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This article extends the validity of the conditional likelihood ratio (CLR) test
developed by Moreira (2003, Econometrica 71(4), 1027—1048) to instrumental
variable regression models with unknown homoskedastic error variance and many
weak instruments. We argue that the conventional CLR test with estimated error
variance loses exact similarity and is asymptotically invalid in this setting. We
propose a modified critical value function for the likelihood ratio (LR) statistic
with estimated error variance, and prove that our modified test achieves asymptotic
validity under many weak instruments asymptotics. Our critical value function
is constructed by representing the LR using four statistics, instead of two as in
Moreira (2003, Econometrica 71(4), 1027—1048). A simulation study illustrates
the desirable finite sample properties of our test.

1. INTRODUCTION

Inference in regression models with endogenous variables and many weak instru-
ments is becoming increasingly relevant in applied research. Researchers often
rely on standard asymptotic approximations when conducting inference in the
presence of many weak instruments. However, asymptotic approximations to the
finite sample distributions of conventional estimators and test statistics have been
shown to be poor when instruments are weak. The use of many instruments can
improve the efficiency of estimators or their associated tests, but when instruments
are weak it can also exacerbate the poor finite sample properties of standard
inference procedures.

Several previous papers have noted this issue. Chao and Swanson (2005), Han
and Phillips (2006), and Newey and Windmeijer (2009) generalize the many instru-
ments asymptotic theory to allow for weak instruments or moments. Andrews and
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2 SREEVIDYA AYYAR ET AL.

Stock (2007b) show that the Anderson–Rubin (AR), Lagrange multiplier (LM),
and conditional likelihood ratio (CLR) tests are robust to many weak instruments,
as long as the number of instruments, k, grows slower than the cube root of
the sample size, n1/3. For the case where k may be proportional to n, Hansen,
Hausman, and Newey (2008) develop a many instruments robust standard error and
a modification of the LM test, while Hausman et al. (2012) propose Wald tests with
the limited information maximum likelihood (LIML) and Fuller estimators that are
robust to heteroskedasticity and many instruments. More recent developments in
conducting robust inference with many weak instruments include the jackknife AR
tests by Crudu, Mellace, and Sándor (2021) and Mikusheva and Sun (2022), and
the jackknife LM test by Matsushita and Otsu (2024).

For the weak (but fixed number of) instruments problem, the seminal work of
Moreira (2003) sparked a growing literature on conditional inference. Moreira
(2003) introduces a general conditional inference framework for instrumental
variable regression models with homoskedastic errors and advocates for the CLR
test. Andrews, Moreira, and Stock (2006) establish a nearly-optimal property of
the CLR test, while Mills, Moreira, and Vilela (2014) propose approximately
unbiased conditional Wald tests with comparable power to the CLR test. Moreira
and Moreira (2019) extend the conditional inference framework to heteroskedastic
and autocorrelated errors.

In this article, we set out to investigate the performance of Moreira’s (2003) CLR
approach when k is relatively large and is allowed to grow proportionally with the
sample size, n. Size robustness of the CLR test under k = o(n1/3) has already been
established by Andrews and Stock (2007b). However, we show that in a setting
with homoskedastic normal errors and unknown variance, if k is allowed to grow
much faster than n1/3, then the conventional CLR test loses exact similarity and
is asymptotically invalid under many weak instruments asymptotics. We propose
a modified version of Moreira’s (2003) CLR test, hereafter called the modified
CLR (MCLR) test, which is robust to: (i) many instruments, where the number of
instruments can grow at the same rate as (or slower than) the sample size and (ii)
weak instruments. We use the same test statistic as Moreira (2003) (“LR1” in his
paper), but our proposed test employs a different critical value function which is
constructed by representing the likelihood ratio (LR) using four statistics, instead
of two as in Moreira (2003). Our MCLR test retains asymptotic validity when there
are many weak instruments, under a mild condition on identification strength. This
result holds even when we relax the assumption of normally distributed error terms,
as long as we impose an additional moment condition.

A substantive limitation of our approach is that all theoretical results are derived
under the assumption of homoskedastic errors. Several existing inference methods
(e.g., Hausman et al. (2012), Crudu et al. (2021), Mikusheva and Sun (2022), and
Matsushita and Otsu (2024)) are robust to error terms being heteroskedastic, which
is admittedly the more relevant case for applied research. This article should be
considered a building block toward further generalizations of the CLR approach.
A key observation of our MCLR approach is that in the case of homoskedastic
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errors, the LR statistic with many weak instruments can be written as a function of
four statistics, instead of two for the conventional CLR statistic (see Proposition 1
below). In the case of general heteroskedastic errors, such a representation of the
test statistic by a finite number of statistics is typically unavailable. While this is
beyond the scope of this article, it is an interesting avenue for future research to
extend our approach to allow certain patterns of heteroskedasticity, such as the
Kronecker product structure studied by Moreira and Moreira (2019).

The rest of this article is organized as follows. Section 2 introduces our setup
and the LR statistic when error variance is unknown. We discuss a representation
of the LR statistic by four statistics as well as the properties of those statistics.
In Section 3, we propose our MCLR test by constructing a robust critical value
function and establish its asymptotic validity in a many weak instruments setting.
We also discuss why the conventional CLR critical value function lacks validity in
our setting. Section 4 illustrates the usefulness of our proposed method through a
simulation study and proposes a pre-test procedure using our MCLR test. It also
outlines how an applied researcher may compute critical values for the MCLR test.
All proofs are contained in Appendix A.

2. SETUP AND TEST STATISTICS

2.1. Setup

Consider the following instrumental variable regression model:

y1 = y2β +u, (1)

y2 = Zπ2 + v2,

where y1 is an n × 1 vector of dependent variables, y2 is an n × 1 vector of
endogenous regressors, β is a scalar unknown structural parameter, u is an n × 1
vector of mean-zero disturbances, Z is an n × k matrix of instruments, π2 is a
k ×1 vector of unknown parameters, and v2 is an n×1 vector of mean-zero error
terms. We assume without loss of generality that there are no exogenous regressors
in (1) since one can always partial them out using standard projection methods.
Throughout this article, we focus on the model with a single endogenous regressor,
leaving the case of multiple endogenous regressors to future research (see Section 5
for some discussion).

The reduced form system can be written as

Y = Z�+V, (2)

where Y = (y1,y2), � = (π1,π2), and V = (v1,v2) with π1 = π2β and v1 = v2β +u.
This article is concerned with testing the null hypothesis H0 : β = β0 on the

structural parameter, against the alternative H1 : β �= β0, where the coefficients π2

are treated as nuisance parameters. We focus on the situation where researchers
only have many weak instruments at their disposal for testing H0 : β = β0.

To proceed, we impose the following assumptions. Let a0 = (β0,1)′.
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Assumption.

1. [Normal errors] The rows of V are independent and identically distributed, and
follow N(0,�) with a positive definite matrix �. � is unknown to the researcher.

2. [Many weak instruments] Z is nonrandom. One of the following two conditions
holds.
(a) k

n → α ∈ (0,1) as n → ∞, and the concentration parameter

μ2 = (a′
0�

−1a0)
−1a′

0�
−1�′Z′Z��−1a0, (3)

satisfies μ2 = O(n) and μ2√
k
→ ∞ as n → ∞; or

(b) k
n → 0 as n → ∞ (without any condition on μ2), where k is fixed or
diverging.

Normality of the reduced form errors in Assumption 1 is useful to motivate
our conditional inference approach, which is inspired by the exact similarity of
the LR statistic with known �. Indeed, Moreira (2003) proves that, conditional
on a sufficient statistic for � and when errors are normally distributed, the LR
statistic with known � has a finite-sample distribution independent of nuisance
parameters under H0 and its quantiles can be used to construct a similar test
(as long as the distribution is continuous). Since we maintain Moreira (2003)’s
conditional inference framework, we begin with normally distributed error terms,
although we show that this assumption can be relaxed in our asymptotic analysis
(see Theorem 3). Throughout this article, we focus on the case where � is unknown
to researchers.

Assumption 2 concerns the instrumental variables. In this article, we restrict Z
to be nonrandom, which is equivalent to conditioning on Z. To allow k to grow
proportionally with n, as in Assumption 2(a), we need to impose an additional

condition μ2√
k

→ ∞, which imposes a lower bound on the strength of the instru-

ments. For the MCLR test we propose, the condition μ2√
k

→ ∞ is required to
control the asymptotic size. Note that this condition is not required for correct
size of alternative tests, such as the jackknife AR tests by Crudu et al. (2021) and
Mikusheva and Sun (2022), and the jackknife LM test by Matsushita and Otsu

(2024). In particular, if μ2√
k

= O(1), the result in (A.4) will be satisfied with a
different normalization. However, under such a normalization, the result in (A.5)
is typically violated. The main reason for this is that the normalized statistic
T̄ ′T̄−k−μ2√

k
with known � (see, (5)) is not asymptotically equivalent to T̂ ′T̂−k−μ2√

k

with estimated �̂ (see, (10)) due to a non-negligible contribution of the estimation
error of � as shown in (A.17). See Appendix A.3.2 for a detailed discussion. If k
grows slower than n, as in Assumption 2(b), there is no requirement on μ2; that is,
the instruments can be arbitrarily weak.

