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Abstract

We develop general conditions for weak convergence of adaptive Markov chain Monte
Carlo processes and this is shown to imply a weak law of large numbers for bounded
Lipschitz continuous functions. This allows an estimation theory for adaptive Markov
chain Monte Carlo where previously developed theory in total variation may fail or
be difficult to establish. Extensions of weak convergence to general Wasserstein dis-
tances are established, along with a weak law of large numbers for possibly unbounded
Lipschitz functions. Applications are applied to autoregressive processes in various
settings, unadjusted Langevin processes, and adaptive Metropolis–Hastings.
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1. Introduction

Markov chain Monte Carlo (MCMC) provides a means to estimate integrals with respect
to a target probability measure from the empirical average of a Markov chain. Many Markov
chains require a delicate choice of tuning parameters to explore the state space properly, such
as Metropolis–Hastings [31] and discretized Langevin diffusions [30, 35]. The optimal tuning
parameter choice often depends on properties of the target probability measure, which may
be challenging to compute precisely. At the same time, a poor tuning parameter choice may
lead to unreliable estimation and diagnostics from the Markov chain. This motivates adaptive
MCMC processes that automatically learn or adapt the tuning parameters of the Markov chain
as the process progresses in time [18, 32].

The general theory for adaptive MCMC processes is accomplished through a convergence
guarantee on the non-adapted Markov chain in the total variation distance combined with
diminishing conditions on the adaptation of the tuning parameters [32]. Numerous adaptation
strategies are possible such as stochastic approximation [29] or specifically designed strate-
gies to rapidly decrease the adaptation as time progresses [9]. The existing general theory
results in the ability to approximate arbitrary bounded functions through a weak law of large
numbers. However, there has been increasing evidence that convergence in total variation is
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2 A. BROWN AND J. ROSENTHAL

inadequate for many high-dimensional target probability measures compared to convergence
in Wasserstein distances from optimal transportation [15, 20, 27, 28]. The issues with analyz-
ing convergence with total variation are not limited to high dimensions and may appear for
certain diffusion processes in any dimension [20], and even for toy examples [8, 39].

Since the introduction of adaptive MCMC [18], many advancements have been made based
upon convergence in total variation [2, 19, 33], but weak convergence appears less explored.
For example, convergence theory for adaptive MCMC has been extended to handle augmented
target distributions that may depend on the adaptation to target multi-modal distributions [26].
Under specific adaptation strategies based on stochastic approximation, convergence theory
under stronger assumptions can lead to a central limit theorem [1]. However, each of these
theoretical results and guarantees is based on convergence of the non-adapted Markov chain in
total variation.

This article’s main contribution is the weak convergence of adaptive MCMC processes
under general conditions using Wasserstein distances that metrize the weak convergence of
probability measures [17, 41]. Section 2 introduces the general adaptive MCMC regime, and
Section 3 reviews the existing theory and some motivating examples that emphasize the inad-
equacy of the existing convergence theory. Section 5 extends the traditional convergence
framework in total variation for adaptive MCMC [32] to a framework based on weak con-
vergence. While the convergence result is weaker than total variation, it provides theoretical
guarantees for approximations of bounded Lipschitz functions and arbitrary closed sets via
Strassen’s theorem [37]. Section 6 develops general conditions for a weak law of large numbers
applied to bounded Lipschitz functions based on weak convergence.

Some examples and applications are explored in Section 5 with adapted autoregressive pro-
cesses, adaptive unadjusted Langevin processes, adaptive Langevin diffusions, and adaptive
Metropolis–Hastings. Beyond the examples studied here, the weak convergence theory for
adaptive MCMC can be used to develop new adaptive algorithms for Bayesian inverse prob-
lems popular in physics that involve sampling posterior distributions on infinite-dimensional
spaces where total variation can be problematic [10]. Another potentially useful application of
the theory developed here is demonstrated in the adaptive Langevin diffusion example where
using Wasserstein distances to show weak convergence can yield simpler proofs of the required
conditions in comparison to proofs needed to show convergence in total variation.

Weak convergence and the law of large numbers are further extended to general Wasserstein
distances under stronger conditions. The main application of this extension is a law of large
numbers for unbounded Lipschitz functions in Section 6 and is of practical relevance in statis-
tics. In particular, this extends the weak law of large numbers for Lipschitz functions for
adaptive MCMC processes [32] and for Markov chains [36]. Recently, a law of large num-
bers for bounded Lipschitz functions has been developed under strong contraction conditions in
Wasserstein distances combined with strong limitations on the adaptation [21]. The law of large
numbers developed here holds under more general conditions and can apply to unbounded
Lipschitz functions under suitable conditions. Section 9 discusses our theoretical results along
with limitations and potential extensions of the newly developed theory.

2. Background: Adaptive Markov chain Monte Carlo processes

Let Z+ denote the positive integers and denote the minimum and maximum of a, b ∈R

by a ∧ b and a ∨ b respectively. For a Borel measurable space S, let B(S) denote its Borel
sigma field. The Euclidean norm is denoted by ‖ · ‖ and, for a measure μ, Lebesgue spaces
are denoted by Lp(μ). For a real-valued function f , denote the optimal Lipschitz constant with
respect to a metric d by ‖f ‖Lip(d) = supx �=y |f (y) − f (x)|/d(x, y).
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Weak convergence of adaptive MCMC 3

We follow closely to the adaptive MCMC process framework of [32]. Let (�,B(�)) be a
Borel measurable space and let X and Y be complete separable metric spaces with respect
to some metrics, with B(X ) and B(Y) their respective Borel sigma fields. Let π be a target
Borel probability measure on X . For a discrete time index t ∈Z+, the adaptive process updates
a random tuning parameter �t : � �→Y as the process progresses using the entire history to
improve the distribution of Xt : � �→X . The result is for the marginal distribution of Xt to
approximate the target distribution π .

We define generalized Borel measurable probability transition kernels (Qt)t≥0 with
Qt : (Y ×X )t ×B(Y) �→ [0, 1] and a family of Borel measurable Markov transition kernels
(Pγ )γ∈Y with Pγ : X ×B(X ) �→ [0, 1] to prescribe the adaptive process by the relations

P(�t ∈ dγ | Ht−1) =Qt(Ht−1, dγ ), P(Xt ∈ dx | �t, Xs,Ht−1) =P�t (Xs, dx),

where Ht = (�0, X0, . . . , �t, Xt) denotes the history at time t. This prescribes the finite-
dimensional distributions so that (�0, X0, . . . , �t, Xt) for fixed �0, X0 has joint distribution

A(0,...,t)((γ0, x0), dγ1, dx1, . . . , dγt, dxt) =
t∏

k=1

Qk(hk−1, dγk)Pγk (xk−1, dxk)

with history hk = (γ0, x0, . . . , γk, xk). This defines an adaptive process (�t, Xt)t≥0 adapted
to the filtration Ht =B(�s, Xs : 0 ≤ s ≤ t) and initialized at any probability measure μ on
(Y ×X ,B(Y ×X )) by the Ionescu–Tulcea extension theorem [38].

We will mostly be concerned with the marginal distribution Xt from fixed initialization
points γ, x ∈Y ×X and general initializations μ on (Y ×X ,B(Y ×X )), defined by

Xt | �0, X0 = γ, x ∼A(t)((γ, x), ·), Xt ∼μA(t)( · ) =
∫
Y×X

A(t)((γ, x), ·)μ(dγ, dx). (1)

3. Background: Wasserstein distances

Let d : X ×X → [0,∞) be a lower semicontinuous metric. Define the Wasserstein distance
or transportation distance of order p ∈Z+ between two arbitrary Borel probability measures μ
and ν on (X ,B(X )) by

Wd,p(μ, ν) =
(

inf
ξ∈C(μ,ν)

∫
X×X

d(x, y)p ξ (dx, dy)

)1/p

,

where C(μ, ν) is the set of all joint probability measures ξ such that ξ ( · ×X ) =μ( · ) and
ξ (X × · ) = ν( · ). We generally suppress the 1 in the L1 metric and write Wd(μ, ν): =
Wd,1(μ, ν).

The total variation distance denoted by WTV(·, ·) between probability measures can be
seen as a special case of a Wasserstein distance when the metric is defined by IDc (·, ·) with
the off-diagonal set Dc = {x, y ∈X ×X : x �= y}. If (X , d) is a complete separable metric
space, then the standard bounded metric d(·, ·) ∧ 1 defines a Wasserstein distance Wd∧1(·, ·).
This Wasserstein distance metrizes the weak convergence of probability measures through
the bounded Lipschitz metric [13, Theorem 11.3.3] and is equivalent up to a constant to the
bounded Lipschitz metric by Kantovorich–Rubinstein duality [40, Theorem 1.4].

