= <®) 6{1,43,532}, (7)O0k = pT(p)Ok.
P Ju3

This does not depend on the choice of generator & of the Ok-ideal pt(p)Ok, as changing
by a unit changes the total symbol by (u/p)y, 3 =1 withu € {£1, i} ford =1 and u € {£1}
for d > 1. One directly checks that

-2 if L2
5 M@H:L- ;ming}
PGl /Q) iflpl=1.

More generally, if a is any integral ideal of Oy such that at(a) is a principal ideal of K, we
define

@) if ged (a, (3) =1
[a] := ( @ Jyy M EAE@E)
0 otherwise,

where gOk is any generator of at(a)Og. This is once more independent of the choice of
generator « of the ideal a. In particular, we have the useful formula

a M3

for all @ € Oy coprime to 3.

2-4. Field lowering

The coming results are variations of the results in [5, subsection 3-2]. As these results
play a key role in making our results unconditional, we shall provide full details for these
variations. As the results in this subsection hold in significant generality, we allow K to be an
arbitrary number field in this subsection only, and we shall return to the setting K = Q(+/—d)
afterwards.

LEMMA 2-4. Let K be a number field and let q be a prime of K coprime to 3. Assume that
M is a quadratic extension of K such that M contains {3 and q splits in M. Write o for the
non-trivial element of Gal(M /K). Then we have for all o € Ok

2
(a)_(ﬁkﬂwmm
9O0m ) 13 1gte if o does not fix £3.

Proof. Since q splits in M, we may write Oy = Qo () for some prime Q of M. This
gives

(@)
(50 ™ @s ()= () (), (81 (8),)
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where we used that o (o) = « thanks to the assumption o € Ok. If ¢ fixes {3, then the above

becomes
o o o2 a \?
()07 () = (3),= (56,
If o does not fix ¢3, then we get 144, by checking all possibilities for the cubic residue

symbol (o/Q)m3 € {1, &3, 532, 0}.

LEMMA 2-5. Let K be a number field and let q be a prime of K coprime to 3. Assume that
M is a quadratic extension of K such that M contains ¢3 and assume that q stays inert in M.
Further assume that q has degree 1 in K and let g be the prime of Q lying below q. Then we
have for all « € Og

o 2 :
(L) _ (W)K’g lqu 1 mod 3
OM/m3 |1y if g=2 mod 3.

Proof. We have the identities

o Nyygla-1 -1
<q0_) =q 3 =o 3 mod qOy.
M/ M3

If ¢ =1 mod 3, we rewrite this as

-1 =1\ 4+l Ngjg@-1\ 4t a \7! a \?
a3 = (aT) = (a 3 ) = (—) <—) mod .
90k J k3 90k / k3

If ¢ =2 mod 3, we instead rewrite this as

71 o e
a3 = <aqfl) = (aNK/@(q)A) T = qua =144y mod qOp,

as desired.

LEMMA 2-6. Let K be a number field and let M be a quadratic extension of K. Write o
for the non-trivial element of Gal(M /K). Assume that q is a prime ideal of K that stays
unramified in M. Further suppose that 8 € Oy satisfies B = o (8) mod qOyy. Then there is
B’ € Ok such that B’ = B mod qOy.

Proof. This is proven in [5, lemma 3-4].

2-5. Spin and inertial degrees of ramified primes

Let m be a prime. For any set S of tame places in a number field F, define
Vs ={x € F* : (x) =J™ for some fractional ideal J, and x € F,)"" Vv € S}.

Note that, by definition, F*™ C V. Let O;< be the units in F and Clg [m] the m-torsion in
the class group of F. There is an exact sequence

1 —> O; QF,, — Vy/F*" — Clg [m] — 1.

The m-governing field of F is the field F (&, 3/ Vy), where ¢, is a primitive mth root of unity.
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Recall that KU (p) denotes the maximal m-elementary abelian extension of K unramified
away from the primes above p. Write Hg(m) for the maximal unramified m-elementary abelian
extension of K.