Note that Wald tests based on many-instrument robust standard errors (Hansen
et al., 2008; Hausman et al., 2012) are asymptotically valid under Assumption
2(a), but not under Assumption 2(b). Our MCLR test is asymptotically valid in
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both cases. Simulation studies in Section 4 illustrate this distinction numerically.
Andrews and Stock (2007b) show that the conventional CLR test is asymptotically
valid for relatively small numbers of instruments, that is when k3/n → 0. Assump-
tion 2 allows the number of instruments k to be much larger, and as illustrated in
our simulations, the MCLR test is especially preferable when k/n is large.

2.2. Likelihood Ratio Statistic with Known �

We first introduce some notation. When the variance � of Vis known, the LR
statistic for testing H0 against H1 is written as

LR0 = b′
0Y ′PZYb0

b′
0�b0

− λ̄, (4)

where b0 = (1, −β0)
′, PZ = Z(Z′Z)−1Z′ is the projection matrix with respect to Z,

and λ̄ is the smallest eigenvalue of �−1/2Y ′PZY�−1/2 (Moreira, 2003).
To derive a more convenient expression for LR0, note that Z′Y is a sufficient

statistic for the parameters (β,�) under the assumption V ∼ N(0,�) with known
�. This implies that Z′YD is also a sufficient statistic, for any nonsingular matrix
D. So, we set D = (b0,�

−1a0) and obtain the partition Z′YD = [S : T], where

S = Z′Yb0, T = Z′Y�−1a0.

This is a convenient partitioning because S and T are independent and only T
depends on the nuisance parameters, π2. Indeed, under H0, T alone is a sufficient
statistic for π2.

By using standardized versions of S and T:

S̄ = (Z′Z)−1/2Z′Yb0(b
′
0�b0)

−1/2, T̄ = (Z′Z)−1/2Z′Y�−1a0(a
′
0�

−1a0)
−1/2,

(5)

the LR statistic LR0 can be alternatively expressed as

LR0 = S̄′S̄ − λ̄ ≡ ψ0(S̄
′S̄,S̄′T̄,T̄ ′T̄), (6)

where λ̄ is the smallest eigenvalue of (S̄,T̄)′(S̄,T̄). See the proof of Moreira (2003,
Prop. 1). If � is known, we can apply the conventional CLR test by Moreira (2003)
based on LR0, even with many weak instruments. Notice that in contrast to the
AR statistic, S̄′S̄, the nonlinearity of LR0 in (S̄,T̄) is non-quadratic. Conditional
inference is typically conducted by conditioning on T̄ , or an estimator of T̄ , which
leads to the distribution of the test statistic becoming non-standard and the critical
values must be computed by simulation. This is a common feature for both the
CLR test by Moreira (2003) and our MCLR test.

This article focuses on the case of unknown �, as stated in Assumption 1, so the
conventional CLR test is infeasible. Its feasible counterpart, obtained by plugging
in a consistent estimator of �, turns out to be invalid under many weak instruments
asymptotics (see Remark 2 below).
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2.3. Likelihood Ratio Statistic with Unknown �

We now introduce our test statistic of interest for the case of unknown �. The error
variance matrix � can be estimated by

�̂ = 1

n− k
Y ′MZY, (7)

where MZ = In −PZ and In is the n×n identity matrix. By replacing � in (4) with
the estimator �̂, the LR statistic for testing H0 with unknown � is written as

LR1

n− k
= b′

0Y ′PZYb0

b′
0Y ′MZYb0

− λ̂, (8)

where λ̂ is the smallest eigenvalue of 1
n−k �̂

−1/2Y ′PZY�̂−1/2.1

To obtain an analogous expression to (6) for LR1, we introduce two more
objects:

S̃ = MZYb0(b
′
0�b0)

−1/2, T̃ = MZY�−1a0(a
′
0�

−1a0)
−1/2.

Based on this notation, we obtain the following representation of the LR1

statistic.

Proposition 1. LR1 can be written as a function of (S̄′S̄,S̄′T̄,T̄ ′T̄,S̃′S̃,S̃′T̃,T̃ ′T̃):2

LR1

n− k
= ψ1(S̄

′S̄,S̄′T̄,T̄ ′T̄,S̃′S̃,S̃′T̃,T̃ ′T̃).

This proposition says that the LR statistic LR1 depends on six objects, instead
of three as for LR0 = ψ0(S̄′S̄,S̄′T̄,T̄ ′T̄) in (4). In order to develop our conditional
inference method based on LR1, we first establish the following properties of those
six objects.

Proposition 2. Under Assumption 1 and the null hypothesis H0 : β = β0, it
holds that

(i) S̄|T̄ = t ∼ N(0,Ik) and S̄′T̄|T̄ = t ∼ N(0,t′t),
(ii) S̄, T̄ , and (S̃,T̃) are mutually independent,

(iii)

(
S̃′S̃ S̃′T̃
T̃ ′S̃ T̃ ′T̃

)∣∣∣∣ T̄ = t ∼ Wishart(n− k,I2).

1We note that �̂ is a natural choice to estimate � because (i) it is unbiased and consistent, and (ii) it yields
independence of the denominator and numerator in the first term of (8), which greatly simplifies our theoretical
development. Other estimators or proxies for � may be employed, as long as an analogous representation in
Proposition 1 can be obtained.
2More precisely, ψ1(d1, . . . ,d6) = d1

d4
− λ(d1, . . . ,d6), where λ(d1, . . . ,d6) is the solution of∣∣∣∣

(
d1 d2

d2 d3

)
−λ

(
d4 d5

d5 d6

)∣∣∣∣ = 0 for λ.
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Remark 1. Moreira (2003) builds a conditional inference framework for the
conventional CLR test based on two sufficient statistics, S̄ and T̄ . We add two
more statistics, S̃ and T̃ , which we show are mutually independent of S̄ and T̄ . We
need to formally establish the properties of S̃ and T̃ because we explicitly focus
on the case of unknown �, as stated in Assumption 1. On the other hand, Moreira
(2003) defines the conventional CLR test using LR0 and later establishes that using
a plug-in consistent estimator for � is asymptotically valid under weak (but a fixed
number of) instruments. Since this will not be the case under Assumption 2, we
directly consider LR1. Moreover, under many weak instruments asymptotics, the
dimensions of all four of our statistics S̄, T̄ , S̃, and T̃ grow to ∞, which explains
why the six objects we focus on are inner-products. As we will see in Section 3, T̄
will play the most important role in our conditional inference approach, since it is
a sufficient statistic for π2. Finally, notice that T̄ ′T̄ is centered at the concentration
parameter μ2, and therefore is a measure of how strongly identified the coefficients
on the instruments in the first-stage are. We will use this fact in Section 4.

3. CLR TEST WITH MANY WEAK INSTRUMENTS

Based on the test statistic LR1 and its properties, we now develop our conditional
inference method. To begin with, recall that T̄ is a sufficient statistic for π2, and
consider the critical value function for given T̄ = t:

c1,η(t) ≡ (1−η)th quantile of ψ1(S ′S,S ′t,t′t,W1,W2,W3),

where ψ1 is defined in Proposition 1, and S ∼ N(0,Ik) and

(
W1 W2

W2 W3

)
∼

Wishart(n − k,I2) are independent. Propositions 1 and 2 directly imply the fol-
lowing property of c1,η(t).

Theorem 1. Under Assumption 1 and the null hypothesis H0 : β = β0, it holds
that

Pr

{
LR1

n− k
≥ c1,η(T̄)

}
= η. (9)

This theorem says that if T̄ is observable, the LR test using LR1
n−k with the critical

value c1,η(T̄) is exactly similar. Note that c1,η(t) depends only on τ = t′t. However,
since T̄ is unobservable for the case of unknown �, a test based on (9) is infeasible.

To develop a feasible version, we estimate T̄ by

T̂ = (Z′Z)−1/2Z′Y�̂−1a0(a
′
0�̂

−1a0)
−1/2, (10)

where �̂ is as defined in (7). Based on this estimator, our proposed rejection rule
is defined as

Reject H0 if
LR1

n− k
≥ c1,η(T̂). (11)
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The next theorem is the main result of our article, and it establishes asymptotic
validity of the MCLR test in (11).

