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FREE ABELIAN TOPOLOGICAL GROUPS AND
THE PONTRYAGIN-VAN KAMPEN DUALITY

VLADIMIR PESTOV

We study the class of Tychonoff topological spaces such that the free Abelian
topological group A(X) is reflexive (satisfies the Pontryagin-van Kampen duality).
Every such X must be totally path-disconnected and (if it is pseudocompact) must
have a trivial first cohomotopy group ir1 (X). If X is a strongly zero-dimensional
space which is either metrisable or compact, then A[X) is reflexive.

INTRODUCTION

In this paper we investigate to what extent the machinery of the Pontryagin-
van Kampen duality is apphcable to the study of Markov free topological groups [14]
on completely regular topological spaces. A topological group is called reflexive if
it is canonically isomorphic to the second character group, and the Pontryagin—van
Kampen duality provides a fine tool for analysing the structure of such groups. Among
the best known classes of reflexive groups are locally compact Abelian groups, their
direct products [12], and additive groups of Banach spaces [27]. However, free Abelian
topological groups are not to be found in any of these classes - unless X is discrete,
A(X) is neither locally compact nor metrisable (see, for example, [1, 4.11 and 4.14]).
Therefore, the problem of singling out those spaces X for which the group A(X) is
reflexive is of some interest.

It is known that for a vast class of spaces X the group A(X) is non-reflexive -
this is the case if at least one path component of a fc^-space X contains more than
one point. (A k^-apace, X, is a union of countably many compact subspaces carrying
the weak topology with respect to this family.) This result of a negative character, due
to Nickolas [18], remained for some years the only known bit of information about the
reflexivity of the groups A(X).

In the present paper the character group A(X) is computed and certain necessary
or sufficient conditions for the group A(X) to be reflexive are analysed. In particular,
it is shown that total path-disconnectedness forms such a necessary condition for every
space X. For the first time the results in a positive direction are obtained: it is shown
in Section 5 that A(X) is reflexive for a rather wide class of spaces X, containing,
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298 B. Pestov [2]

in particular, all zero-dimensional compact spaces and all strongly zero-dimensional
metrisable spaces.

The present paper was originially written (in Russian) in early 1983, while the
author was a PhD student at Moscow State University, and this research had been
stimulated by Morris's book [16] (which had just become available in Russian transla-
tion) and Noble's paper [19]; the author's thanks go to his PhD advisor, Prof. A.V.
Arhangel'skii, for bringing Noble's work to his attention. The results of the paper were
not included in the author's 1983 PhD thesis, and only a fraction of them, practically
without proofs, were announced in a minuscule 1985 note [22] in a rather obscure
journal, not readily available beyond (ex)USSR's borders. For a number of years that
followed the author deemed the manuscript lost.

The decision to publish the results now, more than a decade later, was motivated
by an unceasing, yet moderate, flow of research on Pontryagin-van Kampen duality
(see [3] or the recent elegant notes [27] and [15]). In general terms, dual objects, of
which the character groups form a simple commutative speciman, are of paramount
importance in quantum group theory and noncommutative analysis and geometry; on
the other hand, various close relatives of free Abelian topological groups seem to gain
in significance as well (see our recent survey [23]).

0. PRELIMINARIES

All topological spaces are assumed to be completely regular 2\-spaces. For a
topological group G we denote by GA the group of characters of G (continuous homo-
morphisms to the circle group T). A subset A of a topological group G is precontract
if it can be covered by finitely many translations of an arbitrary neighbourhood of
the identity of G. For our purpose it is more convenient, following Raikov [24], to
equip GA with the topology of uniform convergence on all precompact subsets of G
(instead of the ordinary compact-open topology; however, we shall observe soon that
for a very broad class of topological groups the two resulting dualities are identical.) By
v: G —* GAA we denote the canonical homomorphism from G to the second character
group: v(g)(x) — x(fl) f°r all </ 6 G and x £ GA. A group G is called reflexive if u is
a topological isomorphism onto.

By G we denote the completion of a Hausdorff topological group (with respect to
the two-sided uniformity, see [25, 20]).

An arbitrary space X sits as a closed topological subspace in the (Markov) free
Abelian topological group A(X) on X; the group A(X) is algebraically free on X

and every continuous mapping f:X—*G, where G is any Abelian topological group,
extends in a unique fashion to a continuous homomorphism / : A(X) —> G (see [14, 10,
1]. A solid survey on the subject is [17]; a number of fine results on the structure of
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[3] Pontryagin-van Kampen duality 299

A(X) are contained in [29]).

