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Abstract
Scalar relative invariants play an important role in the theory of group actions on a manifold as their zero sets are
invariant hypersurfaces. Relative invariants are central in many applications, where they often are treated locally
since an invariant hypersurface may not be a locus of a single function. Our aim is to establish a global theory of
relative invariants.

For a Lie algebra 𝔤 of holomorphic vector fields on a complex manifold M, any holomorphic 𝔤-invariant
hypersurface is given in terms of a 𝔤-invariant divisor. This generalizes the classical notion of scalar relative
𝔤-invariant. Any 𝔤-invariant divisor gives rise to a 𝔤-equivariant line bundle, and a large part of this paper is
therefore devoted to the investigation of the group Pic𝔤 (𝑀) of 𝔤-equivariant line bundles. We give a cohomological
description of Pic𝔤 (𝑀) in terms of a double complex interpolating the Chevalley-Eilenberg complex for 𝔤 with the
Čech complex of the sheaf of holomorphic functions on M.

We also obtain results about polynomial divisors on affine bundles and jet bundles. This has applications to
the theory of differential invariants. Those were actively studied in relation to invariant differential equations, but
the description of multipliers (or weights) of relative differential invariants was an open problem. We derive a
characterization of them with our general theory. Examples, including projective geometry of curves and second-
order ODEs, not only illustrate the developed machinery but also give another approach and rigorously justify some
classical computations. At the end, we briefly discuss generalizations of this theory.
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1. Introduction

1.1. Background on relative invariants

Consider a manifold M together with a Lie group G acting on M. Let F (𝑀) be the algebra of functions
on M and F (𝑀)× the multiplicative subgroup of nonvanishing functions. The action of 𝑔 ∈ 𝐺 on M
induces the pullback (right) action 𝑔∗ on F (𝑀). A (scalar) relative invariant is a function 𝑅 ∈ F (𝑀)
satisfying

𝑔∗𝑅 = Λ(𝑔)𝑅 ∀𝑔 ∈ 𝐺,

for some map Λ : 𝐺 → F (𝑀)×, called the multiplier, or weight, of R. If 𝔤 ⊂ D(𝑀) denotes the Lie
algebra of vector fields on M corresponding to the Lie group action, then R also satisfies

𝑋 (𝑅) = 𝜆(𝑋)𝑅 ∀𝑋 ∈ 𝔤,

for some (infinitesimal) multiplier 𝜆 ∈ 𝔤∗ ⊗ F (𝑀), or weight, of R. It follows from the definition that
the locus {𝑅 = 0} ⊂ 𝑀 is G-invariant (resp. 𝔤-invariant).

In the case Λ = 1 (resp. 𝜆 = 0), the function R is called an absolute invariant, and each level set
{𝑅 = const} ⊂ 𝑀 is invariant, so that we get an invariant foliation of M. Absolute invariants are
well understood in several different settings; see [30, 22, 24, 28] for the classical invariant theory and
[23, 18] for its differential counterpart.

For example, in the case of a regular smooth Lie group action on a smooth manifold, locally by
the Frobenius theorem, the number of functionally independent absolute invariants is equal to the
codimension of an orbit, and orbits are locally separated by that many invariants (see, for example,
Chapter 2 of [23]). In the case of an algebraic group action on an algebraic variety, globally by the
Rosenlicht theorem, orbits in general position are separated by rational absolute invariants, and the
number of algebraically independent rational absolute invariants is equal to the codimension of a generic
orbit (see, for example, Chapter 13 of [28]).

Relative invariants with nontrivial weight are less understood, although they appear in many important
applications (we refer to the introduction to [7] and also to the more recent [25]). In particular, they are
often used to describe 𝔤-invariant hypersurfaces containing singular orbits. An infinitesimal multiplier
𝜆 is a 1-cocycle of the Chevalley-Eilenberg complex of 𝔤 with coefficients in F (𝑀). Relationships
between the weights of relative (differential) invariants and the Chevalley-Eilenberg cohomology was
discussed in [4, 23]. The question of realizability of a given cocycle as the weight of some relative
invariant was answered locally in the case of a regular smooth G-action and F (𝑀) = 𝐶∞(𝑀) by M.
Fels and P. Olver ([7] and [23, Th. 3.36]), also in the context of vector-valued relative invariants. In the
general case, the answer is not known.