Theorem 2. Consider the setup in Section 2.1. Under Assumptions 1 and 2, it
holds that

Pr

{
LR1

n− k
≥ c1,η(T̂)

}
→ η as n → ∞. (12)

Compared to Theorem 1, this theorem requires an additional condition
(Assumption 2). For the case of k/n → α ∈ (0,1) (Assumption 2(a)), an additional
condition on the concentration parameter, μ2/

√
k → ∞, is required to obtain

(A.5) in Appendix A, which guarantees that replacing T̄ with T̂ does not change the
limiting distribution of the test statistic. For the case of k/n → 0 (Assumption 2(b)),
such a requirement on μ2 is unnecessary because the key asymptotic equivalence
in (A.20) is guaranteed without any requirement on μ2.

This theorem is derived under the normality assumption (Assumption 1). For
non-normal errors, as long as k/n → 0, we can also establish asymptotic validity
of the MCLR test by requiring an additional moment condition. Let Pii be the
(i,i)th element of PZ = Z(Z′Z)−1Z′.

Theorem 3. Consider the setup in Section 2.1. The rows of V are independent
and identically distributed with finite fourth moments. Under Assumption 2(b) and
1
k

∑n
i=1 P2

ii → 0, (12) is true.

Specifically, as long as the number of instruments k grows slower than the
sample size n and the projection matrix of instruments satisfies 1

k

∑n
i=1 P2

ii → 0,
our MCLR test is asymptotically valid even when the reduced form errors are
non-normal. The condition 1

k

∑n
i=1 P2

ii → 0, which is termed the design balance
assumption in Cattaneo, Jansson, and Ma (2019), is used to guarantee that the
limiting variance in (A.21) becomes identical to the Gaussian case. Note that
Assumption 2(b) is still more general than k = o(n1/3), which is imposed by
Andrews and Stock (2007b) to establish the asymptotic validity of the CLR test
with non-normal errors.

Remark 2. [Lack of similarity and validity of conventional CLR test] When
� is known, the critical value function of the test statistic LR0 in (6) for testing
H0 : β = β0 can be obtained as

c0,η(t) = (1−η)th quantile of ψ0(S ′S,S ′t,t′t),

where S ∼ N(0,Ik). As shown by Moreira (2003), the test I{LR0 ≥ c0,η(T̄)} is
exactly similar for the case of known � (i.e., Pr{LR0 ≥ c0,η(T̄)} = η). When � is
unknown, Moreira (2003) suggested to plug-in the estimator �̂ to the test statistic

https://doi.org/10.1017/S0266466625000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625000088


CONDITIONAL LIKELIHOOD RATIO TEST 9

LR0 (which yields LR1) and use c0,η(T̂), that is:

Reject H0 if LR1 ≥ c0,η(T̂). (13)

However, since LR1 is evidently different from LR0, we cannot guarantee similarity
for LR1 when � is unknown, i.e.,

Pr{LR1 ≥ c0,η(T̄)} �= Pr{LR0 ≥ c0,η(T̄)} = η.

Therefore, even if we ignore the estimation error arising from using T̂ instead of
T̄ , the conventional CLR test in (13) is asymptotically invalid in our setup.

4. NUMERICAL ILLUSTRATIONS

In this section, we compare the critical value function of the MCLR test, c1,η(t),
with c0,η(t) of the conventional CLR test (Section 4.1). We then use Monte Carlo
simulations to evaluate the finite sample performance of our MCLR test relative
to existing alternatives. Finally, we employ our MCLR test to propose a two-step
pre-test for homoskedasticity and weak identification.

4.1. Critical Value Function

The critical value function of our MCLR test c1,η(t) does not have a closed form,
as is the case with Moreira’s (2003) CLR critical value function, c0,η(t). Panel
A of Table 1 presents critical values (n − k)c1,η(t) of the MCLR test, for the
5% significance level. Critical values are calculated using 5,000 Monte Carlo
replications with n = 100, for different values of τ = T̄ ′T̄ . We choose to vary τ

because it is directly indicative of identification strength and aids comparison with
Moreira (2003), who presents critical values which are a function of τ .

As shown in Panel A of Table 1, when k = 1 the critical value function of the
MCLR test is constant at 3.93 for all values of τ ; the slight variation in the final
row is attributable to numerical error. Interestingly, 3.93 is the 95th percentile
of F(1,99). This is in contrast to the critical value of the CLR test for k = 1,
which is 3.84 and equal to the 95th percentile of χ2(1). We suspect this difference
arises because we use the LR statistic with unknown �; when written in terms
of sufficient statistics, LR0 is the sum of chi-square variables, whose degrees of
freedom sum to 1 for k = 1, while LR1 sums across ratios of chi-square distributed
random variables.

Similar to the CLR test, the critical value function of the MCLR test for any
given k has an approximately exponential shape. Figure 1 illustrates this with a plot
of the critical value function of our MCLR test when k = 4. When instruments are
weak (i.e., τ is small), critical values are larger. When τ is large, the test behaves
as if it were unconditional with critical values stable around 3.93.

For comparison, in Panel B of Table 1, we present the critical value function
of the conventional CLR test, (n − k)c0,η(t). As per Theorem 2, this test pre-
dictably runs into size problems when there are many weak instruments. This has
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Table 1. Critical value functions.

Panel A: MCLR

τ k = 1 k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 50

1 3.93 5.72 7.46 9.13 10.75 18.45 33.09 78.94

5 3.93 4.72 5.71 6.86 8.12 15.02 29.30 74.91

10 3.93 4.34 4.85 5.46 6.19 11.40 24.79 70.00

20 3.93 4.14 4.37 4.63 4.93 7.20 16.87 60.48

50 3.93 4.02 4.11 4.20 4.30 4.91 7.02 35.25

75 3.93 3.99 4.05 4.11 4.18 4.55 5.66 20.18

100 3.93 3.98 4.02 4.06 4.10 4.38 5.14 12.84

50,000 3.94 3.94 3.94 3.94 4.10 3.94 3.96 4.04

Panel B: CLR

τ k = 1 k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 50

1 3.84 5.54 7.18 8.76 10.29 17.41 30.46 66.51

5 3.84 4.57 5.48 6.53 7.68 14.00 26.70 62.59

10 3.84 4.22 4.67 5.20 5.85 10.40 22.17 57.73

20 3.84 4.02 4.23 4.46 4.71 6.51 14.18 48.10

50 3.84 3.91 3.99 4.08 4.16 4.65 6.05 21.62

75 3.84 3.89 3.94 4.00 4.05 4.35 5.10 10.27

100 3.84 3.88 3.92 3. 3.99 4.21 4.72 7.35

50,000 3.84 3.84 3.84 3.84 3.99 3.84 3.84 3.84
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Figure 1. Critical value function of MCLR test with k = 4.
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consequences for the critical value function - once the number of instruments
exceeds a tenth of the sample size, the critical values of the CLR test lie everywhere
below those of our MCLR test. This suggests that the conventional CLR test would
over-reject the null hypothesis H0 : β = β0 when the number of weak instruments
is large.

In practice, we suggest the following Algorithm 1 to compute the MCLR critical
values, c1,η(t̂).

Algorithm 1 Computing MCLR critical values
Input Y,Z from data
Hypothesis H0 : β = β0

Compute t̂ = (Z′Z)−1/2Z′Y�̂−1a0(a′
0�̂

−1a0)
−1/2 for �̂ =

1
n−k Y ′(In −Z(Z′Z)−1Z′)Y and a0 = (β0,1)′.
For m in 1, . . . ,M

(i) Independently draw S ∼ N(0,Ik), a k ×1
vector of normal random variables, and
W ∼ Wishart(n− k,I2). Define W11 as the
(1,1)-element of W.
(ii) Compute λ̂ as the minimum eigenvalue of

W−1

(
S ′S S ′ t̂
t̂′S t̂′ t̂

)
(iii) Compute c1,s = (n− k)[S ′S/W11 − λ̂]

Obtain {c1,m}M
m=1 and set c1,η(t̂) as the (1−η)-th

quantile of {c1,m}M
m=1. This is the critical value for

LR1 at significance level η.

4.2. Simulation

We now turn to a simulation study, which is based on Design I of Staiger and Stock
(1997). We allow for a single endogenous regressor and set β0 = 0. Instruments
are stochastic—Z comprises of a constant, Z1, and i.i.d. draws from N(0,Ik−1).
In line with Assumption 1, the rows of (u,v2) are i.i.d. normal random vectors
with unit variances and correlation ρ. The latter parameter captures the degree of
endogeneity of Y2 in (1). Our sample size is n = 100 throughout.