LEMMA 2-7. Let K be an imaginary quadratic field and let m be a prime. Let p be a prime
that splits completely in the m-governing field of K, and factor pOg = qq. Then there exists a
Z/mZ-extension K" (q)/K ramified exactly at q and a Z./mZ-extension K" (q)/K ramified
exactly at . For any choice of K" (q)/K and K" (q)/K as above, we have

K™ (p) = K™ (@K"™ @H",
and thus [K"(p) : Q] = 2m? - |CI(K)[m]|. Diagramatically
K" (p)

R N

K™ (q) HY K™ (@)

%%

K

Q

Proof. Since p splits completely in the m-governing field and since the m-governing field
is ramified at m, it follows that p % m. Therefore, all primes of K above p must be tamely
ramified in K (p)/K.

By the tame Gras—Munnier theorem, there exists a Z/mZ-extension of K ramified exactly
at q. Likewise, there exists a Z/mZ-extension of K ramified exactly at . The compositum
K (m)(q)K (m) (ﬁ)H}m) is an m-elementary abelian extension of K unramified away from p with
degree m? - |CI(K)[m]| over K, and hence has degree 2m? - |CI(K)[m]| over Q. We will now
show that this implies K (p) = K™ (q)K™ @)H".

The inclusion K(m)(q)K(m)(ﬁ)HE(m) C K"™(p) is by definition, so it suffices to show that
the degree of K(m)(p) over K is at most m? - |CI(K)[m]|. By class field theory, we have a
canonical isomorphism

CI(K, p)

— = Gal(K™(p)/K),
mCIK. p) ~ O (K™ (p)/K)
where CI(K, p) denotes the ray class group of conductor p. By the ray class group sequence,
we have
0 X
0 Ok ik py— Clg) — o

K
The functor sending an abelian group A to A/mA is right exact, so we get a new exact
sequence
(Ok/p)* |, C&.p) | ClK)
(Ok/p)*™ -im Og mCIl(K,p)  mCI(K)
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Table 1. The (e, f, g)-decomposition of p in K™ (p)/Q

e(p, K™ (p)/Q) f. K™(p)/Q) g(p. K™ (p)/Q) K™ (p):Q]
m 1 2m - |CI(K)[m]| 2m? - |CI(K)[m]]
m m 2 - |CIK)[m]] 2m? - |CI(K)[m]|
This gives the bound
(K™ (p) - K]:‘ CI(K, p) < (OK/P). ‘ CI(K)
mCI(K, p) (Ok/p)*™-im Og | |mCI(K)
(Ok/p)*
= - |CI(K)[m]]. 2.3
(O /Py -im OF |CI(K)[m]]| (2-3)

Finally, since pOg = qq, we get an isomorphism
(Ok/p)* = Ok /D" x (Ok/* ZF x F.

Since ]F; is cyclic, this gives the upper bounds

(Ok/p)*
(Ok/p)*™ -im Oy

_| ©0x/p
=l Ox/pym| =

2

Combining this with (2-3) shows that the degree of K (m)(p) over K is at most m? - |CI(K)[m]|,
as desired.

LEMMA 2.8. Let K be an imaginary quadratic field and let m be a prime. Let p be a
prime that splits completely in the m-governing field of K. There are two possibilities for
the standard (e, f, g)-decomposition of p in K™ (p) (Table 1):

Proof. Because p is unramified in K and tamely ramified in K”’(p)/K, and because
tame ramification is cyclic, we have e(p, K™ (p)/Q) = m. Since f(p, K/Q) = 1, and since
Gal(K"(p)/K) is a vector space over F,,, it follows that f(p, K" (p)/Q) is either 1 or m.
By Lemma 2-7, we have

e(p, K™ )/ Q)f (0, K™ (p)/Q)g(p. K™ (p)/Q) = 2m* - |CL(K)[m]],
and the result follows.

LEMMA 2-9. Let m be a prime. Suppose p splits completely in the m-governing field of a
quadratic imaginary field K and in Hg(m). Then we have for any choice of K (m)(ﬁ)

fo, K™@)/Q =1 < f(q, K™@)/K) = 1.