We denote by L(X) the free locally convex space on X [14, 6, 7, 26, 30]. It
contains X as a closed topological subspace and as a vector basis in such a way that
every continuous mapping / : X —* E, where E is any locally convex space, extends
in a unique way to a continuous linear operator / : L(X) —> E. The identity map Idx
gives rise to a continuous group homomorphism 7 from A(X) to the additive group of
L(X); Theorem 3 in [29] states that 7 is a topological isomorphism of A(X) onto a
closed subgroup of L(X).

By 6X we denote the Dieudonne completion of a topological space X, that is,
the completion of X with respect to the finest compatible uniform structure Ux [5,
8.5.13].

Recall that a topological space X is strongly zero-dimensional [5, 6.2] if every finite
cover of X consisting of functionally open sets has a finite disjoint open refinement. (A
set is functionally open if its completement is the locus of zeros of a continuous real-
valued function on X.) If X is normal, "functionally" becomes redundant. A space X

is strongly zero-dimensional if and only if (3X is.

A subset A of a space X is termed bounded in X if the restriction to A of every
continuous real-valued function / on X is bounded. By fiX we denote the smallest
subspace of the Stone-Cech compactification f3X, containing X and such that every
bounded closed subset of pX is compact. We say that X is a fi-space if X = fiX.
Always fiX C 6X and, in particular, every Dieudonne complete space is a /j-space.
(The above definitions and results can be found in [4].)

A topological group G is called a k-group [19] if an arbitrary homomorphism
h from G to an arbitrary topological group is continuous whenever the restrictions
of h to all compact subspaces of G are continuous. The most important examples
of fc-groups are locally compact groups, metrisable groups, and, more generally, all
topological groups which are fc-spaces. Recall also that a space X is called a kj -
space [2] if an arbitrary real-valued function on X (equivalently: an arbitrary mapping
from X to a completely regular space) is continuous as soon as its restriction to every
compact subset of X is continuous.

1. T H E GROUP A{X)A

PROPOSITION 1 . If X is a. kf-space, then A(X) is a k-group.

PROOF: Let / be a homomorphism from A(X) to a topological group G, and
assume that the restriction of / to any compact subset of G is continuous. In particular,
the restriction of the map / ' = f\x to any compact subset of X is continuous; since
X is a fc-space, / ' is continuous, and so is its unique homomorphic extension to A(X),
that is, / . D
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We say that a topological group G is a pk -group if any homomorphism / from G
to a topological group is continuous as soon as the restriction of / to every precompact
subset of G is continuous. Following [30], we call a topological space X a bf-space if
an arbitrary real-valued function on X is continuous whenever its restriction to every
bounded subset of X is continuous.

LEMMA 1. A subset H of a space X is bounded in X it and only if H is pre-

compact in A(X).

PROOF: The closure of X in the completion of A(X) coincides with 6X. (See
[21]; the proof of the Theorem and all results presented in [21] for free topological
groups are valid verbatim for free Abelian topological groups.) Boundedness of H is
equivalent to compactness of clexH (OX is a /z-space), and precompactness of H in
A(X) means exactly that the closure of H in the completion of A(X) (and, in fact, in
6X ) is compact. D

PROPOSITION 2 . If X is a bf-space then A(X) is a pk-group.

PROOF: This follows from Lemma 1 and is similar to the proof of Proposition 1. u

PROPOSITION 3 . If G is a pk-group then the group GA is complete.

PROOF: This follows from the fact that GA in the case where G is a pfc-group can
be thought of as the group of all homomorphisms G —» T with continuous restrictions
to all precompact subsets of G, endowed with the topology of uniform convergence on
precompact subsets; but such an Abelian group is obviously complete. U

We denote by G* the character group of G, endowed with the compact-open
topology.

PROPOSITION 4 . If G is a complete group, then GA and G* are (canonically)

topologically isomoTphic.

PROOF: In a complete group all closed precompact subsets are compact. D

Propositions 3 and 4 imply:

PROPOSITION 5 . If G is a complete k-group then GAA and G** are (canoni-
cally) topologically isomorphic.

For an x E A(X) we denote by suppx the set { x i , . . . , z n } C X, where x =
n

^2 axi, £; £ Z \ {0}, Xi 7̂  Xj for i ^ j is an irreducible representation of x in the

alphabet X. If B C A(X), we set supp5 = |J{suppz:x £ B}.
PROPOSITION 6. (Arhangel'sku) If C C A(X) and C is precompact, then

supp C is bounded in X.
PROOF: This follows by applying Proposition 2 in [2] to the spaces X and A(X),
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[5] Pontryagin-van Kampen duality 301

respectively, and to the correspondence / • - > / , where / : -X" —> R and / is a homomor-
phism from A(X) to R, viewed as a linear map C(X) —> C(A(X)). D

We denote by r the restriction map / i-» f\x from A(X) to the group Cb(X,T)

(the subscript "6" denotes the topology of uniform convergence on bounded subsets).
For an H C X, F C. G, and and an open subset £ / C T we set

(basic sets for the topology of GA) and

N(H,U) =' {/

(basic sets for the topology of Cb{X,T)).