Our simulations focus on the size and power performance of MCLR, relative to
comparable hypothesis tests. We deviate from Staiger and Stock (1997)’s original
design in two ways. First, we vary the number of instruments relative to the
sample size to differentiate between cases which fall under Assumption 2(a) versus
Assumption 2(b). Second, we vary the strength of our instruments. To do so, we
use a population version of Stock and Yogo’s (2005) pre-test for weak instruments.
We use three different values of π2 such that δ2 = π ′

2Z′Zπ2/ω22 takes the values 2
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Table 2. Empirical rejection frequencies at 5% significance level.

ρ δ2 k H-LIML CLR AR mKLM J-AR M-CLR

0.2 30 5 0.041 0.057 0.028 0.052 0.050 0.051

0.2 30 10 0.030 0.060 0.036 0.057 0.054 0.057

0.2 30 30 0.031 0.089 0.047 0.051 0.057 0.052

0.2 10 5 0.032 0.060 0.025 0.049 0.052 0.047

0.2 10 10 0.018 0.064 0.031 0.051 0.052 0.051

0.2 10 30 0.016 0.084 0.036 0.060 0.049 0.049

0.2 2 5 0.008 0.050 0.026 0.049 0.048 0.041

0.2 2 10 0.007 0.057 0.030 0.050 0.050 0.041

0.2 2 30 0.013 0.100 0.044 0.055 0.051 0.055

0.6 30 5 0.054 0.057 0.029 0.062 0.051 0.051

0.6 30 10 0.058 0.057 0.034 0.060 0.053 0.051

0.6 30 30 0.052 0.081 0.042 0.051 0.049 0.057

0.6 10 5 0.077 0.059 0.027 0.053 0.044 0.053

0.6 10 10 0.069 0.053 0.034 0.046 0.052 0.049

0.6 10 30 0.081 0.093 0.047 0.049 0.054 0.059

0.6 2 5 0.091 0.042 0.024 0.045 0.049 0.035

0.6 2 10 0.092 0.057 0.034 0.047 0.055 0.047

0.6 2 30 0.086 0.089 0.040 0.052 0.052 0.046

(very weak instruments), 10 (weak instruments), and 30 (strong instruments), for
different values of k. The population first-stage F-statistic corresponds to δ2/k, and

δ2 = μ2

ω22(a′
0�−1a0)

is proportional to the concentration parameter μ2.3 The number

of Monte Carlo replications is 5,000 for analyzing size and power, as well as for
computing critical values.

For the null hypothesis H0 : β = 0, Table 2 investigates the size properties of six
tests: (i) the t-test with the heteroskedasticity robust LIML estimator by Hausman
et al. (2012) (H-LIML), (ii) the CLR test by Moreira (2003), (iii) the homoskedastic
AR test, (iv) the modified LM test by Hansen et al. (2008) (mKLM), (v) the
jackknife version of the AR test by Mikusheva and Sun (2022) (J-AR) and (vi)
our proposed modified CLR test (MCLR). We vary ρ, δ2 and k across rows in
Table 2.

We note that the size distortions of H-LIML are large, except when δ2 and ρ2

are large. The degree of endogeneity of Y2 also seems to matter; when ρ = 0.2,
the t-test tends to under-reject the null hypothesis, while when ρ = 0.6, the null is

3Furthermore, note that in this design and under the null H0 : β = 0, δ2 = μ2

ω22(a′
0�−1a0)

can be written as μ2 =
π ′

2Z′Zπ2

1−ρ2 = δ2

1−ρ2 . In this article, ρ is treated as a constant in (−1,1) so that the condition μ2√
k

→ ∞ is equivalent to

δ2√
k

→ ∞. However, if we consider the case of ρ2 → 1, δ2√
k

→ ∞ is sufficient, but not necessary, for μ2√
k

→ ∞.
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CONDITIONAL LIKELIHOOD RATIO TEST 13

over-rejected. The distortions of the test are most severe when δ2 is small relative
to k, and k is large.

The CLR test attains roughly the correct size when k/n = 5/100, even when
identification is weak and the extent of endogeneity is high. However, size
distortions can be observed when k/n > 0.1. Surprisingly, this is not visibly
exacerbated by low δ2, reaffirming that it is the existence of many instruments
in the presence of some level of weak identification that has severe empirical
consequences on the conventional CLR test. Overall, even when the CLR test
experiences little size distortion, it always has an empirical rejection frequency
farther from 5% than our proposed MCLR test.

The AR test consistently under-rejects the null hypothesis; while the distortions
are not as severe as the H-LIML test, they are present across all combinations
of δ2, k, and ρ. We still investigate the power properties of this test, as we wish to
investigate the power cost of ignoring the information in λ̂ in the presence of many
weak instruments.

The mKLM test works well. Although it tends to over-reject in some cases
(e.g., high δ2 and ρ = 0.2), its size distortions never exceed 2%. The J-AR test
also appears robust to many weak instruments, and exhibits no distinct patterns of
under- or over-rejection.

Compared to the other tests that we consider, the rejection frequencies of
our MCLR test are on average closest to the nominal 5% level. As our theory
in Section 3 suggests, the MCLR test is robust to weak instruments, many
instruments, and many weak instruments.

Figure 2 presents calibrated (or size-adjusted) power curves for the MCLR,
AR, J-AR, and mKLM tests for H0 : β = 0, under the alternative hypotheses
H1 : β = �. These power curves are plotted with respect to the 5% significance
level; the critical values for these four tests are given by the 95th percentiles of their
respective test statistics under H0, computed via 5,000 Monte Carlo replications.
Each curve is plotted for n = 100 and β0 = 0. We present four different cases, with
ρ = 0.2 and different values of δ2/k. As we move from left to right, and top to
bottom, the figures show the cases of δ2/k = 1/3, 1/2, 1, and 2. We set k = 30 in
all cases.

Our MCLR test is uniformly more powerful at all values of δ2/k, and the gain is
more pronounced for low δ2/k (that is, when instruments are weaker). The mKLM
test experiences spurious declines in power under alternative hypotheses that are
further away from the null, and has consistently low power when δ2/k = 1/3.4

When δ2/k is high, i.e., identification is the strongest among the cases we examine,
the AR and J-AR have similar, although everywhere lower power, than our M-CLR
test. Our simulations suggest that, in the presence of many weak instruments, the
power cost of ignoring the information in λ̂ (as the AR test statistic does) is greater

4This lack of power is caused by the fact that those LM statistics are equal to zero at the maximum as well as the
minimum of the concentrated log-likelihood since both Kleibergen’s LM statistics and its modification are quadratic
forms of the score of the concentrated likelihood (see, p. 1788 of Kleibergen (2002)).
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Figure 2. Calibrated power curves.
Note: From left to right, and top to bottom, these figures plot power curves for: δ2/k = 1/3, δ2/k = 1/2,
δ2/k = 1 and δ2/k = 2, with ρ = 0.2, k = 30 and n = 100.

than the power cost of being robust to heteroskedasticity—indeed, the power of
the AR test is much more comparable to that of the J-AR test than our MCLR test.
While we do not present theoretical results on power, these findings suggest that
the MCLR test shares the superior power properties of the conventional CLR test,
which has near optimal power with small k Andrews et al., 2006.

4.3. Pre-Test for Homoskedasticity and Weak Identification

Based on our simulation study, in this subsection we propose a two-step pre-test
for H0 : β = 0.

The first step is to test whether V = (v1,v2) is homoskedastic. For this, first
we regress Y = (Y1,y2) on the full matrix of instruments, retaining fitted values
Ŷ = (Ŷ1,ŷ2) and squared residuals V̂2 = (v̂2

1,v̂
2
2). Then, we construct a bivariate

regression model of v̂2
1 on Ŷ1 and Ŷ2

1 , and v̂2
2 on ŷ2 and ŷ2

2, and use a Wald test (at
the 2.5% level, based on a Bonferroni correction) with the null hypothesis that the
coefficients on Ŷ1, Ŷ2

1 , ŷ2, and ŷ2
2 are equal to zero.

If the null of homoskedasticity is rejected, we apply the pre-test for weak
identification outlined in Mikusheva and Sun (2022). For this, the authors propose
the following test-statistic
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F̃ = 1√
kϒ̂

n∑
i=1

∑
j�=i

Pijy2iy2j,

where ϒ = 2
k

∑n
i=1

∑
j�=i

P2
ij

MiiMjj+M2
ij

y2iMiy2y2jMjy2, Pij and Mij are the (i,j)th ele-

ment of PZ and MZ , respectively, and Mi is the ith column of MZ . To achieve an
overall size of 5% for this pre-test, the decision rule they propose is as follows: if
F̃ > 9.98, use the JIVE-Wald test, while for F̃ ≤ 9.98, use the J-AR test, both at
the 2% significance level.5

If the null of homoskedasticity is not rejected, we also suggest to pre-test for
weak identification but propose an alternative decision rule. If F̃ ≤ 9.98, use our
MCLR test (at the 2% significance level). If F̃ > 9.98, implement a t-test with
the LIML estimator for β, also at the 2% significance level. For the t-test, we use
the standard errors proposed by Hansen et al. (2008), which are robust to many
instruments. Such a t-test has been shown to be powerful in the case of strong
identification and homoskedastic errors Anderson, Kunitomo, and Matsushita,
2010.