Note that rescaling of R by a nonzero function 𝑒 𝑓 , 𝑓 ∈ F (𝑀), changes 𝜆 by a coboundary 𝑑𝑓 , which
naturally associates the Chevalley-Eilenberg cohomology class [𝜆] ∈ H1 (𝔤,F (𝑀)) to the (equivalence
class of the) relative invariant R. A proper version of this cohomology will be central in our work.
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1.2. A setup for global invariants

In general, the description of invariant hypersurfaces (analytic subvarieties of codimension 1) by relative
invariants works only locally: there exist invariant hypersurfaces that cannot be described globally as the
zero locus of a relative invariant. In this paper, we restrict to holomorphic actions on complex manifolds,
where this problem can be solved using the language of divisors. Some results extend to real analytic
and algebraic situations, but smooth versions of our global results in general are not available. Thus, we
specialize our algebra of functions F (𝑀) to consist of holomorphic functions, and we will work with
the sheaf O = O𝑀 of such functions on a complex manifold M.

In most of the paper, we will concentrate on the infinitesimal (Lie algebra) picture as it is conceptually
simpler and lends itself well to computations. Moreover, it is more general, as a Lie group action always
gives rise to a Lie algebra of (complete) vector fields, but not every Lie algebra action can be integrated
(the manifold M is not assumed compact; the Lie algebra may be infinite-dimensional). It should be
noted that for algebraic groups G (as well as for compact Lie groups), the equivariant line bundles have
been well studied; see [22, Ch. 1.3] and [3, §4.2] for the definition and properties of the G-equivariant
Picard group Pic𝐺 (𝑀) in the context of algebraic geometry. Our setup is more general, and we present
the corresponding theory for Lie groups in Section 2.5. The main object of study, however, will be the
Picard group Pic𝔤 (𝑀) of 𝔤-equivariant line bundles defined for any Lie algebra 𝔤 of holomorphic vector
fields on M.

A divisor D on M is given by a collection of meromorphic functions 𝑓𝛼 defined on each chart in an
open cover {𝑈𝛼} of M (if the functions 𝑓𝛼 are holomorphic, then D is called effective). The functions 𝑓𝛼
are required to be consistent, in the sense that the zeros and poles of 𝑓𝛼 and 𝑓𝛽 agree on𝑈𝛼 ∩𝑈𝛽 , which
is equivalent to 𝑓𝛼/ 𝑓𝛽 being a nonvanishing holomorphic function on 𝑈𝛼 ∩ 𝑈𝛽 . (Our D correspond
to Cartier divisors, which are equivalent to Weyl divisors for the nonsingular analytic varieties we
consider.) Analytic hypersurfaces of a complex manifold M are given locally by the vanishing of a
holomorphic function and globally by an effective divisor.

If 𝔤 is a Lie algebra of vector fields on M and 𝑁 ⊂ 𝑀 is a 𝔤-invariant hypersurface defined by the
divisor 𝐷 = { 𝑓𝛼}, then each vector field of 𝔤 is tangent to N, implying that for each 𝛼,

𝑋 ( 𝑓𝛼) = 𝜆𝛼 (𝑋) 𝑓𝛼 ∀𝑋 ∈ 𝔤,

for some weight 𝜆𝛼 ∈ 𝔤∗ ⊗ O(𝑈𝛼), which is a 1-cocycle in the Chevalley-Eilenberg complex of 𝔤 with
coefficients in the 𝔤-module O(𝑈𝛼) of holomorphic functions on 𝑈𝛼 ⊂ 𝑀 . Such a divisor is called 𝔤-
invariant. Multiplying each 𝑓𝛼 by nonvanishing holomorphic functions gives a different representative
of the same divisor, and the weight 𝜆𝛼 is in this case changed by a coboundary, so the weights can
be identified with elements in the Chevalley-Eilenberg cohomology H1(𝔤,O(𝑈𝛼)) or, more precisely,
a slightly modified version thereof. A collection of such weights, or multipliers, for each element of
the cover {𝑈𝛼}, that are compatible on overlaps, yields a multiplier group that we will denote 𝔐𝔤 (𝑀).
Below, we will define it in terms of a certain double complex.