PROPOSITION 7 . Tie group A(X) is topologicaJly isomorphic to the group
Cb(X, T) under t i e restriction mapping r.

PROOF: The fact that r is an algebraic isomorphism is obvious. Let C be a
precompact subset of A(X). It is well known that for some n 6 N, C C. A(X)n,
where the last symbol stands for the set of all x 6 A(X) having reduced length ^ n
over X [1]. If U is an arbitrary neighbourhood of the identity e in T , choose a
symmetric neighbourhood V of e in T such that Vn C U. Proposition 6 implies
now that T-~1[M(suppC, V)] C N(C,U), which yields that r is open. Conversely,
if H is a bounded subset of X, then H is precompact in A(X) (Lemma 1) and
r~x [M(C, U)} = N(C, U); this means that r is continuous. D

In what follows we identify the topological groups A(X)A and Cb(X, T) .

2. T H E EVALUATION MAP V.A(X) -> A(X)A A

The reflexivity of a topological group G is equivalent to the following properties
of the evaluation map w. G —+ GA A.

1. v is one-to-one.
2. v is continuous.
3. v is relatively open. (That is, v is open as a map from G onto its image

in GA A.)

4. v is onto.

In this section we shall investigate the first three properties for the evaluation map
u:A(X) —> A(X) . The last property is examined in three separate sections, Section
3 and Section 4 (necessary conditions) and Section 5 (sufficient conditions).

1. Injectivity of v.

https://doi.org/10.1017/S0004972700014726 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014726


302 B. Pestov [6]

PROPOSITION 8 . For every topological space X the mapping u: A(X) —>
A(.X")AA is a monomorphism.

PROOF: This is just a reformulation of a well-known and rather simple fact: con-
tinuous characters separate points in free Abelian topological groups (see, for example,
[9]). D

2. Continuity of v.

THEOREM 1 . If G is a pk-group then the mapping v: G —» GAA is continuous.

PROOF: The proof is modelled on Noble's proof of Theorem 2.3 in [19]. Denote
by t' the topology on G, induced by the embedding

G 3 x H-» (x,v(x)) G G x GAA

It is the smallest topology which (a) is finer than the original topology t on G, (b)
is translation-invariant, and (c) contains all sets of the form |") X~1{U), where K is

an arbitrary precompact subset of GA and ej 6 U C T is open. The Ascoli Theorem
in a somewhat generalised form (see problem 379 in [13]) implies that any precompact
subset K C GA is equicontinuous with respect to the finest topology t" on G inducing
the originial topology on every precompact subset of G. Since t" is clearly translation-
invariant, one concludes: t" C t' C t. The last observation implies that t' is the finest
group topology on G inducing the originial topology on every precompact subset of
G. The property of G being a pi-group means exactly that t has the same property.
Therefore, t — t', and v is continuous. D

The following is an immediate consequence of Theorem 1 and Proposition 2.

COROLLARY 1. If X is a bf-space then the map u: A(X) —* A(X) is contin-

uous.

3. Relative openness of v.

Let F,G,H besets, let A C GF, B C HG . Set B o A = {/ o g: f £ B, g £ A}.

LEMMA 2 . Let F, G, H be topological groups, and let A C GF, B C HG. If the

sets A and B are equicontinuous, then B o A is equicontinuous.

PROOF: This follows from the fact that for every neighbourhood U of the identity
in H the set {B o A)~1(U) = A"1 (B'^H)) is open in F. D

THEOREM 2 . For every X the topology of A(X) is the topology of uniform
convergence on all equicontinuous subsets of C(X, T).

PROOF: Let U be an arbitrary neighbourhood of zero in A(X). We shall find an

open neighbourhood W of the identity in T and an equicontinuous subset H C C(X, T)

such that Olh'1 (W): h e H} C U.
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[7] Pontryagin-van Kampen duality 303

Let V be a neighbourhood of zero in the free locally convex space L(X) such that

y(U) = V f]j{A(X)). According to Theorem 3 ' in [26], there exists an equicontinuous

subset $ C C{X,R) such that f]0~\j):^> e * } C V, where I = ( -1 ,1 ) C R.

Because of the reflexivity of the additive group of R, there exist an equicontinuous set

$ C R A = C(R,T) and a neighbourhood of the identity in T such that f| {V'~1(W):

T{J € * } C I. The subset H = * o $ of C(X,T) is equcontinuous by Lemma 2. Finally,

f]{h~\w): hEH}C f )

D
In the sequel the subscript "c" stands for the compact-open topology.

LEMMA 3 . The natural restriction mapping r: CC(OX,T) —> Cb{X,T) is continu-
ous.

