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ON REFLEXIVE COMPACT OPERATORS
AVRAHAM FEINTUCH

1. Introduction. Let 4 be a compact operator on a separable Hilbert space
. The aim of this paper is to investigate the relationship between the weak
closure of the algebra of polynomials in 4 (denoted by U(4)) and its invariant
subspace lattice Lat 4.

The operator A is reflexive if any operator which leaves invariant the
members of Lat 4 must be in U(A4). The following question was mentioned in
the closing chapter of [7]. If every invariant subspace of 4 is spanned by the
eigenvalues that it contains, is 4 reflexive? The main result of this paper is
a positive answer for compact operators. Some related questions are then
discussed.

2. Preliminaries. For a linear manifold .#, [.#] will denote its closure.
A (4) will denote the null space of 4, and # (4) its range. A|# will denote
the restriction of 4 to .

For n a positive integer, # ™ denotes the direct sum of # copies of # and
A®™ is the direct sum of # copies of 4 acting on. ™ in the standard fashion;

Le.if (x1,...,x,) € H®,
A® {xq, .00, %) = {Axy, ..., Ax,).

“Subspace’” will mean closed linear manifold.
The following well known lemma will be used ([7, Chap. 7]).

LEmmA 1. If Lat A™ C Lat B™ for all positive integers n = 1, then B €
U4).

Definition. Spectral synthesis holds for A if every invariant subspace .# of
A is spanned by the root vectors corresponding to non-zero eigenvalues of
A in M. Strict spectral synthesis holds for A if spectral synthesis holds for
A and A4 is injective.

We will proceed in two stages. First we will consider the case where 4 is
injective and then we extend the result to the general case.

3. Reflexivity of compact injective operators. Throughout this section

we will assume 4 is compact injective. Some concepts and results of Markus
[5] will be used.
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Definition. The sequence {¢,|7 = 1, 2, ...} is minimal in S if ¢; ¢
V {¢ulk # j} and complete it V {¢,]7 = 1,2,...} =,

If {¢;/ =1, 2,...} is minimal and complete, it has a unique biorthogonal
sequence {y,;[j = 1,2,...}.

Definition. {¢,|j = 1, 2, ...} is strongly complete if for any f €, f €
V ¢l (f, ) # 0}

There are generalizations of these concepts to subspaces.

Definition. Let { #/,|j = 1,2, ...} be a sequence of non-zero subspaces of #,
such that V{A,li=1,2, ...} = (AN]j=1,2, ...} is separated if for
any j, the subspaces A, and A7 = V {A#,|k # j} intersect only at {0} and
N+ N = (direct sum).

P; will denote the projection on.4; along A7

Definition. {N,|j = 1,2, ...} is strongly complete if for any f € A, f €
V {Pfflj = 1»2" "}'

The next lemma is an immediate consequence of the above definitions.

LEMMA 2. Let {7 =1, 2,...} be a sequence o finitedimensional subspaces of
A and for each j, let {¢'? : 1 < k < n,} be a basis for N ;. Then { Vi =1,2,...}
is strongly complete if and only if {¢ V|1l < k < ny;7 = 1,2,. ..} is strongly
complete.

The importance of the concept of strong completeness becomes clear from
the following theorem proved in [5, Theorem 6.1].

THEOREM 1. Suppose A is compact and its root vectors corresponding to non-zero
eigenvalues are eigenvectors. Then A allows strict spectral synthesis if and only if
the eigemnspaces corresponding to non-zero eigenvalues are strongly complete.

We may now proceed to the first stage of our program.

THEOREM 2. Let A be compact and injective. If every invariant subspace of A
is spanned by eigenvectors, then A 1is reflexive.

Proof. As was pointed out in {7, Chap. 10], it sufhces to show that every
invariant subspace of 4 is spanned by the eigenvectors it contains.

Since every invariant subspace of 4 is spanned by eigenvectors, so are the
root spaces of 4. Noting that the restriction of 4 to a root space has only one
point in its spectrum, it is immediately seen that every root space of 4 is in
fact an eigenspace.