As is well known, any divisor D on M gives rise to a line bundle [𝐷] → 𝑀 , with transition functions
𝑔𝛼𝛽 = 𝑓𝛼/ 𝑓𝛽 , on which 𝑓𝛼 are local defining functions of a particular section (and, geometrically, D is
the locus of this section). When D is 𝔤-invariant, then there exists a lift of the Lie algebra 𝔤 ⊂ D(𝑀)
to a Lie algebra 𝔤𝜆 ⊂ D([𝐷]) defined locally in terms of the weights 𝜆 = {𝜆𝛼} of D, meaning that
([𝐷], 𝔤𝜆) is a 𝔤-equivariant line bundle. Properly localized, the obstruction for such a lift, and thus for
the existence of invariant divisors, belongs in general to the equivariant Picard group Pic𝔤 (𝑀).

1.3. Overview of the novel results

Due to a close relationship between 𝔤-invariant divisors and 𝔤-equivariant line bundles, Section 2.1 starts
with an investigation of prerequisites for the latter. The Picard group Pic(𝑀), consisting of holomorphic
line bundles over M up to equivalence, is isomorphic to the Čech cohomology group Ȟ1(𝑀,O×).
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In order to describe the group Pic𝔤 (𝑀) of 𝔤-equivariant line bundles, we unite the Čech complex
with the Chevalley-Eilenberg complex into a double complex 𝐶•,•. The direct limit of the first total
cohomology of this complex (also called hypercohomology; cf. [12]) is exactly the desired group:
Pic𝔤 (𝑀) := lim

−−→
H1 (Tot•(𝐶)).

There exist natural homomorphisms Φ1 : Pic𝔤 (𝑀) → Pic(𝑀) and Φ2 : Pic𝔤 (𝑀) → 𝔐𝔤 (𝑀). The
image of 𝜛 := Φ1 ×Φ2 in Pic(𝑀) ×𝔐𝔤 (𝑀) defines the reduced Picard group

Pic𝔤 (𝑀)
𝜛
−→ Picred

𝔤 (𝑀) → 0,

whence a double homomorphism (Ψ1,Ψ2) such that Ψ𝑖 ◦𝜛 = Φ𝑖 and kerΨ1 ∩ kerΨ2 = 0:

Picred
𝔤 (𝑀)

Pic(𝑀) 𝔐𝔤 (𝑀)

Ψ1 Ψ2

Theorem 1.1. The group 𝑇𝔤 (𝑀) := ker(𝜛) of equivariant line bundles with trivial reduction is defined
by (2.7) and consists of the global lifts of 𝔤 to the trivial line bundle over M that are locally trivial,
modulo globally trivial lifts.

When𝑇𝔤 (𝑀) = 0, Φ1×Φ2 embeds Pic𝔤 (𝑀) in Pic(𝑀) ×𝔐𝔤 (𝑀) (Corollary 2.11 gives two sufficient
conditions for this); generally the same is true for Pic𝔤 (𝑀)/𝑇𝔤 (𝑀).

The homomorphisms Ψ1,Ψ2 (and likewise Φ1,Φ2) are neither injective nor surjective, in general. We
will describe ker(Ψ𝑖) and im(Ψ𝑖) in terms of the iterated cohomology of the double complex 𝐶•,•. In
particular, we will show that under certain topological conditions, if the isotropy algebra 𝔤𝑝 of a generic
point 𝑝 ∈ 𝑀 is perfect, then ker(Ψ1) = 0 and Pic𝔤 (𝑀) ⊂ Pic(𝑀). This is an infinitesimal version of
Proposition 1.4 from [22], which gives sufficient conditions for an algebraic group G to admit at most
one linearization on any line bundle. The following statements elaborate on the cases considered in [22]
and [7], respectively.

Corollary 1.2.
(i) If 𝔐𝔤 (𝑀) = 0 and 𝑇𝔤 (𝑀) = 0, then Φ1 : Pic𝔤 (𝑀) → Pic(𝑀) is injective.