PROOF: If C C X is a bounded subset and V is a neighbourhood of the identity
in T, then c l ^ C C pX C 6X and r\N(clfixC,V)} C N{C,V). D

LEMMA 4 . If a set H C C(X,T) is equicontinuous, then the set It = r^^H) C
C{0X, T) is equicontinuous.

PROOF: For every entourage of the diagonal V from the (unique) uniformity of
the compact group T we denote 'H~1(V) = {{x,y) e (0X)2:(h(x),h(y)) G V for all
h € H}. One can assume that V is closed. Since H\ = H (V) fl X2 belongs to the
finest compatible uniform structure Ux on X because of the equicontinuity of H, and
the trace of U$x on X is Ux, the set H (V) is the closure of J?i in (0X) and
therefore ~H~1(V) G Wex •

(Here we used the following easy fact: a family of mappings H from a topological
space X to a uniform space Y is equicontinuous if and only if H is equicontinuous as
a family of maps from the uniform space (X,Ux) to Y.) U

LEMMA 5 . The restriction mapping r: C(6X,T) -> C(X, T) is onto.

PROOF: Every continuous f:X -> T extends over 0X, and OX C /9X. Q

THEOREM 3 . For every topological space X the map v: A(X) —* A(JT)AA is
relatively open.

PROOF: Let H be an arbitrary equicontinuous subset of C(X,T); the desired
statement will follow immediately from Theorem 2 if we show that H is precompact
in Ck(X,T). The set Hx = ^(H) is equicontinuous in C{8X,T) (Lemma 4). The
closure Hz of J?i in the topology of pointwise convergence in T0X is equicontinuous [16,
Proposition 27], and therefore H2 Q C(9X,T). Obviously, H2 is closed in CC{6X,1)
and for each x £ OX the set clw{ft.(«): h £ B 2̂} is compact. By virtue of Ascoli's

https://doi.org/10.1017/S0004972700014726 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014726


304 B. Pestov [8]

theorem [16, Theorem 9] JTj is compact in CC(6X,T). Finally, Lemma 3 implies that
r ( ^ ) is compact in Cb(X,T), and due to Lemma 5, H C r ( ^ ) - D

One deduces from Proposition 8, Corollary 1, and Theorem 3 the following result.

COROLLARY 2 . Let X be a bf-spa.ce. Then the evaluation mapping v is a

topological isomorphism of the group A(X) with a subgroup of A(X)

3. SUBJECTIVITY OF THE EVALUATION MAP AND THE GROUP ^(X)

The first cohomotopy group, TT1(X), of a topological space X is the collection of
all homotopy classes of continuous maps X —* T, equipped with the following group
operations: the product a/3 of two elements a,f3 G 7r1(X) is the class of the pointwise
product of representatives from a and /?; the element inverse to an a 6 wx{X) is the
homotopy class of a map pointwise inverse to a representative of a [11].

We shall denote by £ a group homomorphism from C(X, T) to 7r1(X) assigning
to every mapping its homotopy class. Let us denote by C°(X, T) the kernel of £. We
shall assume that w1(X) is topologised as a topological factor-group of Cb(X,T) by
its subgroup C°(X,T). Let £: A(X)AA -> C£(X,T)A be a map dual to the embedding

PROPOSITION 9 . Tie homomorphism £ o i/: A{X) -> Cg(X, T) is mono.

PROOF: Let x £ A(X); we are looking for an / G C%{X,T) such that J(x) ^ ej.

There exists a g G L(X)' with a = d e / 5(7(2)) ^ 0. (Here -y: A(X) -> £(X) is a
canonical embedding.) Let 0:R —> T be a homomorphism given by the rule x i-»
e x p ( i a - 1 x ) . Clearly, f =dcf 0 ° g\x has the desired properties. D

PROPOSITION 10 . If X is a bj-space, then £ o v is a topological isomorphism

of A(X) onto a subgroup of C6°(X,T)A.

PROOF: Since every precompact subset of C°(X,T) remains so in Cb{X,T) as
well, the mapping £ is continuous and therefore, in view of Corollary 1, the map f o e
is continuous. On the other hand, it follows from the proof of Theorem 2 that the
topology of A(X) is the topology of uniform convergence on equicontinuous subsets
of C°(X, T), because the subset H constructed in the process of the proof is in the
latter group. It follows from the proof of Theorem 3 that every such set is precompact.
Therefore, £ o v is relatively open. Proposition 9 completes the proof. u

PROPOSITION 1 1 . The group TT1(A')A canonicaiiy embeds in A(X)AA as a
topological subgroup in such a fashion that v(A(X)) D ^(X) = {0}.

PROOF: A desired canonical embedding is the map £A dual to £:Cb(X,T) —>

. If x £ A(X), then for some / G C%(X,T) one has f(x) ^ 0, while for all

0. D
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[9] Pontryagin-van Kampen duality 305

COROLLARY 3 . If A{X) is reflexive, then TT 1 (X) A = (0).