Traditional theory of adaptive MCMC considers an adaptive process (�t, Xt)t≥0 initialized
at �0, X0 = γ, x ∈Y ×X satisfying a (strong) diminishing adaptation condition

lim
t→∞ sup

x∈X
WTV(P�t+1 (x, ·),P�t (x, ·)) = 0 (2)
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4 A. BROWN AND J. ROSENTHAL

in probability with the supremum assumed Borel measurable and a (strong) containment
condition, which is to show that, for any ε ∈ (0, 1), the sequence

Mε(�t, Xt) = inf
{
N ∈Z+ : WTV

(Pn
�t

(Xt, ·), π
)≤ ε for all n ≥ N

}
(3)

is bounded in probability, that is, limN→∞ supt≥0 P(Mε(�t, Xt)>N) = 0. The (strong) dimin-
ishing adaptation restricts the adaptation plan for (�t)t and (strong) containment is a uniform
convergence requirement on the non-adapted Markov chain.

Under these two conditions, we have the guarantee [32] that for every fixed initialization
γ, x ∈Y ×X and for every bounded Borel measurable function ϕ : X →R,

lim
t→∞ WTV

(A(t)((γ, x), ·), π)= 0 and
1

t

t∑
s=1

ϕ(Xs) →
∫
X
ϕ dπ in probability as t → ∞.

Both of these guarantees have many practical applications in the reliability of Monte Carlo
simulations in Bayesian statistics. General conditions for (strong) containment (3) to hold have
also been developed [3, 23].

The (strong) containment condition (3) is often established via simultaneous drift and
minorization conditions [3, 32]. This requires a drift function V : X → [0,∞) and identifi-
cation of a small set S = {x ∈X : V(x) ≤ R} such that there are constants λ, α ∈ (0, 1) and
L ∈ (0,∞) where R> 2L/(1 − λ) is required and, for every γ, x ∈Y ×X , there is a Borel
probability measure νγ on X such that

inf
y∈S

Pγ (y, ·) ≥ ανγ ( · ) and (PγV)(x) ≤ λV(x) + L. (4)

These techniques yield (strong) containment (3) through a geometric rate r ∈ (0, 1) and con-
stant M0 > 0 such that, for t, n ∈Z+, WTV

(Pn
�t

(Xt, ·), π
)≤ M0rnV(Xt) and (V(Xt))t≥0 is

bounded in probability [32, Theorem 18].
The identification of such a small set S and drift function V as in (4) often becomes problem-

atic in large dimensions as probability measures often tend towards mutual singularity. Even
in low dimensions, a small set may not exist as a non-adapted Markov kernel may fail to be
irreducible, meaning that, for each γ ∈Y , there is no Borel probability measure ϕγ on X such
that ϕγ ( · )> 0 implies Pγ (x, ·)> 0 for all x ∈X . In this case, it is not possible to find such a
small set regardless of the dimension [24, Theorem 5.2.2].

4. Motivating examples

The following running examples illustrate problematic points with analysis in total varia-
tion for adapting the tuning parameters of Markov chains compared to their alternative weak
convergence properties. In particular, (strong) containment (3) may fail. Stark differences in
the convergence characteristics may even appear when adapting a discrete Markov chain, as
the following example illustrates.

Example 1. (Discrete autoregressive process.) Let γ ∈Z+ with γ ≥ 2 and (ξγt )t≥0 be indepen-
dent uniformly distributed discrete random variables on {0, 1/γ, 2/γ, . . . , (γ − 1)/γ }. With
X0 = x ∈ [0, 1), define the autoregressive process for t ∈Z+ by Xγt = (1/γ )Xγt−1 + ξ

γ
t . For each

fixed γ ≥ 2, this defines a Markov chain with Markov transition kernel denoted by Pγ . It
can be shown that the invariant probability measure π ≡ Unif(0, 1) is a Lebesgue measure
on [0, 1).
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Weak convergence of adaptive MCMC 5

For any adaptive process (�t, Xt)t≥0 using these Markov kernels (Pγ )γ , traditional con-
vergence theory in total variation [32, Theorem 13] is inadequate. Indeed, it can be shown
that WTV

(P t
γ (x, ·),Unif(0, 1)

)= 1 and (strong) containment (3) fails under any adaptive
strategy. On the other hand, weak convergence is exponentially fast. For t ∈Z+ and any
fixed γ , starting from X0 = x ∈ [0, 1) and Y0 = y ∈ [0, 1), define Xγt = (1/γ )Xγt−1 + ξ

γ
t and

Yγt = (1/γ )Yγt−1 + ξ
γ
t with shared discrete uniformly distributed random variable ξγt . These

random variables (Xγt , Yγt ) define a coupling such that, for any x ∈ [0, 1) and γ ≥ 2,

W|·|
(P t

γ (x, ·),Unif(0, 1)
)≤

∫
[0,1)

E
[|Xγt − Yγt |X0 = x, Y0 = y

]
dy ≤ 2−t.

In particular, we will show later that under a suitable adaptation strategy, the adaptive process
converges weakly using this Wasserstein distance.

The next example shows how problems appear in infinite dimensions. Although the example
is somewhat abstract, poor scaling properties in infinite dimensions can also appear in practical
high-dimensional scenarios in statistics.

Example 2. (Infinite-dimensional autoregressive process.) Consider a Hilbert space H sep-
arable with infinite dimension and inner product 〈·, ·〉. Let N (0,C) be a Gaussian Borel
probability measure on H with mean 0 ∈ H and symmetric positive covariance operator
C : H → H such that tr(C) =∑∞

k=1〈Cuk, uk〉<∞, where (uk)k is any orthonormal basis of H.
We will further assume that C is non-degenerate so that, for every x, y ∈ H, Cx ≡ 0 ∈ H implies
x ≡ 0 ∈ H. For some γ ∗ < 1, consider the family of Markov transition kernels (Pγ )γ∈(0,γ ∗) for
the autoregressive process (Xγt )t≥0 where the (ξt)t are independent with ξt ∼N (0,C) and

Xγt = γXγt−1 +
√

1 − γ 2ξt, t ∈Z+.

For any fixed γ ∈ (0, γ ∗), if Xγt−1 ∼N (0,C), then Xγt ∼N (0,C) and the invariant probability
measure is N (0,C).

For an adaptive autoregressive process (�t, Xt)t≥0 defined by (2), convergence theory in
total variation [32, Theorem 13] fails to provide a convergence guarantee. For each x ∈ H
and γ ∈ (0, 1), WTV(Pγ (x, ·),N (0,C)) = 1 due to the covariances differing and the Feldman–
Hajeck theorem [12, Theorem 2.25]. It follows that (strong) containment (3) cannot hold under
any adaptation strategy (2). However, convergence in L2-Wasserstein distances is exponentially
fast. Initialized with X0 = x ∈ H and Y0 = y ∈ H, define Xγt = γXγt−1 +√

1 − γ 2ξt and Yγt =
γYγt−1 +√

1 − γ 2ξt using the common random variable ξt ∼ N(0,C). This defines a coupling
such that the L2-Wasserstein distance is upper bounded with

W‖·‖,2(P t
γ (x, ·),N (0,C)) ≤

[ ∫
H
W‖·‖,2(P t

γ (y, ·),P t
γ (x, ·))2 π (dy)

]1/2

≤ γ ∗t[ ‖x‖ +√
tr(C)].

5. Main results

This section extends previous results on convergence in total variation of adaptive MCMC
processes to weak convergence and general Wasserstein distances [32, Theorems 5 and 13]. Let
ρ(·, ·) be a lower semicontinuous metric on X , so Wρ∧1(·, ·) defines a Wasserstein distance.
If (X, ρ), is a complete separable metric space, then Wρ∧1(·, ·) metrizes weak convergence
[13, Theorem 11.3.3]. A motivation for this convergence is Strassen’s theorem, which gives

https://doi.org/10.1017/jpr.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.4


6 A. BROWN AND J. ROSENTHAL

approximations to arbitrary closed sets [40, Corollary 1.28]. However, ρ(·, ·) need only satisfy
the axioms of a metric and Wρ∧1(·, ·) is defined more generally.

The first simple situation is to introduce a stopping time T such that the adaptation termi-
nates and �T = �t for all t ≥ T . For any T ≥ 1 determining a stopping point of adaptation, we
can construct a finite adaptation process (Yt, �t)∞t=0 adapted to the filtration H′

t =B(Ys, �s : 0 ≤
s ≤ t) initialized at �0, Y0,= γ, x such that Yt = Xt for 0 ≤ t ≤ T and is a Markov chain fur-
ther out, that is, Yt+1 |H′

t, Yt = y ∼P�T (y, ·) for t ≥ T . Denote the marginal distribution as
B(T,t−T)((γ, x), ·) = P(Yt ∈ · | �0, Y0 = γ, x).