(ii) Likewise, if Pic(𝑀) = 0 and 𝑇𝔤 (𝑀) = 0, then Φ2 : Pic𝔤 (𝑀) →𝔐𝔤 (𝑀) is injective.

In Section 2.4, we consider the homomorphism

𝑗𝔤 : Div𝔤 (𝑀) → Pic𝔤 (𝑀)

mapping a 𝔤-invariant divisor D with weight 𝜆 to the 𝔤-equivariant line bundle ([𝐷], 𝔤𝜆). The canonical
morphism 𝑗 : Div(𝑀) → Pic(𝑀), which takes D to [𝐷], is well understood: its kernel and cokernel are
given by exact sequence (2.10); for smooth projective varieties, j is epimorphic and Pic(𝑀) corresponds
to the class group Cl(𝑀) of equivalent divisors ( cf. [11]). In contrast, even in the smooth projective
case, the map 𝑗𝔤 is generally neither injective nor surjective.

We will give a necessary criterion for a 𝔤-equivariant line bundle (𝐿 → 𝑀, �̂�), where �̂� is a lift of
𝔤 to L, to be the image of a 𝔤-invariant divisor – namely, that generic �̂�-orbits on L project bijectively
(in our setup: biholomorphic) to 𝔤-orbits on M (projection may be non-injective on singular orbits).
We call such Lie algebras transversal, borrowing the terminology from [1], although their notion of
transversality was a slightly stronger requirement.

Theorem 1.3. If 𝐷 = { 𝑓𝛼} is a 𝔤-invariant divisor and 𝜆 = {𝜆𝛼} is the corresponding weight, then the
lift 𝔤𝜆 ⊂ D([𝐷]) defined by 𝜆 is transversal.

Thus, if �̂� ⊂ D(𝐿) is not transversal, then the 𝔤-equivariant line bundle (𝐿 → 𝑀, �̂�) is not in im( 𝑗𝔤).
The condition (𝐿, �̂�) ∈ im( 𝑗𝔤) restricts not only �̂�, but also L via im(Ψ1 ◦ 𝑗𝔤) ⊂ im( 𝑗).
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The proof of Theorem 1.3 is based on a local argument and is similar to that of [23, Th. 3.36] and [7,
Th. 5.4], where lifts of 𝔤 to the trivial bundle are considered. It is important to note that in our general
setting, contrary to the local regular settings of [7, 23], this criterion is only necessary but not sufficient,
which will be illustrated in examples. Yet, in an algebraic context the converse statement holds true, up
to an integer factor for the degree (see Theorem 2.33).

In Section 2.5, we show that the group of G-equivariant line bundles can be described by a certain
Lie group cohomology with coefficients in the sheaf O×, which combines the Čech cohomology of
O× and the continuous Lie group cohomology with coefficients in the G-module O×(𝑀). This in turn
is related to the equivariant Picard group Pic𝐺 (𝑀), studied before in particular situations when G is
algebraic or compact. We also discuss its relation to Pic𝔤 (𝑀).

Several examples of computation are spread throughout Section 2, demonstrating global constraints
in the theory of 𝔤-invariant divisors and 𝔤-equivariant line bundles. For instance, when 𝑀 = C𝑃1 with
the standard coordinate charts𝑈0,𝑈∞ ⊂ C𝑃

1, and 𝔤 = 𝔞𝔣𝔣(1,C) is the 2-dimensional Lie subalgebra of
𝔰𝔩(2,C) ⊂ D(𝑀), then

Pic𝔤 (𝑈0) � H1 (𝔤,O(𝑈0)) = C, Pic𝔤 (𝑈∞) � H1(𝔤,O(𝑈∞)) = C2.

The isomorphism between the group of 𝔤-equivariant line bundles and the Chevalley-Eilenberg coho-
mology group follows from the fact that all line bundles over C are trivial. On C𝑃1, however, there are
only countably many line bundles – namely, OC𝑃1 (𝑘) for 𝑘 ∈ Z. In this case, Pic𝔤 (C𝑃1) = C×Z, where
Z = Pic(C𝑃1). However, not all 𝔤-equivariant line bundles are of the form [𝐷] for some 𝔤-invariant di-
visor D. Instead, as a consequence of the necessary criterion of Theorem 1.3, we have Div𝔤 (C𝑃1) = Z.
For more details, see Example 2.27.