Apparently, in the general case computation of the character group of the topolo-
gised 7r1(X) is not easy. But in a particular case below (Corollary 4) the result becomes
quite meaningful.

LEMMA 6 . If X is pseudocompact then C%(X,T) is open in Cb(X,T).

PROOF: The group C°(X, T) contains an open subset M(X, V), where V =
{x G T: \x — e i | c < \/3}- Indeed, if / G M(X,V), then / is contractible to a constant
function on X; the contraction at any point x G X is performed along a geodesic in T
joining f(x) and e. U

COROLLARY 4 . If X is pseudocompact and A(X) is reflexive, then Ttl{X) =
(0).

PROOF: It follows from Lemma 6 that TT1(X) is a discrete group, and therefore
the nontriviality of this group implies the nontriviality of ir1(X) . U

We shall see below (Section 4), that even the condition 7r1(X) = (0) does not
ensure the reflexivity of A{X) .

Below we denote by Gd a group G endowed with the discrete topology, and GA

stands for (Gd)A.

PROPOSITION 12. If X is pseudocompact, then A(X) is topologically iso-
morphic to C£(X,T)A 0 ^{x)d •

PROOF: The group C$(X,T) is open in C(X,T), and it is divisible (unlike, in
general, C(X,T)) - indeed, for X pseudocompact, it is algebraically generated by a
subset M(X, V), where V = {x G T: \x - ej\c < \ /3}, and for every / G M(X, V) and
each n G N there is a g G M(X, V) with ng = f.

According to [10, 6.22.b], the group Cb{X,T) is topologically isomorphic to
C%(X,T) ffi ̂ (X). Theorem 13 in [16] finishes the proof. (Clearly, it remains valid
for all - not just locally compact - topological groups, and also in the case where the
character group is endowed with our "precompact-open" topology.) D

4. SURJECTIVITY OF THE EVALUATION MAP AND PATH-CONNECTEDNESS OF X

Let X be a topological space. Denote by 0 a map of the linear space C(X, R) to
the group C(X,T), given by the rule 6(f)(x) = exp(2nif(x)). The image of C(X,M)
under 0 is contained in C°(X, T) and 6 is an additive group homomorphism.

If XQ G X, denote

C(X,xo,R) = {/ G C(X,R):/(z0) = 0}, C(X,xo,T) = {/ G C(X,T): f(x0) = eT},

C\X,xo,T) = {/ € C0(X,T):/(z0) = er} = C°(X,T)nC(X,xo,T).
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Obviously, 6 maps C(X,xo,R) to C°(X,xo,T). Denote by 0O the restriction of 6 to

C(X,xo,R).

PROPOSITION 1 3 . Let X be a path-connected space and let x0 G X. Then
the map OQ: C(X,XQ,R) —» C°(X,xo,T) is an algebraic isomorphism. If in addition X
is a pseudocompact space, then 0Q is a topological isomorphism between Cb(X, xo,R)
and C°{X,xo,T).

PROOF: The first statement follows from the covering mapping theorem [8, 5.6.19,
11]. The continuity of 60 is obvious. Now let 0 < e < \ / 3 . Set Ve = {exp(is:):
|z| < e } C T. We shall show now that ^(JV^A", Ve)) C N(X,(-e,e)) (the no-
tation is obvious). If / G N(X,Ve), then 6g1(f)(x0) = 0 and, by virtue of the
path-connectedness of X, tfJ"1(/)(X) is in the same path component of ^ 1 (V e ) =
r|{(n - e, n + e): n G N} as 0 is, that is, in (-e, e). D

LEMMA 7. For every element x0 G X the groups C$(X,T) and C%{X,xo,T)®T

are topologically isomorphic under the mapping / t-> (f-f(xo) ,/(xo)J •

For a compact space X denote by M(X) the Banach space of all regular Borel
measures on X, that is, the strong dual to the space CC(X, R).

THEOREM 4 . If v:A(X) —+ A{X) is onto then X is totally path-disconnected,

that is, every path-component of X is a singleton.

PROOF: Assume that v is onto and at the same time there exists a path-component
of X containing more than one point. Denote by C a non-trivial image of the closed
interval [0,1] in X. Let r stand for the restriction mapping from Cb(X, T) to Cf,(C, T).
Since every compact subset of a completely regular space is C*-embedded, r is onto.
By virtue of the continuity of r, the dual map rA:C6(X,T) -» C6(JC,r)A = A(X)AA

is defined correctly. Since r is onto, rA is a monomorphism.