Proposition 1. Let ρ(·, ·) be a lower semicontinuous metric on X and let (�t, Xt)t≥0
be a finite adaptive process with initialization probability measure μ as in (1). If, for
every initialization x ∈X and every γ ∈Y , limt→∞ Wρ∧1

(P t
γ (x, ·), π)= 0, then limt→∞

Wρ∧1
(
μB(T,t−T), π

)= 0.

Proof. Since the optimal coupling exists [41, Theorem 4.1] and is Borel measurable [41,
Corollary 5.22], Wρ∧1

(
μB(T,t−T), π

)≤E[Wρ∧1(P t−T
�T

(XT , ·), π )
]
. The conclusion follows by

dominated convergence. �

While finite adaptation may be a safe strategy, infinite adaptation where the process contin-
ually learns tuning parameters is often of greater interest in applications [32]. Consider now
the following two weakened assumptions, both generalized from [32]. The first assumption
is a weak restriction on the adaptation and the second is a weak containment condition on
convergence of the non-adapted Markov chain.

Assumption 1. Let (�t, Xt)t≥0 be an adaptive process with initialization probability measure
μ as in (1). Let ρ(·, ·) and ρ̃(·, ·) be lower semicontinuous metrics on X such that ρ(·, ·) ∧ 1 ≤
ρ̃(·, ·) ∧ 1. We make the following assumptions.

(i) (Weak containment.) Suppose, for any ε ∈ (0, 1), the sequence

Mε,ρ(�t, Xt): = inf
{
N ≥ 0: Wρ∧1

[Pn
�t

(Xt, ·), π
]≤ ε for all n ≥ N

}
is bounded in probability, that is,

lim
T→∞ sup

t≥0
P(Mε,ρ(�t, Xt) ≥ T) = 0. (5)

(ii) (Weak diminishing adaptation.) Suppose there is a conditional coupling x, y, γ, γ ′ �→
ξx,y,γ ′,γ ∈ C[Pγ ′(x, ·),Pγ (y, ·)] and a non-negative real-valued sequence (δk)k≥0 with
limk→∞ δk = 0 such that

Dρ̃(�t+1, �t): = lim
k→∞ sup

{x,y∈X×X :ρ̃(x,y)≤δk}

∫
X×X

ρ̃(x′, y′) ∧ 1 ξx,y,�t+1,�t (dx′, dy′) (6)

is Ht+1-measurable and Dρ̃(�t+1, �t) → 0 in probability as t → ∞.

There are existing results to bound the convergence rate of non-adapted Markov chains that
can be modified to satisfy the weak containment condition using drift and coupling techniques
[15, 20]. Note that ρ(·, ·) ∧ 1 ≤ I{x �=y}(·, ·) and (strong) diminishing adaptation [32] implies
weak diminishing adaptation (6). We then immediately have Proposition 2. In certain cases
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Weak convergence of adaptive MCMC 7

FIGURE 1. Illustration of comparison of strong/weak containment and strong/weak diminishing adapta-
tion conditions required to obtain weak convergence of adaptive MCMC.

it may be simpler to show (strong) diminishing adaptation where only weak containment (5)
holds; the implications of Proposition 2 are visualized in Figure 1.

Proposition 2. Let (�t, Xt)t≥0 be an adaptive process with initialization probability measure
μ as in (1). If the process satisfies (strong) containment (3), then weak containment (5) is
satisfied. If the process satisfies (strong) diminishing adaptation (2), then weak diminishing
adaptation (6) is satisfied.

The following result shows weak convergence of the adaptive MCMC process.

Theorem 1. Let (�t, Xt)t≥0 be an adaptive process with initialization probability measure μ
as in (1). If weak containment (5) holds and weak diminishing adaptation (6) holds, then
limt→∞ Wρ∧1(μA(t), π ) = 0.

We will prove Theorem 1 through the subsequent lemmas by comparing the adaptive pro-
cess to an adaptive process where adaptation stops at a finite time. The first result shows
that weak containment ensures the convergence of the finite adaptation process to the target
measure uniformly in the finite adaptation stopping time.

Lemma 1. If weak containment holds (5), then, for any γ, x ∈Y ×X ,

lim
n→∞ sup

T≥n
Wρ∧1

[
B(T,n−T)((γ, x), ·), π]= 0.

Proof. Fix ε ∈ (0, 1). For any γ, x ∈Y ×X and each n ∈Z+, the infimum is attained at an
optimal coupling ξ (n)

x,γ ∈ C[Pn
γ (x, ·), π ] [41, Theorem 4.1] so that

Wρ∧1
[Pn

γ (x, ·), π]= ∫
X 2
ρ(x′, y′) ∧ 1 ξ (n)

γ,x(dx′, dy′).

The coupling is Borel measurable due to ρ(·, ·) ∧ 1 being lower semicontinuous, and can
be approximated by a non-decreasing sequence of bounded Lipschitz functions so we can
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8 A. BROWN AND J. ROSENTHAL

choose a measurable selection [41, Corollary 5.22] such that the limit is Borel measur-
able using the approximation techniques in [40, Theorem 1.3]. Define the set Aε = {γ, x ∈
Y ×X : Mε,ρ(γ, x) ≤ N}. For all γ, x ∈ Aε and for all n ≥ N,

Wρ∧1
[Pn

γ (x, ·), π]≤ ε. (7)

Let ν(T)
γ,x denote the probability measure for (XT , �T ) given �0, X0 = γ, x. Then

ξ̂ (T+n)
γ,x (dxT+n, dy) =

∫
Y×X

ξ (n)
γT ,yT

(dx′, dy′)ν(T)
γ,x(γT , yT )

defines a coupling for the finite adaptation process YT+n ∼ B(T,n)((γ, x), ·) and Y ∼ π [41,
Theorem 4.8]. By the weak containment assumption (5), there is an N depending on ε such
that, uniformly in T ≥ 0, ν(T)

γ,x(Ac
ε) = P(Mε,ρ(�T , XT )>N) ≤ ε. Using (7), uniformly in T ≥ n,

Wρ∧1
[
B(T,n−T)((γ, x), ·), π]≤ ∫

X 2
ρ(x′, y′) ∧ 1 ξ̂ (T+n)

γ,x (dx′, dy′)

≤
∫
X 2

∫
Aε
ρ(yT+n, y) ∧ 1 ξ (n)

γT ,yT
(dx′, dy′)ν(T)

γ,x(γT , yT )

+ sup
T ′≥0

ν(T ′)
γ,x (Ac

ε) ≤ 2ε. �

The weak diminishing adaptation condition will ensure our next goal, which is to have the
adaptive MCMC process converge to the finite adaptation process.

Lemma 2. If weak diminishing adaptation (6) holds, then, for any γ, x ∈Y ×X and any
N ≥ 0, limT→∞ Wρ̃∧1

(A(T+N)((γ, x), ·), B(T,N)((γ, x), ·))= 0.

Proof. It will suffice to assume that ρ̃ = ρ and the optimal coupling in the weak diminishing
adaptation assumption (6). Fix N ≥ 1 and ε ∈ (0, 1). For each γ, γ ′ and each x, y, there exists
a Borel measurable optimal coupling ξ∗

x,y,γ ′,γ such that

Wρ∧1[Pγ ′ (x, ·),Pγ (y, ·)] =
∫
X 2
ρ(x′, y′) ∧ 1 ξ∗

x,y,γ ′,γ (dx′, dy′).

Using these conditional couplings, we define a joint probability measure ζγ0,x0 by

ζγ0,x0 (dx1, dγ1, dy1, . . . , dxT+N, dγT+N, dyT+N)

=
T∏

s=1

Pγs (xs−1, dxs)Qs(hs−1, dγs)δx1,...,xs (dy1, . . . , dys)

×
T+N∏

s=T+1

ξ∗
xs−1,ys−1,γs,γT

(dxs, dys)Qs(hs−1, dγs),

where, for 0 ≤ s ≤ t, the history hs = (γ0, x0, . . . , γs, xs). The marginal is a coupling
ζγ0,x0 (dxt, dyt) for the adaptive process Xt | �0, X0 = γ, x and the finite adaptation process
Yt | �0, Y0 = γ, x initialized so that they are identical up to time T and use conditional
couplings thereafter. �
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Weak convergence of adaptive MCMC 9

For γ ′, γ ∈Y and δ ∈ (0, 1), define Dρ,δ(γ ′, γ ) = sup{x,y:ρ(x,y)≤δ} Wρ∧1(Pγ ′(x, ·),Pγ (y, ·)).
For any ε′, δ′ ∈ (0, 1) and k ∈Z+, define the set

E(T,N)
ε′,δ′ = {γT+1, . . . , γT+N : Dρ,δ′ (γt+1, γt) ≤ ε′/N2, T + 1 ≤ t ≤ T + N − 1}.