Let {/;|j = 1,2, ...} denote the sequence of eigenspaces of 4. By Theorem
1 and the above, {A/,|j = 1,2, ...} is strongly complete.
Now consider {A/®|j = 1, 2, ...}. This is the sequence of (finite-dimen-

sional) eigenspaces of 4. Let {¢;,?|1 < & < n,} be a basis for A4/, and

v, D = (62, 0), ¢, = (0, D).
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Since { A;|j = 1, 2, ...} is strongly complete, sois {¢;?[1 S k S ny; j =
1, 2, ...}. It follows easily from the definition that so is {yz,?|1 <1 < 2;
1Sk=n;j=1,2,...} in#®, Thus by Lemma 4, {A4,?} is strongly
complete. Applying Theorem 1, we see that 4® allows spectral synthesis and
the proof is complete.

4. The general case. 4 will be assumed to be compact though not necessarily
injective.

THEOREM 3. If every invariant subspace of A is spanned by eigenvectors of A,
then A 1s reflexive.

A portion of the proof will be given in a series of lemmas. All assume the
hypothesis of Theorem 3.

LEMMA 3. For each \ # 0, in the spectrum of A, let Ny denote the eigenspaces of
A corresponding to N and let E = NV {N\\ € ¢(4) and \ # 0}. Then the com-
pression of A to E-iszeroand E = [R(4)].

Proof. Assume ||4]] = 1. Suppose x € EL and ¢ > 0. Since every invariant
subspace of 4 is spanned by eigenvectors of A, so is. 5. Thus there exists a
sequence {x;}—1 of eigenvectors of 4 such that

n
Z ax; — x| < e
i=1
for some constants {a;}7—1. Let x4, . . . , &, correspond to non-zero eigenvalues
and xz¢1, ..., X, to zero.
Let P be the projection on E+. Since xi, ..., %, € E, PAP x, = 0 for

1 =71=kand Ax;, =0for b+ 1 =17 =< n implies PAPx, = Ofork + 1 <
1 £ n. Thus

1A

[|PAP||e < e.

||P4Px|| = NPAP(x -3 a,xi)

1=1

Thus PAP = 0.
Since for x € A, Ax = Mx, it follows that E C [R(4)]. Thus A4 (4*) C EL.
By the above E+ C A (4*) thus giving E = [R(4)].

LeEMMA 4. Suppose Lat A C Lat B. Then B commutes with 4.

Proof. Since 5 is spanned by eigenvectors of 4, it is enough to show that
ABx = BAx for any eigenvector x of A. But Lat A C Lat B implies Bx = \x
and the rest follows immediately.

LEMMA 5. If A € Lat A®™, then [AWM] € Lat B™ and is spanned by the
ergenvectors corresponding to the non-zero eigenvalues it contains.

Proof. Let E be the subspace defined in Lemma 3, and note that if E =
[R(A4)], E™ = [R(A™)] (since R(A)™ = R(4A™)). Now A restricted to E is
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injective and Lat A|E C Lat B|E. Thus by Theorem 2, B|E € U(4|E). Since
E™ C LatA™ M Lat B™, it follows that Lat (A™|E™) C Lat (B™|E™). Since
[AW M) C E®™ it follows that [A®™.A] € Lat B™. Also since A M C E™
and 4|E is injective the argument of Theorem 1 shows that [4 ™. #] is spanned
by the eigenvectors it contains. But this is identical to the eigenvectors cor-
responding to the non-zero eigenvalues which are in.#.

Proof of Theorem. Suppose# € Lat A™. By Lemma 2.3 of [6] and the fact
that every invariant subspace of A4 is spanned by egienvectors, it follows that
M has a decomposition of the form

N (AP | M) @ L

where the eigenvectors of the compression of 4* to.% corresponding to non-
zero eigenvalues span .. If Q is the projection on A (4®|.#)~+ it follows that
¥ € Lat QA™Q and [QA™QYL] = &.

It is easily seen that A (4™ #) is invariant under B®. For if, {x, ..., %,)
is in A (A™| M), Ax; = 0 for 1 <1 < n. Thus Lat 4 C Lat B implies that
the one dimensional subspaces spanned by x; and x; + x; for 1 <4, 7 S n
are all invariant under B. Thus there exists A such that Bx; = M, for1 £ ¢ £
n. It follows that B™ (x;, ..., x,) = (\x1, ..., \x,) which is in A (4™ |.A).