To assess the performance of our two-step pre-test (henceforth, the MCLR pre-
test), we compare its performance with the one-step pre-test of Mikusheva and Sun
(2022) (the MS pre-test). Both pre-test procedures correspond to a nominal size of
5%, with a tolerance level of 5%. Table 3 reports the empirical size of both pre-tests
for various combinations of ρ, δ2, and, k. The empirical size of the MCLR pre-test
is always within 2% of the nominal size, whereas for the MS pre-test, empirical size
exceeds 7% when ρ = 0.6 and δ2/k ≤ 1 (that is, when the degree of endogeneity of
Y2 is high and identification is relatively weak). For the other cases, there is little
difference in empirical size between the two pre-testing procedures.

We assess the power of our MCLR pre-test in two ways. First, note that our
results in Section 4.2 suggest that our pre-test should have a power advantage (in
cases where F̃ < 9.98) based on the uniformly greater power of the MCLR test
compared to the J-AR test. To investigate whether this is the case, we analyze a
one-step version of the MCLR pre-test (named MCLR one-step pre-test), which
only tests for homoskedasticity—if the null of homoskedasticity is rejected, the
J-AR test is used, and otherwise use the MCLR test. This will highlight any power
gain from testing for homoskedasticity. To implement this analysis, we set (u,v2)

to be a function of the instruments (Z), instead of homoskedastic, with probability
0.5. We then compare the power of the MCLR one-step pre-test with the J-AR test.
The latter would be the appropriate choice when there are many weak instruments
and errors may be heteroskedastic.

Figure 3 presents the size-adjusted power curves from this comparison for
H0 : β = 0, under the alternative hypotheses H1 : β = �. Each curve is plotted
at the 5% significance level for n = 100 and β0 = 0. Analogous to Section 4.2,

5The relevant significance levels and critical values for achieving an overall size of 5% are given in Mikusheva and
Sun (2022, Table 2).
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Table 3. Empirical rejection frequencies of pre-test.

ρ δ2 k M-CLR pre-test MS pre-test

0.2 30 5 0.049 0.053

0.2 30 10 0.046 0.054

0.2 30 30 0.051 0.060

0.2 10 5 0.044 0.051

0.2 10 10 0.050 0.057

0.2 10 30 0.042 0.051

0.2 2 5 0.046 0.052

0.2 2 10 0.052 0.057

0.2 2 30 0.047 0.060

0.6 30 5 0.047 0.048

0.6 30 10 0.065 0.072

0.6 30 30 0.058 0.071

0.6 10 5 0.047 0.051

0.6 10 10 0.060 0.070

0.6 10 30 0.056 0.070

0.6 2 5 0.057 0.060

0.6 2 10 0.052 0.053

0.6 2 30 0.069 0.084
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Figure 3. Power curves—MCLR one-step pre-test and J-AR test.
Note: From left to right, and top to bottom, these figures plot power curves for: δ2/k = 1/3, δ2/k = 1/2,
δ2/k = 1 and δ2/k = 2, with ρ = 0.2, k = 30 and n = 100.
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Figure 4. Power curves—MCLR and MS pre-tests.
Note: Power curves for the case of k = 30. We randomly select δ2 from a uniform distribution U[30,45]
for each simulation draw.

we present four different cases, with ρ = 0.2, k = 30, and δ2/k = 1/3,1/2,1,2.
The most relevant cases are δ2/k ≤ 1, which is when F̃ < 9.98. In all cases, pre-
testing for homoskedasticity results in at least as much power as simply using the
J-AR test. Indeed, for all but the lowest value of δ2/k, the MCLR one-step pre-
test is slightly more powerful. For δ2/k = 1/3, the Wald test for homoskedasticity
performs poorly in simulations, which is why the the MCLR one-step pre-test and
the J-AR test have nearly identical statistical power.

Figure 4 demonstrates the overall power advantage of the MCLR pre-test,
relative to the MS pre-test. Instead of comparing these two procedures for different
levels of identification strength (δ2/k), we set k = 30 and randomly select δ2 from
a uniform distribution U[30,45] for each simulation draw.6 As Figure 4 shows,
the MCLR pre-test is at least as powerful as the MS pre-test, and is strictly more
powerful for certain alternative hypotheses.

5. CONCLUSION

In this article, we propose a modification of Moreira’s (2003) CLR test, namely
the MCLR test. We prove that in instrumental variable regression models with
unknown error variance, the MCLR test is asymptotically valid under many weak
instrument asymptotics, unlike the CLR test. This is true even when the number
of instruments grows proportionally to the sample size, and identification is weak.

6We decide on this range because it ensures some cases have F̃ > 9.98, while others have F̃ ≤ 9.98, all without
creating large discontinuities in the plotted curves. Comparable ranges produce nearly identical power curves.

https://doi.org/10.1017/S0266466625000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625000088


18 SREEVIDYA AYYAR ET AL.

Our simulations suggest that the MCLR test has superior size properties to the
CLR test and is more powerful than competing tests that are robust to many weak
instruments, including the modified LM test by Hansen et al. (2008) and jackknife
AR test by Mikusheva and Sun (2022).

An important direction of future research is to extend our methodology to
the case of multiple endogenous regressors. Although the model with a single
endogenous regressor which we consider in this article covers many relevant
examples in applied research (as mentioned in Andrews and Stock (2007a) and
Andrews, Stock, and Sun (2019)), models with multiple endogenous regressors
are also used in applied work. To this end, our exact similarity result in Theorem 1
under the normality assumption must first be extended to the case of multiple
endogenous regressors. Phillips (1980) extends the results for a single endogenous
regressor presented in Sawa (1969), providing results for the exact distribution of
the instrumental variable regression estimator with multiple endogenous regres-
sors. The finite sample analysis developed by Phillips (1980) allows arbitrarily
weak and many instruments; thus, a promising direction for future work would
be to adapt his analytical framework to our MCLR test statistic. The next step
would be to drop the normality assumption and generalize the asymptotic results in
Theorems 2 and 3. The asymptotic theory developed by Phillips (1989) establishes
a key invariance principle (i.e., that exact distribution theory under the assumption
of normality applies to a much wider class of errors by invoking a new central
limit theory involving the projection matrix on the space of the instruments)
for the arbitrarily weak and many instruments setup. By observing similarities
between the statements of Phillips (1989)’s Theorem 2.4 and our main theorem
(Theorem 3), we expect that his general theory can be adapted to drop the normality
assumption for the case of multiple endogenous regressors.

As other directions of future research, it would be interesting to extend our
MCLR test to be robust for the cases of heteroskedastic errors (i.e., a many
instruments robust version of Moreira and Moreira (2019)), and many included
exogenous regressors as studied in Anatolyev (2013).

A. MATHEMATICAL APPENDIX

Notation: Hereafter, let n1 = n− k and � = k
n1

.

A.1. Proof of Proposition 1

Let (D1, . . . ,D6) = (S̄′S̄,S̄′T̄,T̄ ′T̄,S̃′S̃,S̃′T̃,T̃ ′T̃). Recall that n−1
1 LR1 = b′

0Y ′PZYb0

b′
0Y ′MZYb0

− λ̂,

where λ̂ is the smallest eigenvalue of n−1
1 �̂−1/2Y ′PZY�̂−1/2. The numerator of the first

term can be written as

b′
0Y ′PZYb0 = (b′

0�b0)S̄′S̄ = (b′
0�b0)D1,
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where the first equality follows from the definition of S̄. Similarly, the denominator of the
first term of n−1

1 LR1 can be written as

b′
0Y ′MZYb0 = (b′

0�b0)S̃′S̃ = (b′
0�b0)D4,

where the first equality follows from the definition of S̃. Thus the first term of n−1
1 LR1 is

written as D1
D4

.

We now consider the second term of n−1
1 LR1. Observe that λ̂ is the minimum eigenvalue

solution of |�̂−1/2Y ′PZY�̂−1/2 −n1λ̂I| = 0, or equivalently

|F′Y ′PZYF − λ̂F′Y ′MZYF| = 0,

for any nonsingular matrix F. By setting F = [b0(b′
0�b0)−1/2 : �−1a0(a′

0�−1a0)−1/2],
the above equation can be written as

0 =
∣∣∣∣
(

S̄′S̄ S̄′T̄
T̄ ′S̄ T̄ ′T̄

)
− λ̂

(
S̃′S̃ S̃′T̃
T̃ ′S̃ T̃ ′T̃

)∣∣∣∣ =
∣∣∣∣
(

D1 D2
D2 D3

)
− λ̂

(
D4 D5
D5 D6

)∣∣∣∣ .
Therefore, λ̂ can be solved for as a function of (D1, . . . ,D6). Combining these results, we
obtain the conclusion.