Starting with δN = r ∈ (0, 1), for each 1 ≤ k ≤ N, given δk ∈ (0, 1), by weak diminishing adap-
tation (6) we can choose T large enough depending on ε,N, δk and δk−1 sufficiently small such
that, for all t ≥ T , Dρ,δ(�t+1, �t) is Ht+1-measurable and

P(Dρ,δk−1 (�t+1, �t)> δkε/N
2) ≤ ε/N2.

This constructs δ0, . . . , δN = r such that, using a union probability bound, we can choose
T sufficiently large depending on ε,N, δ1, . . . , δN that, for each 1 ≤ k ≤ N, we have
P
(
E(T,N)
εδk,δk−1

)≥ 1 − ε/N. Define E =⋂N
k=1 E(T,N)

δkε,δk−1
; a union probability bound then implies

that

P(E) = P

(
N⋂

k=1

E(T,N)
δkε,δk−1

)
≥ 1 − ε.

The triangle inequality for the Wasserstein distance [40, Lemma 7.6] holds for every
1 ≤ k ≤ N with

Wρ∧1[PγT+k (x, ·),PγT (y, ·)] ≤Wρ∧1[PγT+1 (x, ·),PγT (y, ·)]

+
N−1∑
s=1

Wρ∧1[PγT+s+1 (x, ·),PγT+s(x, ·)].

For each k, if γT+1, . . . , γT+k ∈ E(T,N)
εδk,δk−1

, then by the previous inequality and Markov’s
inequality,

inf{ρ(x,y)≤δk−1}
W{ρ(x′,y′)≤δk}[PγT+k (x, ·),PγT (y, ·)] ≥ 1 − ε

N
.

By the construction of the distribution ζ , ρ(xT , yT ) ≤ δ0 regardless of how small δ0 is, and
we have the lower bound

ζ

(
N⋂

k=1

{ρ(xT+k, yT+k) ≤ δk} | E

)
≥
(

1 − ε

N

)N

≥ 1 − ε.

Combining these results, we have

WI{x′,y′ :ρ(x′,y′)>r}
(A(T+N)((γ, x), ·), B(T,N)((γ, x), ·))≤ ζ ({ρ(xT+N, yT+N)> r})

≤ ζ ({ρ(xT+N, yT+N)> δN} | E) + P(E)

≤ 2ε.

Since this holds for any r, ε, Wρ∧1
(A(T+N)((γ, x), ·), B(T,N)((γ, x), ·))≤ r + 2ε and the

conclusion follows. �

Combining these lemmas, we may now prove Theorem 1.

Proof of Theorem 1. Fix ε ∈ (0, 1). From Lemma 1, we can choose Nε sufficiently large that,
for all n ≥ Nε with a particular adaptation stopping time Tn = n − Nε ≥ 0,

Wρ∧1
[
B(Tn,Nε)((γ, x), ·), π]≤ ε/2.
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Given this Nε and using Lemma 2, we can choose nε sufficiently large that, for all n ≥
nε, Wρ∧1

[A(Tn+Nε)((γ, x), ·), B(Tn,Nε)((γ, x), ·)]≤ ε/2. The triangle inequality holds by [40,
Lemma 7.6], so that

Wρ∧1
[A(n)((γ, x), ·), π]≤Wρ∧1

[A(Tn+Nε)((γ, x), ·), B(Tn,Nε)((γ, x), ·)]
+Wρ∧1

[
B(Tn,Nε)((γ, x), ·), π]≤ ε.

Since the conditional optimal coupling is attained and is Borel measurable [41, Theorem 4.8],
we have, by dominated convergence,

lim
t→∞ Wρ∧1[μA(n), π ] ≤ lim

t→∞

∫
Y×X

Wρ∧1[A(n)((γ, x), ·), π ]μ(dγ, dx) = 0. �

Interestingly, we do not assume that π is invariant. Denote the distance to a closed set
C ⊆X by ρ(x,C) = infy∈C ρ(x, y) and the ε-inflation of the set by Cε = {x ∈ X : ρ(x,C) ≤ ε}.
Theorem 1 and Strassen’s theorem [37] ensures, uniformly for any closed Borel measurable set
C ⊆X , that μA(t)(C) → π (Cε). Theorem 1 also ensures that, for every bounded ρ-Lipschitz
Borel measurable function ϕ : X →R,

∫
X ϕ dμA(t) → ∫

X ϕ dπ .
The following extends Theorem 1 to Lp-Wasserstein distances with unbounded metrics.

Proposition 3. Suppose an adaptive process (�t, Xt)t≥0 with initialization probability measure
μ (1) satisfies weak containment (5) and weak diminishing adaptation (6). Suppose further
that, for some x0 ∈X and p ∈Z+,

∫
ρ(x, x0)p π (dx)<∞. Then the following are equivalent:

(i) Convergence in the Lp-Wasserstein distance holds: limt→∞ Wρ,p(μA(t), π ) = 0.

(ii) The sequence (ρ(Xt, x0)p)t≥0 is uniformly integrable:

lim
R→∞ sup

t≥0

∫
ρ(x,x0)>R

ρ(x, x0)pμA(t)(dx) = 0.

(iii) If (X , ρ) is a complete separable metric space, then the following are also equivalent to
(i):

(iv) limt→∞
∫
X ρ(x, x0)pμA(t)(dx) = ∫

X ρ(x, x0)p π (dx).

(v) lim supt→∞
∫
X ρ(x, x0)pμA(t)(dx) ≤ ∫X ρ(x, x0)p π (dx).

Proof. By Theorem 1 and Markov’s inequality, infξ∈C(μA(t),π ) ξ ({ρ(u, v)> ε}) → 0 for any
ε > 0. Let ξ (t) be the attained optimal coupling for each t [41, Theorem 4.1]. �

Assume (i) holds. For any ε ∈ (0, 1), limt→∞ ξ (t)(|ρ(x, x0) − ρ(y, x0)| ≥ ε) = 0. By Young’s
inequality, for any ε ∈ (0, 1) there is a constant Cε,p depending on p, ε such that

ρ(x, x0)p ≤ (1 + ε)ρ(y, x0)p + Cε,pρ(x, y)p.

Integrating with the coupling implies that

lim sup
t→∞

∫
X
ρ(x, x0)pμA(t)(dx) ≤

∫
X
ρ(y, x0)p π (dy).

By [22, Theorem 5.11], (ii) holds.
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Now assume (ii) holds. By convexity,

lim sup
t

∫
ρ(x,y)>R

ρ(x, y)p ξ (t)(dx, dy) ≤ 2p−1 lim sup
t

∫
ρ(x,y)>R

ρ(x, x0)pμA(t)(dx)

+ 2p−1 lim sup
t

∫
ρ(x,y)>R

ρ(y, x0)p ξ (t)(dx, dy).

By the characterization of uniform integrability [22, Theorem 5.11] and dominated conver-
gence, this bound tends to 0 as R → 0. This implies that

lim
t→∞ Wp

ρ,p

[
μA(t), π

]= lim
t→∞

∫
X 2
ρ(xt, y)p ξ (t)(dx′, dy′) = 0.

The remaining equivalences follow from [22, Lemma 5.11]. �

Proposition 3 has many interesting applications to extend weak convergence of adaptive
MCMC, and also extending convergence in total variation of adaptive MCMC. For example,
if X =R

d, then weak convergence from Theorem 1 can be used to extend the convergence to
the L2 Wasserstein distance W‖·‖,2. Another possibility is to extend traditional convergence of
adaptive MCMC to stronger convergence [32, Theorem 13] in the case when (strong) contain-
ment and (strong) diminishing adaptation hold. The following corollary extends convergence
in total variation to a stronger Wasserstein distance under similar conditions [32, Theorem 18].

Corollary 1. Suppose an adaptive process (�t, Xt)t≥0 with initialization probability mea-
sure μ as in (1) satisfies (strong) containment (3) and (strong) diminishing adaptation (2).
Suppose there is a lower semicontinuous function V : X → [0,∞) and constants λ ∈ (0, 1)
and L ∈ (0,∞) such that, for all γ, x ∈Y ×X , (PγV)(x) ≤ λV(x) + L. If

∫
X V dμ<∞, then

limt→∞ Wρ̄

(
μA(t), π

)= 0, where ρ̄(x, y) = [(1 + V(x) + V(y))]1/2 if x �= y and 0 otherwise.