In Section 3, we focus on the important cases of projectable Lie algebras of vector fields on affine
bundles and on jet bundles. In these situations, one can consider divisors whose restriction to fibers are
polynomial. Let �̂� be a projectable Lie algebra of vector fields on the total space of an affine bundle
𝜋 : 𝐸 → 𝑀 that preserves the affine structure on E, and let 𝔤 = 𝑑𝜋(�̂�) ⊂ D(𝑀).

Theorem 1.4. If D is a �̂�-invariant polynomial divisor on the affine bundle E, then [𝐷] = 𝜋∗𝐿 for some
𝔤-equivariant line bundle 𝐿 ∈ Φ1(Pic𝔤 (𝑀)).

In other words, the �̂�-equivariant line bundle over E corresponding to a �̂�-invariant polynomial divisor
is the pullback of a 𝔤-equivariant line bundle over M. The same idea works for jet bundles because the
bundle 𝜋𝑘+1,𝑘 : J𝑘+1 → J𝑘 for 𝑘 ≥ 1 has a natural affine structure in fibers. (For jet spaces of sections of
line bundles with the contact transformation algebra, the natural affine structure in fibers starts at 𝑘 = 2,
with the corresponding modification of the claim.)

Theorem 1.5. Let 𝔤 (𝑘) ⊂ D(J𝑘 ) be the prolongation of a Lie algebra 𝔤 of point transformations on
J0, 0 < 𝑘 ≤ ∞. If D is a 𝔤 (𝑘) -invariant divisor that is polynomial in fibers of 𝜋𝑘,1 : J𝑘 → J1, then
[𝐷] = 𝜋∗𝑘,1𝐿 for some 𝔤 (1) -equivariant line bundle 𝐿 ∈ Φ1(Pic𝔤 (1) (J1)).

This result provides our main application for classification of global relative invariants of the pro-
longed 𝔤-action on J∞, which is an essential step in the classification of all invariant differential equa-
tions (see [20] for a series of examples of this technique). We note that while the Gelfand-Fuks type
cohomology 𝐻1(𝔤 (∞) ,F (J∞)) may be large and hard to compute, the theorem reduces the problem to
finite dimensions. To illustrate this, we will show how this allows to effectively treat relative differential
invariants of curves in C𝑃2 under the action of the Möbius algebra of projective transformations as well
as relative differential invariants of second-order ODEs under the infinite-dimensional Lie algebra of
point transformations.

The main results are proved and expanded in the following sections. To be precise, Theorem 1.1
corresponds to Propositions 2.10 and 2.13, Theorem 1.3 to Propositions 2.22 and 2.25, and Theorem
1.4 to Propositions 3.2 and 3.3. Theorem 1.5 is an instance of results summarized in Propositions 3.6,
3.7 and 3.8. Other results are presented in the main text – in particular, Theorem 2.33 which is a partial
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converse to Theorem 1.3 in the case of algebraic group actions. We end with examples that illustrate
computations of global relative differential invariants using our formalism.

In this paper, we concentrate on the complex analytic and complex algebraic situation, using notation
C𝑃𝑛 instead of P𝑛 to stress that a part of our results extend to the real analytic and real algebraic case,
with examples like real projective spaces R𝑃𝑛, real jet spaces J∞, etc. In particular, examples A–C may
be treated in the real context.

2. Analytic invariant divisors and equivariant line bundles

Let 𝔤 ⊂ D(𝑀) denote a Lie algebra of holomorphic vector fields on the complex manifold M. For
𝑀 = C𝑛, it is well known that lifts of a Lie algebra 𝔤 to the trivial line bundle 𝑀 × C are parametrized
by the Chevalley-Eilenberg cohomology H1 (𝔤,O(𝑀)). This is also the space where weights of relative
𝔤-invariants take values. We refer to [6, 9] for the general Lie algebra cohomology theory to [4] for its
relation to relative (differential) invariants and to [7, 27] for a relation to lifts.

The goal of this section is to generalize these results to arbitrary holomorphic line bundles over
complex manifolds and replace the notion of relative 𝔤-invariant functions with 𝔤-invariant divisors
on M.