A.2. Proof of Proposition 2

A.2.1. Proof of (i). As shown in Moreira (2003), S̄ ∼ N(0,Ik) and S̄ and T̄ are
independent.

A.2.2. Proof of (ii). Since S̄ and T̄ are independent, it is sufficient to show that (S̄,T̄)

and (S̃,T̃) are independent. Note that [S̃ : T̃] = MZW, where the ith row of W is written as

W ′
i = [V ′

i b0(b′
0�b0)−1/2 : V ′

i�
−1a0(a′

0�−1a0)−1/2], (A.1)

and the ith row V ′
i of V satisfies Vi ∼ N(0,�). Since

S̄ = (b′
0�b0)−1/2(Z′Z)−1/2Z′(v1 − v2β0),

T̄ = (Z′Z)−1/2Z′(Z�+V)�−1a0(a′
0�−1a0)−1/2,

we can see that (S̄′,T̄ ′) is uncorrelated with (S̃′,T̃ ′). Also since both (S̄′,T̄ ′) and (S̃′,T̃ ′) are
normally distributed, we obtain independence of (S̄,T̄) and (S̃,T̃).

A.2.3. Proof of (iii). Observe that(
S̃′S̃ S̃′T̃
T̃ ′S̃ T̃ ′T̃

)
= W ′MZW,

where W = (W1, . . . ,Wn)′ = [Vb0(b′
0�b0)−1/2 : V�−1a0(a′

0�−1a0)−1/2]. Since MZ is an
n×n nonrandom idempotent matrix with rank(MZ) = n1, it is sufficient for the conclusion
to show that given T̄ = t, the rows of W are i.i.d. N(0,I2).

Thus, we can see that Var(V ′
i b0(b′

0�b0)−1/2) = 1, Var(V ′
i�

−1a0(a′
0�−1a0)−1/2) = 1,

and Cov(V ′
i b0(b′

0�b0)−1/2,V ′
i�

−1a0(a′
0�−1a0)−1/2) = 0, and the conclusion follows.
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A.3. Proof of Theorem 2

We first introduce some notation. Hereafter, let μ2 be the concentration parameter defined
in Assumption 2(a). Also let

S ∼ N(0,Ik),

(
W1 W2
W2 W3

)
∼ Wishart(n1,I2), (A.2)

be drawn independently, and define

�(t) = ψ1(S ′S,S ′t,t′t,W1,W2,W3),

so that the critical value function for given T̄ = t is given by c1,η(t), the (1−η)th quantile
of �(t). To analyze �(T̄), we standardize its arguments as

Z1 =S ′S − k√
k

, Z2 = S ′T̄√
k

, ZT̄ = T̄ ′T̄ − k −μ2
√

k
,

Q1 =W1 −n1√
n1

, Q2 = W2√
n1

, Q3 = W3 −n1√
n1

, (A.3)

where μ2 is defined in (3). For the proof of Theorem 2, we use the following lemma.

Lemma 1. Under Assumptions 1 and 2, it holds

Z1,Z2,ZT̄,Q1,Q2,Q3 = Op(1),

S̄′S̄
k

,
S̃′S̃
n1

,
T̃ ′T̃
n1

p→ 1,
S ′S̄√

k
,

S̄′T̄√
k
,

S̃′T̃√
n1

= Op(1).

Proof of Lemma 1. All the statements are obtained by Markov’s inequality using the
definitions in (A.2) and the fact that S̄,S̃,T̄,T̃ are standardized normal vectors. �

A.3.1. Proof Under Assumption 2(a). For the conclusion in (12), it is sufficient to
show that

n1
μ2

k
�(T̄) converges to some non-degenerate distribution, (A.4)

n1
μ2

k
{�(T̂)−�(T̄)} p→ 0, (A.5)

by utilizing μ2√
k

→ ∞ in Assumption 2 (a).

For (A.4), Lemma 2 implies

n1
μ2

k
�(T̄) = �Q2

2 +
√

k

n1

μ2

k
Z1Q2

1 −2
√

�Z2Q2 +Z2
2 +op(1)

=
(
Z2 −

√
α

1−α
Q2

)2

+op(1), (A.6)

where the second equality follows from k
n → α and μ2

k = O(1). Since (Z2,Q2) converges
to a non-degenerate distribution, we obtain (A.4).
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For (A.5), we need to ask what is the effect of using feasible T̂ instead of T̄ . If we replace

T̄ with T̂ , only the terms {Z2,ZT̄ } need to be replaced with {Ẑ2,ZT̂ }, where Ẑ2 = S ′T̂√
k

and

ZT̂ = T̂ ′T̂−k−μ2√
k

. By repeating the same argument in the proof of Lemma 2, we can see that

the (deterministic) coefficients on ZT̂ will be zero. Therefore, similar to (A.6), we have

n1
μ2

k
�(T̂) =

(
Ẑ2 −

√
α

1−α
Q2

)2

+op(1). (A.7)

Thus it is sufficient for (A.5) to show that

Ẑ2 = Z2 +op(1). (A.8)

By using the definitions of T̂ and �̂ and the relation

(Y ′MZY)−1 = F

(
S̃′S̃ S̃′T̃
T̃ ′S̃ T̃ ′T̃

)−1

F′, (A.9)

with F = [b0(b′
0�b0)−1/2 : �−1a0(a′

0�−1a0)−1/2], direct calculations yield

Ẑ2 = �−1/2S ′(Z′Z)−1/2Z′Y(Y ′MZY)−1a0(a′
0(Y ′MZY)−1a0)−1/2

= −(S ′S̄)(S̃′T̃)(S̃′S̃)−1/2 + (S ′T̄)(S̃′S̃)1/2

√
�

√
(S̃′S̃)(T̃ ′T̃)− (S̃′T̃)2

= S ′T̄√
k

+op(1) = Z2 +op(1),

where the third equality follows from Lemma 1. Therefore, we obtain (A.8) which implies
(A.5). Since (A.4) and (A.5) are satisfied, the conclusion follows.

Lemma 2. Recall the definitions in (A.3). Under Assumptions 1 and 2, it holds

�(T̄) = k

n2
1

(
μ2

k

)−1

Q2
2 + 1

n1

(
μ2

k

)−1

Z2
2 +

√
k

n2
1

Z1Q2
1 − 2

√
k

n3/2
1

(
μ2

k

)−1

Z2Q2 +op(n
−1).

Proof of Lemma 2. By explicitly computing the smallest eigenvalue in �(t), �(T̄) can
be written as

�(T̄) = S ′S
W1

+ b+
√

b2 −4ac

2a
, (A.10)
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where the terms a, b, and c can be written as

a = 1

n2
1

(W1W3 −W2
2 ) = 1+ Q1 +Q3√

n1
+ Q1Q3 −Q2

2
n1

,

b = 1

n2
1

{−W1(T̄ ′T̄)− (S ′S)W3 +2(S ′T̄)W2}

= −�

⎧⎪⎨
⎪⎩
(

2+ μ2

k

)
+
(

1+ μ2

k

)
Q1 +Q3

√
n1

+ Z1 +ZT̄√
k

+ ZT̄Q1 +Z1Q3√
n1

√
k

− 2Z2Q2√
�n1

⎫⎪⎬
⎪⎭,

c = 1

n2
1

{(S ′S)(T̄ ′T̄)− (S ′T̄)2}

= �2

⎧⎪⎨
⎪⎩
(

1+ μ2

k

)
+
(

1+ μ2

k

)
Z1 +ZT̄√
k

+ Z1ZT̄ −Z2
2

k

⎫⎪⎬
⎪⎭ .