Proof. Note that the compositum K (m)(ﬁ)Hg(m) does not depend on the choice of K" (q)/K
as it is the maximal m-elementary abelian extension of K unramified away from g. Since p
is assumed to split completely in H (m), we conclude that f(q, K" (q)/K) is independent of
this choice.
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Since f(p,K/Q)=1, we have f(p, K™ (p)/Q) =f(q, K™ (p)/K). Because K (p)=
K™ (q)K™ (ﬁ)HE(m) and because p splits completely in H%m), we conclude that

fo, K™ p)/Q) =1 < f(q, K™ (p)/K)=1
= f(q, K™ (q)/K)=1and f(q, K™ (@/K)=1. (24

Since e(q, K(m)(q) /K)=m, the condition f(q, K™(q)/K)=1 is automatically satisfied.
Removing it from the equivalence (2-4) gives the lemma.

LEMMA 2-10. Let K be an imaginary quadratic field and let m > 3 be any odd integer such
that gcd (m, wg) = 1. Set M := K(¢,). Let O be an order in K. Let p be a prime that splits
completely in the ring class field of O and the m-governing field of K, and let « € O with
p=«kk. Let q=(k), p a prime in M above q and [p] = (& /P)mm- Then we have for any
choice of K (m)(ﬁ)

(g, K™@)/K) =1 < [p] = 1.

Proof. Let G(1) be the full ray class group of modulus g above K and let K(q) be the full
ray class field of modulus q above K. If Vg )k is the Artin reciprocity map, there is a
commutative diagram

YK@/K

G(q) ——— Gal(K(q)/K)

| |

G(@/G@™ — Gal(K™ (@)H™ /K),

where the horizontal arrows are isomorphisms. Let Clg be the class group of K.
By [9, theorem 1.7, chapter V], there is a commutative diagram

1 — (0/9)*/0* —E—— G(q) y Clg y 1

| ! l

I — (0/0)*/(0/a)" — G(0)/G(Q)" — Clg/Cly —— 1

with exact horizontal rows. Here we used that O* € (O/q)*™, which follows from our
assumption ged (m, wg) = 1 as then every element of O must be an mth power.

By definition, ¢(k) = q. Observe that p certainly splits in Hg(m), as H}(m) is contained in the
ring class field of O. Therefore we conclude that

e, KM @/K) = 1 = flic, K @H /K) = 1
<= K is an mth power modulo q.

Now, « is an mth power modulo q if and only if « is an mth power modulo any prime in Oy,
above q if and only if
(L) _1
o(p) M.m
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Since Q(¢,) is the fixed field of o, we have the equalities

=G == G = (), = (500, = (5),, =
“\o® /) ym TNy N2 )y NP Jym \p M,m_p’

as desired.

3. Analytic prerequisites

In this section we set up the analytic machinery that we will use in the next two sections.
Our approach is based on [S].

3-1. A fundamental domain

Given an integral ideal a of M, there are many possible generators « of a. For our analytic
purposes, it will be useful to pick these generators in a systematic way. To this end, we
decompose Oy, as T x (€), where T is the torsion subgroup and where € is a fundamental
unit. We write V for the group generated by e.

Using our fixed integral basis {11, 2, 73, 14} of M, we get an isomorphism, in the cat-
egory of vector spaces, (: @4 — M by sending (ay, . ..,aq) to aijny + axnz + aznz + aans.
We also view Q* as a subset of R* in the natural way. For a subset S of R* and an ele-
ment & = ain| + axny + a3nz + aana € M, we will abuse notation by writing « € S to mean
(ai,...,aq4) €S. Given a subset S of R* and a real number X > 0, we define S(X) to be
the subset of (sq,...,ss4) €S satisfying f(s1, ..., s4) <X, where f is the norm polynomial
fX1, ..., X4) =NyyomXi +mXa +n3X3 + n4X4) € Z[X1, . . ., X4]. We write D for the
fundamental domain constructed in [5, section 3-3]. The main properties of this fundamental
domain can be found in [5, lemma 3-5] that we summarise now.