Proof. The drift condition and assumption on μ imply that (
√

V(Xt))t≥0 is uniformly
integrable, and Proposition 3 implies the conclusion. �

Remark 1. An alternative way to extend weak convergence to a stronger convergence in total
variation convergence is through addition of an independent random variable [6]. Consider
X =R

d for some d ∈Z+, and an adaptive process (�t, Xt)t≥0 with initialization probabil-
ity measure μ (1) that satisfies weak containment (5) and weak diminishing adaptation (6),
both with metric ρ(·, ·) = ‖· − ·‖. Let h ∈ (0, 1) and let σh be a Gaussian distribution on R

d,
N(0, h I). Then limt→∞ WTV

(
μA(t) ∗ σh, π ∗ σh

)= 0, where ∗ denotes convolution.

The following is a useful coupling technique to show weak containment (5).

Lemma 3. Let (�t, Xt)t≥0 be an adaptive process with initialization probability measure μ
as in (1). Suppose πPγ = π for every γ ∈Y . Assume, for some x0 ∈X and some p ∈Z+,
that L = ∫

X ρ(x, x0)p π (dx)<∞ and, for every γ, x ∈Y ×X ,
∫
X ρ(y, x0)p Pγ (x, dy)<∞.

Suppose there is an α ∈ (0, 1) such that, for all x, y ∈X and γ ∈Y ,

Wρ,p(Pγ (x, ·),Pγ (y, ·)) ≤ (1 − α)ρ(x, y).

Then, for every t ∈Z+ and x ∈X , Wρ,p
(P t

γ (x, ·), π)≤ (1 − α)t[ρ(x, x0) + L]. Further,
supt≥0 E[ρ(Xt, x0)p]<∞ and (ρ(Xt, x0))t≥0 is bounded in probability.

Proof. For each t ∈ Z+ and each x, y ∈X , Wρ,p
(P t

γ (x, ·),P t
γ (y, ·))p ≤ (1 − α)tpρ(x, y)p.

The optimal coupling is attained [41, Theorem 4.1] at some conditional coupling ξx,y and is
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12 A. BROWN AND J. ROSENTHAL

Borel measurable [41, Corollary 5.22]. Since
∫
X ξx,y(·, ·) π (dy) ∈ C[P t

γ , π ],

Wρ,p(P t
γ (x, ·), π )p ≤

∫
X

∫
X 2
ρ(x′, y′)p ξx,y(dx′, dy′) π (dy) ≤ (1 − α)tp

∫
X
ρ(x, y)p π (dy).

By Young’s inequality, for any ε > 0 there is a constant Cε > 0 such that, for any a, b ≥
0, (a + b)p ≤ (1 + ε)ap + Cεbp. For any x0 ∈X , we can choose ε sufficiently small that
(1 + ε)(1 − α)p < 1, and a constant Cε,p such that∫

X
ρ(x′, x0)p Pγ (x, dx′) ≤ [(1 − α)ρ(x, x0) + 2L1/p]p ≤ (1 + ε)(1 − α)pρ(x, x0)p + Cε,pL.

By [32, Lemma 15], this simultaneous geometric drift condition implies that (ρ(Xt, x0))t is
bounded in probability. �

6. A weak law of large numbers

The point of this section is to develop convergence in probability of the empirical average of
the adaptive MCMC process or weak law of large numbers. The convergence theory developed
so far in Wasserstein distances provides estimation accuracy for the marginal distribution of Xt

but this generally has a large variability. Estimation from the entire adaptive process Xs ∼μA(s)

for s ≤ t requires theory for the empirical average. It is then of interest for reliable estimation to
develop conditions such that, for bounded ρ-Lipschitz functions, (1/t)

∑t
s=1 ϕ(Xs) → ∫

X ϕ dπ
in probability.

The law of large numbers for non-adapted Markov chains is well studied under convergence
in total variation. On the other hand, convergence in Wasserstein distances and its connection
to the law of large numbers is less understood [36, Theorem 1.2]. The first result is general and
relies on the convergence of the adaptive process, but may even apply the law of large numbers
to unbounded functions if the conditions are satisfied.

Theorem 2. Let (�t, Xt)t≥0 be an adaptive process with initialization probability measure μ
such that Xt ∼μA(t) (1). Let d(·, ·) be a lower semicontinuous metric and suppose, for some
x0 ∈X and for each t ∈Z+,

∫
d(x, x0)2μA(t)(dx)<∞ and

∫
d(x, x0)2 π (dx)<∞. If

lim
t→∞ Wd,2(μA(t), π ) = 0,

then for every Borel measurable ϕ : X →R with ‖ϕ‖Lip(d) <∞,

lim
t→∞E

[(
1

t

t∑
s=1

ϕ(Xs) −
∫
X
ϕ dπ

)2]
= 0. (8)

In particular, the weak law of large numbers holds, that is, (1/t)
∑t

s=1 ϕ(Xs) → ∫
X ϕ dπ in

probability.

Proof. We can assume that ‖ϕ‖Lip(d) ≤ 1 since we may normalize ϕ. We may also assume
that

∫
ϕ dπ = 0 since ψ = ϕ − ∫

ϕ dπ is also d-Lipschitz. We can assume there is an x0 ∈
X such that ϕ(x0) = 0. Let � be a coupling of Xt ∼μA(t) and Y ∼ π . By disintegration
[22, Theorem 3.4], there is a Borel measurable conditional probability measure �hs(dxt, dy)
with hs = (γ1, x1, . . . , γs, xs) such that �(dxt, dy) = ∫

X s �hs(dxt, dy)μA(1,...,s)(dhs). With the
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history Hs = (�k, Xk)s
k=1 and since ϕ is d-Lipschitz, for t ≥ s,∣∣∣∣E[ϕ(Xt) |Hs] −

∫
X
ϕ dπ

∣∣∣∣≤
∫
X 2

d(xt, y) �Hs (dxt, dy).

For T ∈Z+, we have the upper bound

E

[(
T∑

t=1

ϕ(Xt)

)2]
=

T∑
t=1

T∑
s=1

E[ϕ(Xt)ϕ(Xs)]

=
T∑

t=1

E[ϕ(Xt)
2] + 2

T∑
t=2

t−1∑
s=1

E[E[ϕ(Xt) |Hs]ϕ(Xs)]

≤ T sup
t≥0

∫
X

d(x, x0)2μA(t)(dx)

+ 2
T∑

t=2

t−1∑
s=1

E

[ ∫
X 2

d(xt, y) �Hs (dxt, dy)d(Xs, x0)

]
.

Using Cauchy–Schwarz and Jensen’s inequality,

E

[ ∫
X 2

d(xt, y) �Hs (dxt, dy)d(Xs, x0)

]

≤
√
E

[( ∫
X 2

d(xt, y) �Hs (dxt, dy)

)2]√
E[d(Xs, x0)2]

≤
√∫

X×X
d(xt, y)2 �(dxt, dy)

√
sup
t≥0

∫
X

d(x, x0)2μA(t)(dx).

By assumption, we can choose a Tε depending on ε such that, for all t ≥ Tε,
Wd,2(μA(t), π ) ≤ ε. By assumption, max0≤t≤Tε E[d(Xt, x0)2]<∞ and it follows by the
triangle inequality [40, Lemma 7.6] that there is an R ∈ (0,∞) such that

sup
t≥0

Wd,2(μA(t), π ) ≤
√

sup
t≥0
E(d(Xt, x0)2) +

√∫
d(x, x0)2 π (dx) ≤ R.

Since the coupling � is arbitrary, we have the upper bound for every T ≥ Tε + 1:

E

[(
1

T

T∑
t=1

ϕ(Xt)

)2]
≤ R2

T
+ 2R

T2

T∑
t=2

(t − 1)Wd,2(μA(t), π )

≤ R2

T
+ 2R2

T2

Tε∑
t=2

(t − 1) + 2R

T2

T∑
t=Tε+1

(t − 1)ε

≤ R2

T
+ R2Tε(Tε − 1)

T2
+ Rε(T − Tε)(T + Tε − 1)

T2
.

The conclusion follows since we can choose T sufficiently large and ε sufficiently small. �
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Theorem 2 also provides general conditions for weakly converging Markov chains [36,
Theorem 1.2]. We may now show that the conditions of Theorem 1 are sufficient for a weak
law of large numbers for bounded ρ−Lipschitz functions.

Corollary 2. Suppose an adaptive process (�t, Xt)t≥0 with initialization probability measure
μ (1) satisfies weak containment (5) and weak diminishing adaptation (6). Then, for every
bounded Borel measurable ϕ : X →R with ‖ϕ‖Lip(ρ) <∞ and any p ∈Z+,

lim
t→∞E

[∣∣∣∣1t
t∑

s=1

ϕ(Xs) −
∫
X
ϕ dπ

∣∣∣∣
p
]

= 0. (9)

If, in addition, for some x0 ∈X , (ρ(Xt, x0)2)t≥0 is uniformly integrable and also∫
ρ(x, x0) π (dx)<∞, then (9) holds with p = 2 and for all ‖ϕ‖Lip(ρ) <∞.