By (A.3) and a Taylor expansion, the first term of (2) is written as

S ′S
W1

= �

(
1+ Z1√

k

)(
1− Q1√

n1
+ Q2

1
n1

)
+op(n−1). (A.11)

Based on these expressions and by using μ2√
k

→ ∞ (Assumption 2(a)), which guarantees

that the term B1 dominates B2 (B1 and B2 are defined below), we can expand the second
term of (A.10) as follows. �

First, by lengthy but straightforward calculations and ignoring the terms of lower orders,
we have

b2 −4ac = 4B2
0(1+B1 +B2)+op(n−1), (A.12)

where B0 = �
2

μ2

k and

B1 =
(

μ2

k

)−1{
−2Z1√

k
+ 2ZT̄√

k
+
(

1+ μ2

K

)
2Q1√

n1
− 2Q3√

n1

}
,

B2 =
(

μ2

k

)−2
⎡
⎣Z2

1
k

+
Z2

T̄
k

+
(

1+ μ2

k

)2 Q2
1

n1
+ Q2

3
n1

−2
Z1ZT̄

k
−2

(
1+ μ2

k

)
Z1Q1√

k
√

n1
+2

(
1− μ2

k

)
Z1Q3√

k
√

n1

+
(

2+ 4μ2

k

)
ZT̄Q1√

k
√

n1
−2

ZT̄Q3√
k
√

n1
−2

(
1+ μ2

k

)
Q1Q3√
n1

√
n1

+ 4
Z2

2
k

−4

(
2+ μ2

k

)
Z2Q2√

k
√

n1
+4

(
1+ μ2

k

)
Q2

2
n1

]
.
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Also express a and b as

a = 1+C1 +C2, b = −2(A0 +A1 +A2), (A.13)

where

C1 = Q1 +Q3√
n1

, C2 = Q1Q3 −Q2
2

n1
,

A0 = �

2

(
2+ μ2

k

)
, A1 = �

2

⎧⎪⎨
⎪⎩
(

1+ μ2

k

)
Q1 +Q3

√
n1

+ Z1 +ZT̄√
k

⎫⎪⎬
⎪⎭,

A2 = �

2

(
ZT̄Q1 +Z1Q3√

n1
√

k
− 2Z2Q2√

�n1

)
.

Second, by (A.4) and (A.5) combine with expansions
√

1+ z = 1 + 1
2 z − 1

8 z2 + o(z2) and
1
z = 1− (z−1)+ (z−1)2 +o(z2), the second term of (A.10) can be expanded as

b+
√

b2 −4ac

2a

= −(A0 +A1 +A2)+B0
√

1+B1 +B2 +op(k−1)

1+C1 +C2

= −(A0 −B0)−
{

A1 − 1

2
B0B1 − (A0 −B0)C1

}

−A2 + 1

2
B0B2 − 1

8
B0B2

1 + (A0 −B0)(C2 −C2
1)+

(
A1 − 1

2
B0B1

)
C1 +op(n−1).

Finally, by inserting the definitions of (A0,A1,A2,B0,B1,B2,C1,C2) to the above display
and ignoring the terms of order op(n−1) by Lemma 1, lengthy but straightforward calcula-
tions yield the conclusion of this lemma.

A.3.2. Technical Remark on Assumption 2(a). In this subsection, we clarify the

point in the remark of Assumption 2(a): If μ2√
k

= O(1), the result in (A.4) will be satisfied

with a different normalization. However, under this normalization, the result in (A.5) is

typically violated. More precisely, in the case of μ2√
k

= O(1), we show that

√
k�(T̄) converges to some non-degenerate distribution, (A.14)

but
√

k{�(T̂)−�(T̄)} p
� 0, (A.15)

when k
n → α ∈ (0,1).

To see this, under μ2√
k

= O(1), proceed as in the proof of Lemma 2, the second term of

�(T̄) in (A.3) is expanded as

b+
√

b2 −4ac

2a
= −(�+A∗ +D∗)(1−C1)+Op(n−1), (A.16)
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where C1 is defined in (A.5) and

A∗ = �

2

{
μ2

k
+ Q1 +Q3√

n1
+ Z1 +ZT̄√

k

}
,

D∗ = − �

2

√√√√(
μ2

k
− Z1 −ZT̄√

k
+ Q1 −Q3√

n1

)2

+4

(Z2√
k

− Q2√
n1

)2
.

By (A.11) and (A.16), an expansion of �(T̄) is obtained as

�(T̄) = �

2

(
Z1 −ZT̄√

k
− μ2

k
− Q1 −Q3√

n1

)

+ �

2

√√√√(
μ2

k
− Z1 −ZT̄√

k
+ Q1 −Q3√

n1

)2

+4

(Z2√
k

− Q2√
n1

)2
+Op(k−1).

So, by Lemma 1, we can see that
√

k�(T̄) converges to some non-degenerate distribution,

but the coefficient on ZT̄ is nonzero unlike in the case of μ2√
k

→ ∞.

On the other hand, by using the definitions of T̂ and �̂ and the relation in (A.9), direct

calculations yield

T̂ ′T̂
k

= �−1(a′
0(Y

′MZY)−1a0)
−1/2a′

0(Y
′MZY)−1Y ′PZY(Y ′MZY)−1a0(a

′
0(Y

′MZY)−1a0)
−1/2

= (S̄′S̄)(S̃′T̃)2(S̃′S̃)−1 −2(S̄′T̄)(S̃′T̃)+ (T̄ ′T̄)(S̃′S̃)

�{(S̃′S̃)(T̃ ′T̃)− (S̃′T̃)2}

=
(

1+ μ2

k

)
+
(

T̄ ′T̄ −μ2 − k

k

)
−
(

1+ μ2

k

)(
T̃ ′T̃ −n1

n1

)
+Op(k

−1),

where the third equality follows from Lemma 1. Thus, an expansion of ZT̂ = T̂ ′T̂−μ2−k√
k

is

obtained as

ZT̂ = √
k

{(
T̄ ′T̄ −μ2 − k

k

)
−
(

1+ μ2

k

)(
T̃ ′T̃ −n1

n1

)}
+op(1)

= ZT̄ −√
�Q∗

3 +op(1), (A.17)

where Q∗
3 = T̃ ′T̃−n1√

n1
= Op(1). Note that if k

n → 0 as in Assumption 2(b), then � = k
n−k → 0

and we can guarantee ZT̂ = ZT̄ +op(1). However, under Assumption 2(a), ZT̂ and ZT̄ are
not asymptotically equivalent due to the additional term Q∗

3. By inserting this, an expansion

of �(T̂) is obtained as
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�(T̂) = �

2

(
−ZT̄√

k
− μ2

k
− Q1√

n1
+ Q3 +Q∗

3√
n1

+ Z1√
k

)

+ �

2

√√√√(ZT̄√
k

+ μ2

k
+ Q1√

n1
− Q3 +Q∗

3√
n1

− Z1√
k

)2

+4

(Z2√
k

− Q2√
n1

)2
+Op(k−1),

and thus
√

k{�(T̂)−�(T̄)} p
� 0 due to the terms involving Q∗

3.

A.3.3. Proof Under Assumption 2(b). Recall Ẑ2 = S ′T̂√
k

and ZT̂ = T̂ ′T̂−k−μ2√
k

,

where T̂ is defined in (10). By an analogous argument in the proof of Moreira (2003,
Theorem 2), we can see that the conclusion under Assumption 2(b) follows by:

Ẑ2 = Z2 +op(1), (A.18)

ZT̂ = ZT̄ +op(1). (A.19)

For (A.18), we can apply the same argument as the proof of (A.8) (since it does not use the

condition on μ2). For (A.19), by using the definitions of T̂ and �̂ and the relation in (A.9),

direct calculations yield

T̂ ′T̂
k

= n1(a
′
0(Y

′MZY)−1a0)
−1/2a′

0(Y
′MZY)−1Y ′PZY(Y ′MZY)−1a0(a

′
0(Y

′MZY)−1a0)
−1/2

= �−1{(S̃′S̃)(T̃ ′T̃)− (S̃′T̃)2}−1
{
(S̄′S̄)(S̃′T̃)2(S̃′S̃)−1 −2(S̄′T̄)(S̃′T̃)+ (T̄ ′T̄)(S̃′S̃)

}

=
(

1+ μ2

k

)
+ T̄ ′T̄ −μ2 − k

k
+
(

1+ μ2

k

)
S̃′S̃ −n1

n1
+Op(n

−1),

where the third equality follows from Lemma 1. Therefore, (A.19) is verified as

ZT̂ = ZT̄ +√
�

(
μ2

k
+1

)
S̃′S̃ −n1√

n1
+op(1) = ZT̄ +op(1), (A.20)

where the second equality follows from � = k/(n− k) → 0 (Assumption 2(b)).