LEMMA 3-1. There exists a subset D € R* with the following properties:

(1) for all non-zero a € Oy, there exists a unique unit v € V with va € D. Moreover, we
have {u € Oy :ua € Dy ={vt:teT};

(ii) the set 'D(1) has a 3-Lipschitz parametrisable boundary. Furthermore, there exists
a constant C > 0 such that the boundary of D(1) intersects every line in at most C
points;

(iii) there exists a constant C > 0 such that for all @ = ajny + axny + az3nz + asng € D
(with a; € Z), we have |a;| < ClNM/@(oc)ll/4.

3-2. Vinogradov’s sieve

We will now state the main sieve that we will use. This sieve was originally developed
by Vinogradov in the context of representing odd integers as sums of three primes. Recall
that M := K(¢3). From now on we shall abbreviate Ny, simply as N and our ideals will be
ideals of Oy unless otherwise indicated.

In order to prove our later results, we will handle a slightly more general symbol than [p].
To this end, fix an ideal 99t of M and an invertible element u € O /9M0ys. We introduce
the function r;j(a, u, ) for i=1, ..., h, which is the indicator function of ap; having a
generator « satisfying « = u mod 991; recall that p; is one of our fixed representatives for
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CI(M). We shall treat u and 9 as fixed throughout the paper, and we shall abbreviate r;(a) :=
ri(a, w, NT). We will assume throughout the paper that 91 is divisible by f, see equation (2-1).

PROPOSITION 3-2. For every € > 0, there exists a constant C > 0 such that

3 riwlal] < cx' -t
N(a)<X
ml|a

uniformly for all non-zero integral ideals m of Oy and all X > 2.
Proof. The proof of this proposition is postponed until Section 4.

PROPOSITION 3-3. For every € > 0, there exists a constant C > 0 such that

Z Z O‘mﬁnri(mn)[mn] <CM +N)2714(MN)1_ﬁ+€
N(m)<M N(n)<N

uniformly for all M, N > 2 and all sequences of complex numbers o] <1 and |Bn| < 1.
Proof. The proof of this proposition is postponed until Section 5.

Once Propositions 3-2 and 3-3 are proven, Vinogradov’s sieve for number fields gives the
following result.

THEOREM 3-4. For every € > 0, there exists a constant C > 0 such that

3 rplp]| < CX' e
N(p)<X

forall X > 2.

Proof. Propositions 3-2 and 3-3 together with Vinogradov’s sieve for number fields as
presented in [2, proposition 5-2] yield

Z ri(m[a]A(a) < Ccx!'~am e,
N(a)<X

where A is the natural generalisation of the von Mangoldt function to number fields. The
theorem is then a direct consequence of partial summation.

4. Sums of type 1

This section is entirely devoted to the proof of Proposition 3-2. Our proof follows among
the same lines as [5, section 4] and [2, section 6]. From now on we fix a non-zero integral
ideal m of Oy. Let 901 be an ideal of Oy, divisible by f and let i be an element of Oy
coprime to 1. Recall that we introduced the function r;(a) for i=1, ..., h, which is the
indicator function of ap; having a generator « satisfying « = u mod 991 (recall that p; is one
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of our fixed representatives for C1(M)). We set
F=2%3" Ny - AM/Q),

where A(M/Q) is the absolute discriminant. Each non-zero ideal has exactly 6 or 12 gener-
ators in D, which is exactly the size of the torsion subgroup 7. Further splitting the sum into
progressions modulo F, we unwrap the sum as

1
> r@lal = o > rl@/pl@)/pil

N(a)<X aeD(XN(pi)
ml|a a=0 mod mp;

1
T Z Z ri((@)/pdl(@)/pil,
p mod ' a eDXN(py)
a=0 mod mp;
a=p mod F

where our first identity is justified due to the change of variables ap; = (). We claim that

[()/pil =[()]- ¥, 41)

for all « = p mod F, where y,, is some fixed number in {1, 3, 4“32, 0} depending only on p

and i. To prove the claim, first note that the claim holds if o (p;)o T(p;) is not a principal ideal

of K as we may simply take y, = 0. Henceforth we assume that o (p;)o T(p;) is principal and

generated by some element g € Ok, and we may similarly assume that « is coprime to 3.
Recalling the identity (2-2), we see that

) /pi] = (M) _ (oor@g’

@/ s @ ),

2 2 2
— (@] <§> (a(a)at(a)> <g_2 ‘ @2)
o/ M3 Pi M3 \P; M3

In the first line of the above display, we have used that « is coprime to f (as 971 is divisible
by f by assumption), and hence to Nys,q@(p;), and that p; is an unramified prime of degree 1
so that p; is coprime to g. Applying Proposition 2-1 to (g%/a)y 3, it follows that each of the
individual symbols in (4-2) depends only on p and i. Hence the claim follows.