Proof. For Borel measurable ϕ : X →R with ‖ϕ‖Lip(ρ) <∞, apply Theorems 1 and 2 and
it follows that (8) holds. Since ϕ is bounded and (8) holds, Lp convergence follows for p ∈Z+.
To remove the bounded assumption on ϕ, since it is assumed that (ρ(Xt, x0)2)t≥0 is uniformly
integrable, E(ρ(Xt, x0)2)<∞ for each t ∈Z+ and

∫
ρ(x, x0) π (dx)<∞ then we can apply

Proposition 3. �

7. Examples and applications

Let us now revisit constructing adaptive processes for the running examples of Markov
chains (Example 1) and Example 2, where (strong) containment (3) fails to hold.

7.1. Example: Discrete adaptive autoregressive process

Consider an adaptive process (�t, Xt)t≥0 using the Markov kernels (Pγ )γ for the discrete
autoregressive process defined in Example 1, which fails to satisfy (strong) containment (3).
Assume the adaptation satisfies |�t+1 − �t| → 0 in probability as t → ∞. For any γ ∈Z+ with
γ ≥ 2 and x ∈ [0, 1), we showed previously in Example 1 that, for any t ∈Z+,

W|·|
(P t

γ (x, ·),Unif(0, 1)
)≤ 2−t,

where Unif([0, 1) is Lebesgue measure on [0, 1) and so weak containment holds (5). For
every x, y ∈ [0, 1) define X�t

1 = x/�t + ξ
�t
1 and Y�t

1 = y/�t + ξ
�t
1 with common discrete ran-

dom variable ξ�t
1 defined previously in Example 1. The random variables

(
X�t+1

1 , Y�t
1

)
define a

coupling and since, for sufficiently large t, �t+1 = �t with high probability, then

sup
|x−y|≤δ

W|·|(P�t+1 (x, ·),P�t (y, ·)) ≤ sup
|x−y|≤δ

E
[∣∣X�t+1

1 − Y�t
1

∣∣ | X0 = x, Y0 = y
]≤ δ

2

holds with high probability. Then this bound tends to 0 as δ→ 0 and we conclude that weak
diminishing adaptation (6) holds. By Theorem 1, for every γ ≥ 2 and x ∈ [0, 1),

lim
t→∞ W|·|[A(t)((γ, x), ·),Unif(0, 1)] = 0

and this discrete autoregressive adaptive process converges weakly. Corollary 2 then implies a
weak law of large numbers for all bounded Lipschitz continuous functions.
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7.2. Example: Infinite-dimensional adaptive autoregressive process

Consider an adaptive process (�t, Xt)t≥0 using Markov kernels (Pγ )γ for the infinite-
dimensional autoregressive process (2), which cannot satisfy (strong) containment (3). Assume
the adaptation is restricted to a bounded set, that is, for some R ∈ (0,∞), if ‖Xt‖> R then
�t+1 = �t and |�t − �t+1| → 0 in probability as t → ∞.

We showed previously (2) that for any γ ∈ (0, γ ∗) and any x, y ∈ H,

W‖·‖,2(Pγ (x, ·),Pγ (y, ·)) ≤ γ ∗ ‖x − y‖ ;

combined with Lemma 3. this implies that weak containment (5) holds. For x, y ∈ H, let Yt =
�t+1x +

√
1 − �t+1

2ξt and Y ′
t = �ty +

√
1 − �t

2ξt with common independent random variable
ξt ∼N (0,C). We have the upper bound, for any t ∈Z+,

W‖·‖,2(P�t+1 (x, ·),P�t (y, ·)) ≤ [E(
∥∥Yt − �tx + �tx − Y ′

t

∥∥2 )]1/2

≤ |�t+1 − �t| ‖x‖ +γ ∗ ‖x − y‖ + ∣∣√1−�2
t+1 −

√
1−�2

t

∣∣ √tr(C).

If ‖x‖> R and ‖x − y‖ ≤ δ, then W‖·‖,2(P�t+1 (x, ·),P�t (y, ·)) ≤ γ ∗δ. Otherwise, if ‖x‖ ≤ R
and ‖x − y‖ ≤ δ,

W‖·‖,2(P�t+1 (x, ·),P�t (y, ·)) ≤ |�t+1 − �t|R + γ ∗δ + ∣∣√1 − �2
t+1 −

√
1 − �2

t

∣∣ √tr(C).

In either case, weak diminishing adaptation (6) holds.
For any p ∈Z+, Young’s inequality and Fernique’s theorem [5, Theorem 2.8.5] imply we

can choose ε > 0 such that (1 + ε)γ ∗p < 1 and a constant Cε > 0 depending on ε such that,
for every γ, x ∈Y ×X , (Pγ )( ‖x‖p ) ≤ (1 + ε)γ ∗p ‖x‖p + Cε. This implies that ( ‖Xt‖p )t≥0 is
uniformly integrable. From Theorem 1 and Proposition 3, for every γ, x ∈ (0, γ ∗] × H and
every p ∈Z+, limt→∞ W‖·‖,p[A(t)((γ, x), ·),N (0, C)] = 0 and Corollary 2 implies a weak law
of large numbers for all Lipschitz continuous functions.

7.3. Example: Adaptive random-walk Metropolis–Hastings

We look at a discrete version of the adaptive random-walk Metropolis–Hastings algorithm
[18], which adapts the covariance of the proposal towards the covariance of the target prob-
ability measure. This concrete example illustrates an issue in practical applications since
current computers only produce floating-point approximations to real numbers. As a result,
convergence theory in total variation corresponding to an adaptive Markov chain Monte Carlo
simulation targeting a continuous target probability measure is infeasible and has other issues
that have been studied previously through perturbation theory [7, 34]. This is not necessarily
the case in alternative distances which metrize weak convergence.

Let π be a target Borel probability measure on R
d with d ∈Z+ and Lebesgue density f . Let

D = (xk)∞k=1 ⊂R
d be a dense subset in R

d,� be a symmetric, positive-definite matrix, μ ∈R
d,

and let ND(μ, �) denote the discrete Gaussian with probability mass function

g�(μ, x) = exp
(− 1

2 (x −μ)��−1(x −μ)
)

∑∞
j=1 exp

(− 1
2 (xj −μ)��−1(xj −μ)

) .

When μ ∈ D, g�(μ, x) = g�(x, μ) and it is symmetric. Let (M(γ ))γ∈Y be a family of sym-
metric, positive-definite matrices on R

d. We define a discrete Markov chain
(
Xγt
)

t≥0 using a
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discrete random-walk Metropolis–Hastings kernel P� with discrete Gaussian proposal, where
the proposal X′ given the previous state x is X′ ∼ND(x,M(γ )). The Markov kernel is defined
for each xl, xk ∈ D by

Pγ (xl, xk) =
[

1 ∧ f (xk)

f (xl)

]
gM(γ )(xlxk) + δxl ({xk})

(
1 −

∞∑
j=1

[
1 ∧ f (xj)

f (xl)

]
gM(γ )(xl, xj)

)
.

We will assume that f is continuous with compact support K ⊂R
d. Further, we will assume

that the set of � is compact and so the eigenvalues of � are uniformly bounded, so there
are constants λ∗, λ∗ ∈ (0,∞) such that λ∗ ≤ λi(�) ≤ λ∗ for all i = 1, . . . , d. It follows by a
minorization argument over K that there is an α ∈ (0, 1) such that, for any γ ∈Y , any xi, xj ∈ D,
and any bounded Lipschitz continuous function ϕ : Rd →R, |P t

γ ϕ(xi) −P t
γ ϕ(xj)| ≤ (1 − α)t.

By the density of D and continuity of Pϕ( · ),
∣∣P t
γ ϕ(xi) − ∫

K ϕ dπ
∣∣≤ (1 − α)t. Weak contain-

ment (5) holds since it follows by Kantorovich–Rubinstein duality [40, Theorem 1.14] that
W‖·‖∧1

(P t
γ (xi, ·), π

)≤ (1 − α)t.

Now let γ, x ∈Y × D and let (�t, Xt)t≥0 where Xt ∼A(t)((γ, x), ·) be the adaptive process
using these Metropolis–Hastings kernels. Under any valid weak diminishing adaptation strat-
egy satisfying (6), we have limt→∞ W‖·‖∧1(A(t)((γ, x), ·), π ) = 0. Corollary 2 then implies a
weak law of large numbers for bounded Lipschitz continuous functions. On the other hand, it
can be shown that WTV(A(t)((γ, x), ·), π ) = 1 and fails to converge in total variation under any
adaptation plan.