Let m e M{C), m: Cb(C,R) -> R. Fix c0 G C7. The mapping xL :C j (C ,c o ,T )^
T, given by the rule

-1 (/))],

is a continuous homomorphism according to Proposition 13. Proposition 12 and Lemma
7 imply that x'm extends to a continuous homomorphism Xm'-Cb{C,T) —• T. Since
Xm G 4(X)A A = t-(^(X)) and v^Xm 6 ^ ( ^ ) , one can find a finite subset X' =

{x\,... ,xm} C X such that for every / 6 C(C,T) the property f(X') C {ej} imph'es
Xm(/) = eT-

If now </> G (7(X,Xo,K) and in addition <j>(X') C {0}, then the function tp:x >-+
exp[27ri^(a;)] belongs to C7°(Jf,a!o,T) and i>{X') C {eT}, so that Xm(V0 = eT. At the
same time, Xm(V") = exp[27rim(tf^"1(^))] = exp[27rim(^)], and therefore m(<j>) G Z.
The same applies to the function <j>i = ir<j>, and we conclude: Tn(<f>) G Zn7r - 1Z = {0}.
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This means that the support of m is finite. We have arrived at a contradiction, because
C is an infinite compact set and m is an arbitrary measure on it. D

In [18] the statement of Theorem 4 was obtained in the case where X is a fc^-space.

5. A CLASS OF REFLEXIVE GROUPS A(X)

For a topological space X we denote

where B is the family of all bounded subsets of X. Clearly, X C E(X) C fiX.

However, E(X) need not coincide with fi(X) [4], though if X = E(X) then X is a
^-space.

If 7 is a disjoint cover of X, we call a mapping / : X —• Y" 7 -labelled if the
restriction of / to each member of 7 is a constant map.

Denote by Tx the totality of all finite disjoint open covers of the space X.

LEMMA 8 . Let dimX = 0. Tie subset of all mappings which are -y-labelled for
some 7 G Tx (depending on a mapping) is uniformly dense in C(X, T).

PROOF: Let / G C(X,T) and let V be a neighbourhood of e\ in T (we assume
that |V|C C (-y/3,y/3)). Let W be open in T and such that W • W-1 C V. Choose
a finite set A = {ai,...,an} C T with A • W = T. The family {f^faWy.i =

1, . . . , n} forms a functionally open cover of X; refine it to a finite disjoint open cover
7. For each U G 7 fix an x\j G U and set <f>(U) = {f(xu)}- The resulting map <f>

is 7-labelled and for every x G X one has <j>(x)f(x)~1 — /(si/)/(a5)~1, if x G U G
7. For a suitable i = 1,2,... ,n one has U C /^(a-iW), therefore f{xu)f{x)~1 G

C aiWiaiWy1 = WW'1 CV. D

THEOREM 5 . Let X be a. p-space and let dimX = 0. Tien u: A(X) -> A(X)AA

is onto.

PROOF: Let \ e A(X)**, X:Cb(X,T) -» T. We shall define an integer-valued
function ix on the set V of all open-and-closed subsets of X as follows. Let V G V.
Denote by Gv the subgroup of C(X,T) formed by all mappings / such that f(V) is
a singleton and f(X \ V) C {ej}. Clearly, Gv is topologically isomorphic to T under
the mapping / i-> f(V). Set ix(V) to be equal to k, if the restriction of x t o Gv is
of the form exp(27riz) i-» exp(2irkix) under the above identification Gv = T; in other
words, ix( V) is simply the degree of the mapping X\GV • Gv —* T .

The set Tx is naturally directed: 7 -< 7' if 7 is a refinement of 7 ' . Any family
of sets of the form {V.^7 G Tx}, where V7 G 7 and V7 C Vy whenever 7 -< 7',
forms a basis for a Cauchy filter with respect to the finest totally bounded compatible
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uniformity on X, which we denote by C*(X). Since the completion of the uniform
space (X,C*(X)) is /3X [5, 8.3.18], each family of the form {Vy.j £ Tx} with the
above properties converges to some element of (3X. Moreover, each element of (3X can
be obtained in this way.

Denote by Sx the collection of all x 6 /3X which are limits of prefilters of the form
{Vy:-f £ Tx}, where F7 £ 7 and Vy C Vy if 7 -< 7', with the additional property that
for every neighbourhood U 3 x there is a 7 6 Tx such that V7 C U and ix(V7) ^ 0.