We also note that r;((«r)/p;) depends only on & mod F. Prompted by these calculations,
we define for each p mod F and each ideal m

AX,p)= Y )]
aeD(X)

a=0 mod m

a=p mod F
By the above manipulations it suffices to estimate each A(X, p) individually. Furthermore,
we may assume that ged (3, p) = (1) as otherwise the symbol [(«)] is constantly zero.

Recalling that n; =1 by convention and writing M = Zn, 4+ Zn3 + Zn4 allows us to

decompose Oy = Z @ M. Therefore every o € Oy can uniquely be written as

a=a+p, acZ,p M.
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This transforms the sum A(X, p) as

- s(a+B) or(a+ B)
Axp= ) <a+ﬂ >M,3< atp >M,3

a+BeDX)
a+p=0 mod m
a+pB=p mod F

due to equation (2-2). Our aim is now to rewrite the cubic residue symbols. We have

(a(a + /3)) ~ (a + a(ﬁ)) . (a(ﬂ) - ﬂ>

at+pB Jys a+p Jus a+B Jus’

and similarly for the other cubic residue symbol. If 6(8) — B =0orif ot(8) — B =0, then
our cubic residue symbols are constantly 0 and we may safely remove such g from consider-
ation. In all other cases, we are thus incentivised to factor o (8) — 8 and o t(8) — B. Define
¢ to be the largest divisor of o(8) — B coprime to F and define ¢’ to be the largest divisor of
o7(B) — B coprime to F. We claim that

<o(ﬁ)—ﬂ) =M1‘<a+ﬂ) <W) :m.(”ﬂ) 43)
at+B Jus ¢ Jms at+B  Jus < Jm3

for some numbers (1, w2 € {1, ¢3, §32, 0} depending on p and § but not on a.
We will prove the claim for (6 (8) — B)/a + B)m 3, the other residue symbol can be treated
similarly. We choose a factorisation

(@(B) — B)=(t)ctity

with the properties:

(1) t; | F*° and is coprime to 3;
2) ] 27", where we recall that 4 denotes the class number of K, and #3 | 3.

We emphasise that such a factorization always exists although may not be unique. We
denote by €, T; and T, the fixed inverses in the class group of respectively ¢, t; and t; that
we have chosen in Subsection 2.3. Then we have ¢€ = (gg), t;T1 =(g1) and $,T; = (g2).
Because ct;t; is principal, it follows that €% %, = (g3) must also be principal. For a good
choice of generators g;, it follows that

o(B) — B=18081828; -

We conclude that

<o(ﬁ) - ﬂ) B <80g182g3_1> B (goglgzé%) B (goglgg) ( I )
atB Jus a+p M3 a+p 3 a+p M3 a+B/)us
where we used that a + 8 is coprime to 3f. Since (g2) = 2%, divides F/27, Proposition 2-1
shows that the last symbol depends only on p and . For the other symbol, we also apply

Proposition 2-1 to obtain
2
(goglgg) — s (a+ﬂ)
222) =13 - 5
atp /., 808183/ 43
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for some number u3 € {1, ¢3, {32} depending on p and 8 but not on a. We finally observe that

a+ B _(a—l—ﬁ) a+ B
808183 M3 ¢ Jms\ %3 M3

Since the last factor only depends on p and B, this proves our claim (4-3). We record our
progress by applying the triangle inequality to deduce that