7.4. Example: Adaptive unadjusted Langevin process

In certain cases, it has been observed [41, p. 21] that Wasserstein distances can be simpler
to prove convergence results than total variation; the following example provides a concrete
illustration. Consider the Euclidean space R

d where d ∈Z+ with Euclidean norm ‖·‖. Let
the potential V : Rd →R have gradient ∇V( · ) with constants α, β > 0 such that, for every
x, y ∈R

d,

‖∇V(y) − ∇V(x)‖ ≤ β ‖y − x‖ , (10)

V(y) ≥ V(x) + 〈∇V(x), y − x〉 + α

2
‖y − x‖2 . (11)

Let (Y, d) be a complete separable metric space and, for each γ ∈Y , let M(γ ) define a sym-
metric positive-definite matrix. Let h ∈ (0, 1) be a fixed discretization size and consider the
unadjusted Langevin process

Xγ,ht+1 = Xγ,ht − hM(γ )∇V
(
M(γ )Xγ,ht

)+ √
2hZt+1,

where (Zt)t≥0 are independent and identically distributed N (0, Id). We can define a family of
Markov kernels (Pγ,h)γ,h prescribing the conditional distributions Xγ,ht+1 | Xγ,ht = x ∼Pγ,h(x, ·).
For an adaptive strategy (�t, ht)t≥0, we define the adaptive process Xt: = M(�t)X

�t,ht
t for t ≥ 0.

For example, M(�t) can estimate the inverse covariance matrix using the entire history of the
process as in adaptive Metropolis–Hastings [18] and adaptive piecewise-deterministic Markov
processes [4]. We make the following assumption on the adaptation of the matrix M(γ ).

Assumption 2. Assume M( · ) is continuous and, for each γ ∈Y and x ∈R
d, there is a con-

stant λ∗ ∈ (0,∞) such that, for every v ∈R
d \ {0} with ‖v‖ = 1, λ∗ ≤ 〈vM(γ ), v〉 ≤ 1. Assume

d(�t+1, �t) → 0 in probability and �t+1 = �t if ‖Xt‖> R for some R> 0.
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We have the following convergence result.

Proposition 4. Assume the adaptation plan satisfies Assumption 2 and, for some h∗ ∈ (0, 1),
let H = [h∗, 1/(α + β)] and assume (ht)t≥0 is a deterministic sequence with ht ∈ H. Further,
assume there is a limit h∗ ∈ H such that limt→∞ |ht − h∗| = 0. Then the adaptive unadjusted
Langevin process converges in the L1-Wasserstein distance for every γ, h, x ∈Y × H ×R

d to
some probability measure πh∗ , that is, limt→∞ W‖·‖[A(t)((γ, h, x), ·), πh∗] = 0, and a weak
law of large numbers holds for all bounded Lipschitz continuous functions.

Proof. It can be shown that M(γ )∇V(M(γ ) · ) is β Lipschitz and α strongly convex. For
x, y ∈R

d and γ, γ ′ ∈Y , let

Xγ1 = x − hM(γ )∇V(M(γ )x) + √
2hZ1, Yγ

′
1 = y − hM(γ ′)∇V(M(γ ′)y) + √

2hZ1

with shared Gaussian random variable Z1 ∼ N(0, I). By [25, Theorem 2.1.12],

E
[∥∥Xγ,h1 − Yγ,h1

∥∥2]≤(1 − 2hαβ

α+ β

)
‖x − y‖2 + h

(
h − 1

α + β

)
‖∇V(x) − ∇V(y)‖2

≤
(

1 − 2h∗αβ
α+ β

)
‖x − y‖2 .

For each adapted discretization size h, h′,
(
E
∥∥M(γ )Xγ,h

′
1 − M(γ )Xγ,h1

∥∥2)1/2 ≤ |h′ − h|β ‖x‖.
Along with the assumed adaptation strategy, these imply that there exists an invariant measure
πh∗ with finite second moment. By Lemma 3, weak containment (5) holds.

For each adapted discretization size h, h′ and each adaptation parameter γ, γ ′ ∈Y ,

(
E
∥∥M(γ ′)Xγ

′,h′
1 − M(γ )Yγ,h1

∥∥2)1/2
≤ (E∥∥M(γ ′)Xγ

′,h′
1 − M(γ ′)Xγ

′,h
1

∥∥2)1/2 + (
E
∥∥M(γ ′)Xγ

′,h
1 − M(γ )Xγ,h1

∥∥2)1/2
+ (
E
∥∥Xγ,h1 − Yγ,h1

∥∥2)1/2
≤ β|h′ − h| ‖x‖ + ∥∥M(γ ′)∇V(M(γ ′)x) − M(γ )∇V(M(γ )x)

∥∥+ ‖∇V(M(γ )x) − ∇V(M(γ )y)‖
≤ β|h′ − h| ‖x‖ + 2β

∥∥M(γ ′) − M(γ )
∥∥ ‖x‖ +

(
1 − 2h∗αβ

α+ β

)
‖x − y‖ .

This upper bound implies weak diminishing adaptation (6) under this adaptation strategy.
Therefore, this adaptive process converges weakly by Theorem 1. Lemma 3 implies ( ‖Xt‖ )n≥0
is uniformly integrable and then, by Proposition 3, the Wasserstein convergence follows.
Corollary 2 implies a weak law of large numbers for all bounded Lipschitz functions. �

7.5. Example: Adaptive diffusion process

Let the potential V : Rd →R satisfy (10). Let (M(γ ))γ∈Y be defined as in Section 7.4 and
consider adapting a stochastic differential equation with M(γ ) defined for t ∈ [0, 1] by

dXγt = −M(γ )∇V(M(γ )Xγt ) dt + √
2 dWt,

where (Wt)t≥0 is standard Brownian motion in R
d. Then, for any γ ∈Y and x ∈R

d, there
exists a strong solution (Xγt )t≥0 that is a Markov process with kernel P̃ t

γ . Using the solution

at t = 1, we can define a new Markov chain Xγn | X0 = x with Markov transition kernel P̃1
γ . We
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can define an adaptive process (�n, Xn)n≥0 with Xn = M(�n)X�n
n so that Xn | �n = γ , Xn−1 = x

has Markov transition Pγ (x, ·) with invariant measure π (dx) = Z−1 exp ( − V(x)) dx, where
Z = ∫

exp (−V(x)) dx. This type of adaptive scheme using matrices has been successful in
piecewise-deterministic Markov processes [4].

Proposition 5. Assume the adaptation plan satisfies Assumption 2 and assume the potential
V : Rd →R satisfies (10) and (11). Then, for every γ, x ∈Y ×R

d, the adaptive diffusion pro-
cess converges in the L1-Wasserstein distance limt→∞ W‖·‖[A(t)((γ, x), ·), π ] = 0 and a weak
law of large numbers holds for all bounded Lipschitz continuous functions.

Proof. For γ, γ ′ ∈Y and x, y ∈R
d, let Xγt | X0 = x and Yγ

′
t | Y0 = y, Y0 = y, share the same

Brownian motion so that these random variables define a coupling. By strong convexity, for

every x, y ∈R
d, 〈∇V(x) − ∇V(y), y − x〉 ≥ α ‖x − y‖2. Define fγ (t) = ∥∥Xγt − Yγt

∥∥2
; it follows

that

d

dt
fγ (t) = d

dt

∥∥∥∥x − y − M(γ )
∫ t

0

[∇V(M(γ )Xγs ) − ∇V(M(γ )Yγs )
]

ds

∥∥∥∥
2

= −2
〈∇V(M(γ )Xγt ) − ∇V(M(γ )Yγt ),M(γ )(Xγt − Yγt )

〉≤ −2αfγ (t).

By Gronwall’s inequality,
√
E
∥∥Xγ1 − Yγ1

∥∥2 ≤ exp ( − α) ‖x − y‖. We have the upper bound

W‖·‖,2
[Pγ (x, ·),Pγ (y, ·)]≤√E ∥∥M(γ )Xγ1 − M(γ )Yγ1

∥∥2 ≤ exp ( − α) ‖x − y‖ .

By [16, Proposition 1],
∫ ‖y‖2 π (dy) is finite, and by Lemma 3, weak containment (5) holds.

Lemma 3 then implies weak containment (5) and ( ‖Xn‖ )n≥0 is uniformly integrable. A similar
argument as in Example 7.4 shows weak diminishing adaptation (6). By Proposition 3, the
convergence in Wasserstein follows and Corollary 2 implies a weak law of large numbers for
all bounded Lipschitz functions. �

8. Connections to geometric drift and coupling conditions

A general approach to satisfy the containment condition (5) is through a simultaneous ver-
sion of the weak Harris theorem [20, Theorem 4.8]. Other similar convergence bounds for
non-adapted Markov chains could be modified to simultaneous versions as well [15, 28].

Theorem 3. (Simultaneous weak Harris theorem). Let (Pγ )γ∈Y be a family of Markov kernels
on X with invariant probability measure π .