A.4. Proof of Theorem 3

Under k/n → 0 (Assumption 2(b)),
(

S̃′S̃−n1√
n1

, S̃′T̃√
n1

,
T̃ ′T̃−n1√

n1

)
are of smaller order than

(Z̄1,Z̄2,ZT̄ ) :=
(

S̄′S̄−k√
k

, S̄′T̄√
k
,

T̄ ′T̄−k−μ2√
k

)
. A central limit theorem under the fourth moment

assumption on V yields the asymptotic normality of (Z̄1,Z̄2,ZT̄ ) with the limiting variance

Var(Z̄1,Z̄2,ZT̄ ) →
⎛
⎝ 2 0 0

0 1 0
0 0 2

⎞
⎠ . (A.21)
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To see (A.21), let ui = Y ′
i b0, wi = Y ′

i�
−1a0, σ 2

u = Var(ui), κu = E[u4
i ], and Pij be the

(i,j)th element of PZ . We have

Var(Z̄1) = 1

kσ 4
u

⎧⎪⎨
⎪⎩E

⎡
⎢⎣
⎛
⎝ n∑

i=1

n∑
j=1

uiujPij

⎞
⎠

2
⎤
⎥⎦−

⎛
⎝E

⎡
⎣ n∑

i=1

n∑
j=1

uiujPij

⎤
⎦
⎞
⎠

2
⎫⎪⎬
⎪⎭

= 1

kσ 4
u

⎧⎪⎨
⎪⎩E

⎡
⎣ n∑

i=1

n∑
j �=i

u2
i u2

j (2P2
ij +PiiPjj)+

n∑
i=1

u4
i P2

ii

⎤
⎦−

⎛
⎝E

⎡
⎣ n∑

i=1

u2
i Pii

⎤
⎦
⎞
⎠

2
⎫⎪⎬
⎪⎭

= 1

kσ 4
u

⎧⎪⎨
⎪⎩σ 4

u

⎧⎨
⎩

n∑
i=1

n∑
j=1

(2P2
ij +PiiPjj)−3

n∑
i=1

P2
ii

⎫⎬
⎭+κu

n∑
i=1

P2
ii −σ 4

u

⎛
⎝ n∑

i=1

Pii

⎞
⎠

2
⎫⎪⎬
⎪⎭

= 1

kσ 4
u

⎧⎨
⎩2kσ 4

u + (κu −3σ 4
u )

n∑
i=1

P2
ii

⎫⎬
⎭ → 2,

where the fourth equality follows from
∑n

i=1
∑n

j=1 P2
ij = ∑n

i=1 Pii = k, and the

convergence follows from the assumption 1
k
∑n

i=1 P2
ii → 0. Similarly, letting σ 2

w = Var(wi),
we have

Cov(Z̄1,Z̄2) = 1

kσ 3
u σw

⎧⎨
⎩E

⎡
⎣
⎛
⎝ n∑

i=1

n∑
j=1

uiujPij

⎞
⎠
⎛
⎝ n∑

i=1

n∑
j=1

uiwjPij

⎞
⎠
⎤
⎦

−E

⎡
⎣ n∑

i=1

n∑
j=1

uiujPij

⎤
⎦E

⎡
⎣ n∑

i=1

n∑
j=1

uiwjPij

⎤
⎦
⎫⎬
⎭

= 1

kσ 3
u σw

E

⎡
⎣
⎛
⎝ n∑

i=1

n∑
j=1

uiujPij

⎞
⎠
⎛
⎝ n∑

i=1

n∑
j=1

uiwjPij

⎞
⎠
⎤
⎦

= 1

kσ 3
u σw

E

⎡
⎣ n∑

i=1

u3
i wiP

2
ii

⎤
⎦ = E[u3

i wi]

σ 2
u σuw

1

k

n∑
i=1

P2
ii → 0,

where the second equality follows from E[uiwi] = 0. The limits of the other elements can
be shown in the same manner, so we obtain (A.21).

Therefore, since the limiting distribution of (Z̄1,Z̄2,ZT̄ ) is identical to (Z1,Z2,ZT̄ ) for
the Gaussian case, we obtain

Pr

{
LR1

n1
≥ c1,η(T̄)

}
→ η.

Finally, by repeating the same argument for the proof of Theorem 2 (under Assumption
2(b)) with the fourth moment assumption on V, we obtain the conclusion.

https://doi.org/10.1017/S0266466625000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625000088


CONDITIONAL LIKELIHOOD RATIO TEST 27

REFERENCES

Anatolyev, S. (2013). Instrumental variables estimation and inference in the presence of many
exogenous regressors. Econometrics Journal 16(1), 27–72.

Anderson, T. W., Kunitomo, N., & Matsushita, Y. (2010). On the asymptotic optimality of the LIML
estimator with possibly many instruments. Journal of Econometrics 157(2), 191–204.

Andrews, D. W. K., Moreira, M. J., & Stock, J. H. (2006). Optimal two-sided invariant similar tests
for instrumental variables regression. Econometrica 74(3), 715–752.

Andrews, D. W. K., & Stock, J. H. (2007a). Inference with weak instruments. In R. Blundell, W.
Newey, & T. Persson (Eds.), Advances in Economics and Econometrics: Theory and Applications,
Ninth World Congress (pp. 122–173). Econometric Society Monographs, 3, Cambridge University
Press. https://doi.org/10.1017/CBO9780511607547.007.

Andrews, D. W. K., & Stock, J. H. (2007b). Testing with many weak instruments. Journal of
Econometrics 138(1), 24–46.

Andrews, I., Stock, J. H., & Sun, L. (2019). Weak instruments in instrumental variables regression:
Theory and practice. Annual Review of Economics 11, 727–753.

Cattaneo, M., Jansson, M., & Ma, X. (2019). Two-step estimation and inference with possibly many
included covariates. Review of Economic Studies 86, 1095–1122.

Chao, J., & Swanson, N. (2005). Consistent estimation with a large number of weak instruments.
Econometrica 73(5), 1673–1692.

Crudu, F., Mellace, G., & Sándor, Z. (2021). Inference in instrumental variable models with het-
eroskedasticity and many instruments. Econometric Theory 37(2), 281–310.

Han, C., & Phillips, P. C. B. (2006). GMM with many moment conditions. Econometrica 74(1),
147–192.

Hansen, C., Hausman, J. A., & Newey, W. K. (2008). Estimation with many instrumental variables.
Journal of Business & Economic Statistics 26(4), 398–422.

Hausman, J. A. et al. (2012). Instrumental variable estimation with heteroskedasticity and many
instruments. Quantitative Economics 3(2), 211–255.

Kleibergen, F. (2002). Pivotal statistics for testing structural parameters in instrumental variables
regression. Econometrica 70(5), 1781–1803.

Matsushita, Y., and Otsu, T. (2024). A jackknife Lagrange multiplier test with many weak instruments.
Econometric Theory 40(2), 447–470.

Mikusheva, A., & Sun, L. (2022). Inference with many weak instruments. Review of Economic Studies
89(5), 2663–2686.

Mills, B., Moreira, M. J., & Vilela, L. (2014). Tests based on t-statistics for IV regression with weak
instruments. Journal of Econometrics 182(2), 351–363.

Moreira, H., & Moreira, M. J. (2019). Optimal two-sided tests for instrumental variables regression
with heteroskedastic and autocorrelated errors. Journal of Econometrics 213(2), 398–433.

Moreira, M. J. (2003). A conditional likelihood ratio test for structural models. Econometrica 71(4),
1027–1048.

Newey, W. K., & Windmeijer, F. (2009). Generalized method of moments with many weak moment
conditions. Econometrica 77(3), 687–719.

Phillips, P. C. B. (1980). The exact distribution of instrumental variable estimators in an equation
containing n+1endogenous variables. Econometrica 48(4), 861–878.

Phillips, P. C. B (1989). Partially identified econometric models. Econometric Theory 5(2), 181–240.
Sawa, T. (1969). The exact sampling distribution of ordinary least squares and two-stage least squares

estimators. Journal of the American Statistical association 64(327), 923–937.
Staiger, D., & Stock, J. H. (1997). Instrumental variables regression with weak Instruments. Econo-

metrica 65(3), 557–586.
Stock, J. H., & Yogo, M. (2005). Testing for weak instruments in linear IV regression. In D. W. K.

Andrews & J. H. Stock (Eds.), Identification and Inference for Econometric Models: Essays in
Honor of Thomas Rothenberg (pp. 80–108). Cambridge University Press.

https://doi.org/10.1017/S0266466625000088 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511607547.007
https://doi.org/10.1017/S0266466625000088

	1 INTRODUCTION
	2 SETUP AND TEST STATISTICS
	2.1 Setup
	2.2 Likelihood Ratio Statistic with Known Ω
	2.3 Likelihood Ratio Statistic with Unknown Ω

	3 CLR TEST WITH MANY WEAK INSTRUMENTS
	4 NUMERICAL ILLUSTRATIONS
	4.1 Critical Value Function
	4.2 Simulation
	4.3 Pre-Test for Homoskedasticity and Weak Identification

	5 CONCLUSION
	A MATHEMATICAL APPENDIX
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.2.1 Proof of (i)
	A.2.2 Proof of (ii)
	A.2.3 Proof of (iii)

	A.3 Proof of Theorem 2
	A.3.1 Proof Under Assumption 2(a)
	A.3.2 Technical Remark on Assumption 2(a)
	A.3.3 Proof Under Assumption 2(b)

	A.4 Proof of Theorem 3