AKX, p)l < Y ITX, p, B,

BeM
where
a+pB a+p

TX.p. )= ) ( ) () :
wel, ¢ Jm3\ ¢ Jm3

a+BeDX)

a+pB=0 mod m

a+p=p mod F

We will treat 8 as fixed and work towards estimating each T(X, p, 8) individually. It is at
this stage that we bring the material from Subsection 2.4 into play. To this end, we remark
that ¢’ is in fact the extension of an ideal of Q(+/3d). Here we use that ¢’ is coprime to F and
thus the discriminant of M and that ¢ is the largest such divisor of o 7(8) — 8. From now on
we shall view ¢’ as an ideal of Og(y3ay- We factor it as

k
COgaa = [ ¥

i=1

for prime ideals p; of OQ( V3d) 5O that

EaR(C)

Om )z oy \PiOm /) y3

Observe that the ideals p; are coprime to F by construction and hence unramified in the
extension M /Q(~/3d). We now claim that

a
(p;ﬁ )M,S = Lged (a+.p0=(D)- (@4
Since p; divides ¢’ and since ¢’ divides ot(8) — B, it follows that ot(a + 8) =a + B mod
piOn. Therefore Lemma 2-6 allows us to replace a + 8 by some 8’ € OQ( J3d) Then Lemma
2-4 gives the claim in case p; splits in M. Instead suppose that p; stays inert in M. If we write
pi for the unique prime of Z below p;, we certainly find that p =2 mod 3. In this case the
claim is a consequence of Lemma 2-5.

Having proved our claim, we perform a similar operation on the other cubic residue sym-
bol. This residue symbol shall not disappear, but we will be able to “lower it” to Q(¢3). This
is the crucial step in making our results unconditional compared to [2] despite working in a
field of degree 4.

Arguing as before, we may view ¢ as the extension of an ideal of Z[{3], and by abuse of
notation we shall view ¢ as an ideal of Z[¢3] from now on. In this case we factor ¢Z[¢3] = gq,
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where q has squarefree norm, g has squarefull norm and ged (Ng(z;),0(9), Noey)/o(@) = 1.
Furthermore, observe that q and g are both coprime to F, so all prime divisors of ¢ and g
stay unramified in M /Q(¢3). So far we have shown that

<a+,3) _<a+,3> (a+/3>

Ov Jyus \80m )y3\a0m )3

Lemma 2-6 and the Chinese remainder theorem allow us to replace 8 by some 8’ € Z[¢3].
Combining Lemma 2-4 and Lemma 2-5 yields

/ I\ 2
(a—i—ﬂ) =<a+,3) ’ @5)
90m /) m3 9 Jziz3

as any prime p in Z[¢3] that stays inert in M satisfies p =1 mod 3 (writing p := p N Z).
Finally, as g := Ng(z;),Q(q) is squarefree, the Chinese remainder theorem guarantees the
existence of some rational integer b with 8/ =b mod q.

Thanks to equations (4-4) and (4-5), we have thus arrived at

a+p a+b\>2
X, 0,)= ) ( 0 > ( ) Aged @tp.0)=(1)-
) 90M / m 3 9 /zig13

a+peD(X)
a+p=0 mod m
a+pB=p mod F

Following the proof on [5], we fix @ modulo the radical gy of g and detect the condition
Lgcd (a+8,¢/)=(1) using the Mobius function. Continuing in the footsteps of [S], we apply the
triangle inequality

ITX,p.BI< Y. Y ITX,p,B,a0,0),
ap mod go 0|c’Oy

where
2

a+b
T(X,p,B,a0,0):= Y < >
ac’ q
a+peDX)
a+pf=0 mod m
a+pB=p mod F
a=ap mod go
a+pf=0 mod d

Z[z3].3

Since squaring a cubic residue symbol is the same as conjugating it, we may now remove
the square factor without changing the absolute value of T(X, p, 8, ag, 0). After doing so, the
sum T'(X, p, B, ap, 0) has the same shape as [5, equation (4-2)]. Having successfully applied
our field lowering technique, the remainder of the proof is identical to [5, p. 7422-7424].