• (Simultaneous geometric drift.) Suppose there is a Borel drift function V : Y ×X →
[0,∞) and constants λ ∈ (0, 1), K ∈ (0,∞) such that, for every γ, x ∈Y ×X ,∫

X
V(γ, x′)Pγ (x, dx′) ≤ λV(γ, x) + K.

• (ρ-contracting.) Suppose there is a κ ∈ (0, 1) such that, for every x, y ∈X with ρ(x, y)<
1 and every γ ∈Y , Wρ∧1(Pγ (x, ·),Pγ (y, ·)) ≤ (1 − κ)ρ(x, y).

• (ρ-small.) Suppose, for some constants α, δ ∈ (0, 1) and every γ ∈Y ,

sup
x,y∈Cγ

Wρ∧1(Pγ (x, ·),Pγ (y, ·)) ≤ 1 − α,

where Cγ = {x ∈X : V(γ, x) ≤ (1 + δ)2K/(1 − λ)}.
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Then there is an explicit α∗ ∈ (0, 1) depending on α, κ, λ such that, for every t ∈Z+ and
every γ, x ∈Y ×X , α∗ ∈ (0, 1),

Wργ (P t
γ (x, ·), π ) ≤ (1 − α∗)t

√
(1 + β∗V(γ, x) + (α ∧ κ)/[4(1 − λ))],

where ργ (u, v) = √
(ρ(u, v) ∧ 1)[1 + β∗V(γ, u) + β∗V(γ, v)] and β∗ = (α ∧ κ)/(4K).

Proof. The argument is inspired by [20, Theorem 4.8]. Fix γ ∈Y . For β > 0,
define ρβ,γ (x, y) = √

(ρ(x, y) ∧ 1)(1 + β(V(γ, x) + V(γ, y)). First, assume for x, y ∈X that
ρ(x, y) ≥ 1 and V(γ, x) + V(γ, y)> R. Now, for δ > 0, choose R = (1 + δ)2K/(1 − λ). Then,
using the simultaneous drift condition,

Wρβ,γ (Pγ (x, ·),Pγ (x, ·))2 ≤ 1 + βPγV(γ, x) + βPγV(γ, y)

≤ 1 − λ+ λ(1 + βV(γ, x) + βV(γ, y)) + β2K

≤
[

(1 − λ)
1 + β2K/(1 − λ)

1 + βR
+ λ

]
ρβ,γ (x, y)2.

Now assume for x, y ∈X that ρ(x, y) ≥ 1 and V(γ, x) + V(γ, y) ≤ R. Then, using that Cγ is
ρ-small and the simultaneous drift condition, and choosing β ≤ α/(4K),

Wρβ,γ (Pγ (x, ·),Pγ (x, ·))2 ≤ (1 − α)[1 + βPγV(γ, x) + βPγV(γ, y)]

≤ (1 − α)ρ(x, y) ∧ 1[1 + λβ(V(x) + V(y)) + β2K]

≤ (1 − α/2)ρβ,γ (x, y)2.

Next, assume for x, y ∈X that ρ(x, y)< 1. Then, using ρ-contracting and the simultaneous
drift condition with β ≤ κ/(4K),

Wρβ,γ (Pγ (x, ·),Pγ (x, ·))2 ≤ (1 − κ)ρ(x, y)[1 + βPγV(γ, x) + βPγV(γ, y)]

≤ ρ(x, y) ∧ 1[1 − κ + β2K + (1 − κ)λβ(V(γ, x) + V(γ, y))]

≤ (1 − κ/2)ρβ,γ (x, y)2. �

Theorem 3 can be seen as an extension of the simultaneous geometric drift and minorization
conditions [32, Theorem 18]. We allow the drift function to depend on the adapted tuning
parameter and the metric ρ is not restricted to the Hamming metric. For drift functions V
constant in γ ∈Y so that we can write V : X → [0,∞), we have the following result for the
adaptive process if the conditions of Theorem 3 hold.

Theorem 4. Suppose the adaptive process (�t, Xt)t≥0 with initialization probability measure μ
as in (1) constructed with Markov kernels (Pγ )γ∈Y satisfies weak diminishing adaptation (6).
Suppose the conditions of Theorem 3 are satisfied for (Pγ )γ∈Y with a drift function V constant
in γ ∈Y . Then limt→∞ Wρ∧1(μA(t), π ) = 0.

Proof. Since ρ ∧ 1 is bounded, it will suffice to assume that the adaptive process (�t, Xt)t

is initialized at γ0, x0 ∈Y ×X . The conclusion follows from Theorem 1 if we verify weak
containment (5). The conditions of Theorem 3 imply that, in order to satisfy weak containment,
it suffices to show that (V(Xt))t is bounded in probability. The geometric drift condition implies
(V(Xt))t≥0 is bounded in probability by [32, Lemma 15] since it is constant in γ ∈Y . �
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To satisfy weak containment (5), Theorem 4 can be weakened to subgeometric rates of con-
vergence. If there is a constant M0 > 0, a Borel measurable function V : X → [0,∞) such that
(V(Xt))t≥0 is bounded in probability, and a rate function r : Z+ → [0, 1] with limn→∞ r(n) = 0
such that, for all n, t ∈Z+, Wρ∧1

(Pn
�t

(Xt, ·), π
)≤ M0r(n)V(Xt), then weak containment (5)

holds. For example, a polynomial drift condition is sufficient for (V(Xt))t≥0 to be bounded in
probability [3] and existing subgeometric rates of convergence for non-adapted Markov chains
in Wasserstein distances can be modified to simultaneous versions [8, 14].

In certain cases, it can be difficult to find a drift function that does not change with γ ∈Y
and alternative techniques can be used to show (strong) containment. One successful strategy
here is to only apply adaptation on a compact or bounded set of the state space [11, Theorem
21]. We will say adaptation is restricted to a Borel set S ⊂X for the adaptive process (�t, Xt)t≥0
if, for all t ∈Z+, Xt−1 �∈ S, �t = �t−1.

Our next result shows the benefit of Theorem 3 with drift functions depending on the
adapted tuning parameter if adaptation is restricted to a set.

Proposition 6. Suppose the adaptive process (�t, Xt)t≥0 with initialization probability mea-
sure μ as in (1) constructed with Markov kernels (Pγ )γ∈Y satisfies weak diminishing
adaptation (6). Suppose the conditions of Theorem 3 are satisfied with Markov ker-
nels (Pγ )γ∈Y and drift function V(·, ·). Additionally, assume (�t, Xt)t≥0 has adaptation
restricted to the Borel set S ⊂X and supx∈S supt∈Z+ E[V(�t+1, Xt+1) |Ht, Xt = x]<∞. Then

limt→∞ Wρ∧1(μA(t), π ) = 0.

Proof. It will suffice to assume the adaptive process (�t, Xt)t is initialized at γ0, x0 ∈Y ×X ,
and by Theorem 1 we may show that (V(�t, Xt))t is bounded in probability. By the assumptions,
we can assume that E[V(�t, Xt)IS(Xt−1)] ≤ K. We have the upper bound

E[V(�t, Xt)] ≤E[V(�t, Xt)IS(Xt−1)] +E[V(�t, Xt)ISc (Xt−1)]

≤ K +E[V(�t−1, Xt)ISc (Xt−1)]

≤ 2K + λE[V(�t−1, Xt−1)] ≤ 2K/(1 − λ) + V(γ0, x0).

Therefore, (V(�t, Xt))t is bounded in probability by Markov’s inequality. �

9. Concluding remarks

This article developed weak convergence of adaptive MCMC processes under general con-
ditions that is suited to situations where convergence in total variation is inadequate. One
motivation is adapting the tuning parameters of reducible Markov chains where the traditional
theory of adaptive MCMC may not be applied. Another application of the developed theory
can be used to analyze adaptive MCMC processes where (strong) containment is difficult to
show but weak containment may be more tractable. The weak law of large numbers developed
here can be seen as an extension of [32, Theorem 23] and appears of practical interest for the
reliability and stability of adaptive MCMC simulations widely used in statistics and machine
learning.

There are many future research directions worthy of pursuit. While the developed theory for
weak convergence allows a Markov process in continuous time to be adapted at discrete times,
the proof techniques do not appear limited to discrete-time adaptive processes. In particular,
a precise formulation of an adaptive MCMC process in continuous time with similar conver-
gence results appears feasible. It also appears that some techniques for the convergence results
developed here might be extended to develop quantitative convergence rates in Wasserstein
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distances or mixing times for adaptive MCMC, but would require stronger assumptions on the
adaptation plan. Another interesting direction is to try to generalize Theorem 1 to hold for
general, possibly unbounded, Wassserstein distances by adapting weak containment and weak
diminishing adaptation to hold using general Wasserstein distances.
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