CLAIM 1. Sx is a finite set.
< Assuming the contrary, one can easily construct by induction a countable rela-

tively discrete (that is, discrete in itself) set {sn:n £ N} C Sx, and a disjoint family
{Vn: G N} of open-and-closed subsets of X such that for all n 6 N one has an 6 clpxVn

and ix(Vn) = in 7̂  0. For n £ N define the function /„ £ Gvn by letting fn(x) = ej
for x £ X \ Vn and fn(x) = exp (27rm~1i~1) for x £ Vn. Since for every neighbour-
hood W of the identity in T one has fn(X) C W for all n starting from some natural
number, the function / = ^Z /n is continuous on X. Furthermore, / is a uniform

ngN

limit of the sequence of functions I X] /« ) a s m ~* °° i anc^ therefore one should have
\n=l /

x(/) = II X{fn) = II exP (ZTrin"1) . However, the latter infinite product diverges in

T. >
Since every function from C(X, T) extends in a unique way to a continuous T-

valued mapping on f3X, the group Cb(X, T) can be canonically identified with the group
C(0X, T), equipped with the topology of uniform convergence on bounded subsets of
X. Every / £ C(X, T) can be thought of as a mapping f3X —» T.

CLAIM 2. If / £ C(X,T), then x(f) = IT fi3)"' f o r &n appropriate collection n, £ Z,

a £ S.

< If a 7-labelled function / equals ê  on S, then it assumes the same value on
some neighbourhood U of S, which can be assumed to be open-and-closed. By the
definition of Sx, for each x £ f3X \ U there exist 7 £ Tx and Vx £ 7 such that the value
of ix on every open-and-closed subset of Vx is 0. Refine the cover {Vx: x £ 0X \ U}
to a finite disjoint open-and-closed subcover 71 of fiX \ U. (It is possible to do this
because 0X \ U is a strongly zero-dimensional compact space.) For every V £ 71,
define a function fv by

if z £ V,

otherwise.• (

Clearly, for every V £ 71, one has x(/«) = eT, because ix(V') = 0. Since f\u = ej, one
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must have f = Y\ fv (finitely many factors) and therefore x ( / ) = Y\ x(fv) = ei-
v

A straightforward consequence is that x{f) — x(s) whenever / and g are two
7-labelled functions coinciding on 5 .

Now let g be an arbitrary 7-labelled function on 5 . Fix disjoint open subsets of
PX, U,, s £ S, such that s £ U, for all s and the function g is constant on each U,.
Set n, = ix{U.). Define a function f:(3X -> T by letting / = 0 outside |J{^»:S £ s)
and f{U.) = {g{s)n'}. Obviously, *(/) = f] /(«)"' a n d . by t h e preceding paragraph,

x{g) — x(/) = I! 9(s)n' • Lemma 8 finishes the proof of Claim 2: there is a net (/„)

of 7a-labelled functions uniformly converges to a function / £ C(X,T), and one can
assume that fa\s = ej for all a; therefore, x(/) — u maX(/a) — II f{3)n' • ^

»es

CLAIM 3. S QE{X).
< Let W be a neighbourhood of the identity in T. There exist a bounded subset

B C. X and a neighbourhood U of the identity in T such that x(/) £ W when-
ever f(B) C U. If for some x E S one has x ^ c l ^ I ? , then there exists a con-
tinuous function f:/3X —• T with the properties f(B) = {ej}, f(S\{x}) C {ef},
and f(x)nx i W. Now X(f) = U / («)" ' = /(a)"* <t W, a contradiction, since

»es
/(B) = {eT}C£/. >

Our Theorem is proved. Indeed, since X is a /i-space, one has E(X) — X,

therefore S C X, and x = "( Z) ' ' ^ ) > where JZ n*a; e -^(-^)> & being finite. D
Vies / xes

Combining the statements of Proposition 9 and Theorems 1, 3 and 5, we obtain
our main result.

THEOREM 6 . Let X be a n-spa.ce and kf-space, and let d imX = 0. Tien A(X)

is a reflexive topological group.

COROLLARY 5 . Let X be a paracompact k-space and let dimX = 0. Then
A(X) is a reflexive topological group.

COROLLARY 6 . Let X be a zero-dimensional compact space or a strongly zero-

dimensional metrisable space. Then A(X) is a reflexive topological group.

In particular, the free Abelian topological groups A(<Q) and ^(Z^ 0 ) on both ra-
tional and irrational numbers provide examples of reflexive groups of a type completely
unknown before.

6. CONCLUDING REMARKS

1. Does any known noncommutative analogue of Pontryagin-van Kampen duality

(such as Tannaka-Krein duality) work for Markov free topological groups?
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2. Answering a question by Noble [19], Nickolas [18] had shown that a complete
topological A;-group, whose points are separated by continuous characters, need not be
reflexive: his counter-example was A[0,1].

However, a non-discrete free Abelian topological group is never Cech-complete [1].
Is every complete and Cech-complete topological group, whose points are separated by
continuous characters, reflexive?

REFERENCES

[l] A.V. Arhangel'skii, 'Relations among invariants of topological groups and their subspaces',
Russian Math. Surveys 35 (1980), 1-23.

[2] A.V. Arhangel'skii, 'Linear homeomorphisms of function spaces', Soviet Math. Dokl. 25
(1982), 852-855.