2.1. Picard group and multipliers

Let us start with a quick overview of holomorphic line bundles, sufficient for our purpose (see [11, 15]).
For an open subset 𝑈 ⊂ 𝑀 , denote by O(𝑈) the space of holomorphic functions on U, and by O×(𝑈)
the subspace of nonvanishing functions. The corresponding sheaves on M are denoted by O and O×,
respectively. Let 𝜋 : 𝐿 → 𝑀 be a line bundle and consider an open cover U = {𝑈𝛼} of M that
trivializes 𝜋 (i.e., 𝜋−1(𝑈𝛼) � 𝑈𝛼×C). The line bundle is uniquely determined by its transition functions
𝑔𝛼𝛽 ∈ O×(𝑈𝛼 ∩ 𝑈𝛽), which satisfy 𝑔𝛼𝛽𝑔𝛽𝛾 = 𝑔𝛼𝛾 . Two collections of transition functions {𝑔𝛼𝛽},
{�̃�𝛼𝛽} define the same bundle if and only if �̃�𝛼𝛽 = 𝑓𝛼

𝑓𝛽
𝑔𝛼𝛽 for some functions 𝑓𝛼 ∈ O×(𝑈𝛼).

This leads to a description of line bundles in terms of Čech cohomology. Define the complex

0 −→
∏
𝛼

O×(𝑈𝛼)
𝛿0

−−→
∏
𝛼≠𝛽

O×(𝑈𝛼 ∩𝑈𝛽)
𝛿1

−−→
∏

𝛼≠𝛽≠𝛾≠𝛼

O×(𝑈𝛼 ∩𝑈𝛽 ∩𝑈𝛾) −→ · · · ,

with differentials given by

(𝛿𝑞𝜇)𝛼0 · · ·𝛼𝑞+1 =
𝑞+1∏
𝑖=0

𝜇 (−1)𝑖+1
𝛼0 · · ·�̂�𝑖 · · ·𝛼𝑞+1

���
𝑈𝛼0∩···∩𝑈𝛼𝑞+1

, 𝜇 = {𝜇𝛼0 · · ·𝛼𝑞 } ∈
∏

𝛼0 ,...,𝛼𝑞

O×(𝑈𝛼0 ∩ · · · ∩𝑈𝛼𝑞 ).

In particular, 𝛿0 and 𝛿1 are defined in the following way:

(𝛿0𝜇)𝛼𝛽 = 𝜇𝛼/𝜇𝛽 , 𝜇 = {𝜇𝛼} ∈
∏
𝛼

O×(𝑈𝛼),

(𝛿1𝜈)𝛼𝛽𝛾 =
𝜈𝛼𝛾

𝜈𝛼𝛽𝜈𝛽𝛾
, 𝜈 = {𝜈𝛼𝛽} ∈

∏
𝛼≠𝛽

O×(𝑈𝛼 ∩𝑈𝛽).

The first Čech-cohomology with respect to the fixed open cover U , defined by Ȟ1 (U ,O×) =
ker(𝛿1)/im(𝛿0), is the group of transition functions on U modulo the above equivalence relation.

The Picard group Pic(𝑀) of equivalence classes of holomorphic line bundles over M can be described
in terms of this cohomology group as follows:
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◦ If all line bundles are trivializable on the open charts in U (for instance, each𝑈𝛼 is biholomorphic to
a polydisc with a possible factor C×), then Pic(𝑀) � Ȟ1 (U ,O×).

◦ In general, Pic(𝑀) � Ȟ1 (𝑀,O×) := lim
−−→

Ȟ1(U ,O×) is the direct limit as U becomes finer.

In both cases, the identification is a group isomorphism. In particular, if the conditions of Leray’s
theorem hold, the first description is applicable (see [11, p.40] or the simpler Theorem 12.8 of [8],
which will usually be sufficient for us).

Definition 2.1. A lift of 𝔤 ⊂ D(𝑀) to the line bundle 𝜋 : 𝐿 → 𝑀 is a Lie algebra �̂� ⊂ Dproj(𝐿) of
projectable vector fields, such that 𝑑𝜋 : �̂� → 𝔤 is a Lie algebra isomorphism and �̂� commutes with the
natural vertical vector field 𝑢𝜕𝑢 (u is a linear fiber coordinate). The pair (𝜋, �̂�) is called a 𝔤-equivariant
line bundle. (We also refer to 𝜋 or L as a 𝔤-equivariant bundle when a lift exists.)