5. Sums of type 11

This section is entirely devoted to the proof of Proposition 3-3. This will be relatively
straightforward, as the required tools have already been developed in the literature. This was
started in [S, proposition 3-6], which is unfortunately not applicable here as the symbol is
required to take values in {£1, 0}. Smith [14] developed a very general large sieve that is
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completely explicit in its dependence on the underlying number field. Another interesting
recent result in this direction can be found in recent work of Santens [12]. Here we shall
appeal to [7, proposition 4-3].

In the notation of [7], we shall use [7, proposition 4-3] with the integer M on [7, p. 11]
equal to F, with the number field K equal to our M = K(¢3), with n equal to 4, with £ =3,
with #; = 1, = 1, with the function y equal to

yw,z):= <w) (@) (C’T(W)> <0r(z))
> Z M,3 w M,3 Z M,3 w M’3

and with Ap,g the set of squarefull integers. Then we can take C; to be an absolute con-
stant (C1 = 100 suffices) and C; = 1/2. We now check that this data satisfies the conditions
(P1)-(P4) form [7, p. 11-12].

Condition (P1) is a consequence of Proposition 2-1. Condition (P2) follows from the defi-
nition of the cubic residue symbol. Condition (P4) is readily verified by counting squarefull
integers in the usual way. Finally, (P3) follows from the Chinese remainder theorem and
orthogonality of characters. Applying [7, proposition 4-3], we exhibit, for any given € > 0,
the existence of a constant C(e) > 0 satisfying the inequality

Yo Y auBrn ) < COX + 1)FEXY) T 5-1)
weD(X) zeD(Y)
w=§] mod F z=§, mod F
for all o,,, B, of magnitude bounded by 1.
With this calculated, recall that our aim is to demonstrate the bound

Y Y empurtmmmnl) < COM -+ NS M0
N(m)<M N(n)<N

Let us first deal with the case that m and n are both principal. Observe that every principal
ideal has exactly |T| generators in D by Lemma 3-1, so our sum becomes

1
T2 Z Z oy Bori(wz)[wz]. 5-2)

weD(M) zeD(N)

We note that r;(wz) depends only on wz mod F and that

[(wz)]:V(w,z)(@) (@) (orw)) <m<z)> |
W/ M3 Z Jm3 w M3 z M3

Absorbing the last four cubic residue symbols in the coefficients «y,, 8; and splitting the sum
over congruence classes modulo F' shows that we can bound the expression (5-2) by at most
F8 sums appearing in the inequality (5-1).

This finishes the proof of Proposition 3-3 when the ideals m, n of that proposition are
restricted to principal ideals. The general case is handled by appealing to (4-1) and reducing
to the case of principal ideals.
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6. Proof of main theorems

In this section, we gather our previous results to prove our main theorems.

6-1. Proof of Theorem 1-2

Define Z to be the set of indices 1 <i < & such that our fixed generator p; of CI(M) has
principal norm in K. Then Theorem 1-2 is an immediate consequence of Theorem 3-4 by
taking 9t = fOys and summing over all u € (Op/9MO0y)™ and all i € 7.

6-2. Proof of Corollary 1-3

We take 7 as above, and we writef for the conductor of O. We also take 9t = ff Oy. The
first part of Corollary 1-3 follows from Proposition 2-3 and Theorem 3-4 by summing over
all i € Z and summing over the relevant u € (OM/ffOM)X.

The second part of Corollary 1-3 follows by enlarging 9 and choosing p appropriately
to account for the additional splitting condition.

6-3. Proof of Theorem 1-4

The first part of Theorem 1-4 is an entirely algebraic statement which is proven by com-
bining Lemma 2-9 and Lemma 2-10. The last part of Theorem 1-4 is a consequence of
Theorem 3-4.

6-4. Proof of Corollary 1-5

We shall now give the necessary background in Galois representations to relate Corollary
1-5 to Corollary 1-3.

Proof of Corollary 1-5. For any elliptic curve E, the action of Gal(Q/Q) on the £>°-torsion
points of E gives rise to a Galois representation p ramified at finitely many places. By [13,
theorem V-2.3-1], at each unramified place p, the error term asp(E) coincides with the trace
of the image under p of any Frobenius lift at p. Therefore Corollary 1-5 is a consequence of
Corollary 1-3.
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