Thus it suffices to show that QB™QY¥ C ¥ . Note that [AWMA] = [A™ ¥
€ Lat B® by Lemma 5. Thus if x € ¥, B®A®™yx ¢ [APM] C M and
QB®A®™x € QM = £ .

But

OBMAMy = QB™A™(Ox
= QB™QA™Qx
since N/ (A™|.#) € Lat A™ M Lat B® and A™WB®™ = B™A®™, Thus

(0B™Q)(QA™Q)¥ C &£

Since [QA™WQYL] =% it follows that QB™Q.Y C.% and the proof is
complete.

5. Reflexivity relative to (A4)’. It is clear that if 4 has root vectors of
multiplicity greater than 1, then 4 is in general not reflexive. This is true even
in the finite dimensional case. However, in the finite dimensional case, U(4) =
Alg Lat A M (A4)’. This was shown to be the case for certain classes of compact
operators in [1; 2]. Here we prove a more general result.

LEMMA 6. Let A be a compact operator and Ny the root spaces of A corresponding
to an eigenvalue N % 0 of 4.
Then:
(1) If B € (Alg Lat A) N (4)’, there exists a polynomial p such that
Bx = p(A)x for all x € N\,
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(it) If B € (4) and A has a cyclic vector, there exists a polynomial p such
that Bx = p(A)x for allx € N

(iii) If B € (A)" then there exists a polynomial p such that Bx = p(A4)x for
allx EJV)\

Proof. These follow from the fact that.# is finite dimensional, 4y € Lat B
in all three cases and the corresponding finite dimensional theorems.

THEOREM 4. Let A be a compact injective operator and {N';} the sequence of
root spaces of A. Suppose {.N';} is strongly complete. Then:
(i) U(4) = (Alg Lat 4) N\ (4)".
(i1) If A has a cyclic vector, U(4) = (4)'.
(iii) U) = (4)".

Proof. By the argument used in the proof of Theorem 2, {4/} is strongly
complete for each integer k. Thus by [5, Corollary 6.1], spectral synthesis
holds for 4®,

Suppose# € Lat A®. Then .# is spanned by root vectors that it contains.
Let (x1,...,x;) €4 be such a root vector, corresponding to the eigenvalue \.
Thenx, € #yfor1 <1 < k. Suppose B € (AlgLat 4) N (4)'". By Lemma 6,
there exists a polynomial p such that Bx; = p(4)x;. Thus B® (x4, ..., x.) =
PpA)x1, ..., p(A)x;) €. (i) now follows from Lemma 2. The proofs for
(i1) and (iii) are similar.

6. C, operators. Let A be compact, H = (4*A4)'2. The eigenvalues of H
are the s-numbers of 4. We enumerate them in decreasing order taking account
their multiplicities and denote them by {s;(4)}. 4 is in C, if {s;(4)} € I?
(1 £ p £ ). The operators in C; are called nuclear.

Definition. A is dissipative if (1/27)(A — A*) is non-negative.

THEOREM 5. Let A be a nuclear dissipative operator. Then:
(1) UA) = (Alg Lat 4) N\ (4)".

(ii) If A has a cyclic vector then U(A) = (4)'.

(iii) U4) = (4)".

Proof. By the argument given in Theorem 3, it is enough to show spectral
synthesis for A®, » = 1. Since if 4 is nuclear and dissipative so is 4™, it
suffices to verify spectral synthesis for 4. By [4, p. 231] the root vectors of 4
span . Let.# € Lat A and P be the projection on.#. Then PAP is nuclear
since Cy is an ideal. Also, by [4, p. 225] PAP is dissipative. By [4, p. 231] the
root vectors of PAP span.# and the proof is complete.

7. Remarks. 1) It was shown in [3] that if U(A4) is generated by compact
operators and if 4 is invertible, then 4=t € U(4). This motivates the following
question: Is a commutative algebra generated by compact operators closed
under inverses?
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2) The problem of characterizing all compact reflexive operators seems quite
difficult. The main difficulties arise (as expected) in the quasi-nilpotent case.
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