[3] W. Banaczcyk, Additive subgroups of topological vector spaces, Lecture Notes in Mathe-
matics 1466 (Springer-Verlag, Berlin, Heidelberg, New York, 1991).

[4] J.L. Blasco, 'On /x-spaces and fcji-spaces', Proc. Amer. Math. Soc. 67 (1977), 179-186.
[5] R. Engelking, General topology (PWN, Warczawa, 1977).
[6] J. Flood, Free topological vector spaces, (Ph.D. thesis) (Australian National University,

Canberra, 1975).
[7] J. Flood, Free locally convex spaces, Dissert. Math. CCXXI (PWN, Warsczawa, 1984).
[8] D.B. Fuks and V.A. Rokhlin, Beginner's Course in Topology: Geometric Chapters, (trans-

lated from the Russian by A. Iacob) (Springer-Verlag, Berlin, Heidelberg, New York,
1984).

[9] B.R. Gelbaum, 'Free topological groups', Proc. Amer. Math. Soc. 12 (1961), 737-743.
[10] E. Hewitt and K.A. Ross, Abstract harmonic analysis. I, (second edition) (Springer-Verlag,

Berlin, Heidelberg, New York, 1979).
[11] S.-T. Hu, Homotopy theory, Pure and Applied Mathematics, 8 (Academic Press, New

York, London, 1959).
[12] S. Kaplan, 'Extensions of the Pontryagin duality, I. Infinite products', Duke Math. J. 15

(1948), 649-658.
[13] A.A. Kirillov and A.D. Gvishiani, Theorems and problems in functional analysis, (trans-

lated from Russian by Harold H. McFaden) (Springer-Verlag, Berlin, Heidelberg, New
York, 1982).

[14] A.A. Markov, 'Three papers on topological groups', Amer. Math. Soc. Transl. 30 (1950),
120 pp.

[15] E. Martin-Peinador, 'A reflexive admissible topological group must be locally compact',
Proc. Amer. Math. Soc. (to appear).

[16] S.A. Morris, Pontryagin duality and the structure of locally compact Abelian groups (Cam-
bridge University Press, Cambridge, London, New York, Melbourne, 1977).

[17] S.A. Morris, 'Free Abelian topological groups', in Categorical Topology, Proc. Conference
Toledo, Ohio, 1983 (Heldermann-Verlag, 1984), pp. 375-391.

https://doi.org/10.1017/S0004972700014726 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014726


[15] Pontryagin-van Kampen duality 311

[18] P. Nickolas, 'Reflexivity of topological groups', Proc. Amer. Math. Soc. 65 (1977),
137-141.

[19] N. Noble, 'Jb-Groups and duality', Trans. Amer. Math. Soc. 151 (1970), 551-561.
[20] E. Nummela, 'The completion of a topological group', Bull. Austral. Math. Soc. 21 (1980),

407-417.
[21] V. Pestov, 'Some properties of free topological groups', Moscow Univ. Math. Bull. 37

(1982), 46-49.
[22] V. Pestov, 'Free topological Abelian groups and the Pontryagin duality', Moscow Univ.

Math. Bull. 41 (1986), 1-4.
[23] V. Pestov, 'Universal arrows to forgetful functors from categories of topological algebra',

Bull. Austral. Math. Soc. 48 (1993), 209-249.
[24] D.A. RaTkov, 'Harmonic analysis on commutative groups with Haar measure and the

theory of characters', (in Russian), Trudy Mat. Inst. Steklov 14 (1945), 1-86.
[25] D.A. Raikov, 'On the completion of topological groups', (in Russian), Izv. Akad. Nauk

SSSR. Ser. Mat. 10 (1946), 513-528.
[26] D.A. Raikov, 'Free locally convex spaces for uniform spaces', (in Russian), Mat. Sb. (N.S.)

63 (1964), 582-590.
[27] D. Remus and F.J. Trigos-Arrieta, 'Abelian groups which satisfy Pontryagin duality need

not respect compactness', Proc. Amer. Math. Soc. 117 (1993), 1195-1200.
[28] M. Smith, 'The Pontryagin duality theorem in linear spaces', inn . of Math. 56 (1952),

248-253.
[29] M. G. Tkachenko, 'On completeness of free Abelian topological groups', Soviet Math.

Dokl. 27 (1983), 341-345.
[30] V.V. UspenskiT, 'On the topology of free locally convex space', Sov. Math. Dokl. 27 (1983),

781-785.
[31] R.F. Wheeler, 'Weak and pointwise compactness in the space of bounded continuous

functions', Trans. Amer. Math. Soc. 266 (1981), 515-530.

Department of Mathematics
Victoria University of Wellington
Wellington
New Zealand
e-mail: vladimir.pestov@vuw.ac.nz

https://doi.org/10.1017/S0004972700014726 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014726