For instance, the canonical line bundle 𝐾𝑀 = Λdim 𝑀𝑇∗𝑀 (see [15, Ch. 2.2]) always admits a
canonical lift of 𝔤 ⊂ D(𝑀). Thus, it is an (often nontrivial) 𝔤-equivariant line bundle.

In general, the lift of a vector field 𝑋 ∈ 𝔤 can be defined on 𝜋−1(𝑈𝛼) � 𝑈𝛼 × C by

�̂� |𝑈𝛼 = 𝑋 |𝑈𝛼 + 𝜆𝛼 (𝑋)𝑢𝜕𝑢 , 𝜆𝛼 ∈ 𝔤
∗ ⊗ O(𝑈𝛼),

similar to formula (4.1) in [7]. To simplify notation, we will write X instead of 𝑋 |𝑈𝛼 when there is no
room for confusion. The condition [�̂�,𝑌 ] = �[𝑋,𝑌 ] for each 𝑋,𝑌 ∈ 𝔤 implies that 𝜆𝛼 satisfies

𝑋 (𝜆𝛼 (𝑌 )) − 𝑌 (𝜆𝛼 (𝑋)) = 𝜆𝛼 ([𝑋,𝑌 ]), ∀𝑋 ∈ 𝔤. (2.1)

Changing the coordinate function on the fiber, 𝑣 = 𝑒𝜇𝛼𝑢 for some function 𝜇𝛼 ∈ O(𝑈𝛼) gives

𝑋 + 𝜆𝛼 (𝑋) 𝑢𝜕𝑢 = 𝑋 + (𝜆𝛼 (𝑋) + 𝑋 (𝜇𝛼)) 𝑣𝜕𝑣 .

In this sense, two lifts 𝜆𝛼, �̃�𝛼 on 𝑈𝛼 are equivalent if and only if there exists a 𝜇𝛼 satisfying

�̃�𝛼 (𝑋) = 𝜆𝛼 (𝑋) + 𝑋 (𝜇𝛼), ∀𝑋 ∈ 𝔤. (2.2)

The conditions (2.1) and (2.2) can be interpreted in terms of Lie algebra cohomology of 𝔤 with
coefficients in the 𝔤-module O(𝑈𝛼). Consider the Chevalley-Eilenberg complex

0 −→ O(𝑈𝛼)
𝑑0

−−→ 𝔤∗ ⊗ O(𝑈𝛼)
𝑑1

−−→ Λ2𝔤∗ ⊗ O(𝑈𝛼) −→ · · ·

where the maps 𝑑0 and 𝑑1 are given by

(𝑑0𝜇𝛼) (𝑋) = 𝑋 (𝜇𝛼), 𝜇𝛼 ∈ O(𝑈𝛼),

(𝑑1𝜆𝛼) (𝑋,𝑌 ) = 𝑋 (𝜆𝛼 (𝑌 )) − 𝑌 (𝜆𝛼 (𝑋)) − 𝜆𝛼 ([𝑋,𝑌 ]), 𝜆𝛼 ∈ 𝔤
∗ ⊗ O(𝑈𝛼),

for 𝑋,𝑌 ∈ 𝔤 (see [6]). Notice that Hom(𝔤, 𝐹) = 𝔤∗ ⊗ 𝐹 when one of the factors is finite-dimensional. If
both factors are infinte-dimensional, a completion of the tensor product is required. We omit this from
the notation, understanding by default that Λ𝑖𝔤∗ ⊗ 𝐹 may stand for Hom(Λ𝑖𝔤∗, 𝐹) here and below.

Define the cohomology groups

H0(𝔤,O(𝑈𝛼)) = ker(𝑑0), H𝑖 (𝔤,O(𝑈𝛼)) = ker(𝑑𝑖)/im(𝑑𝑖−1), 𝑖 > 0.

It is clear that 𝜆𝛼 ∈ 𝔤∗ ⊗ O(𝑈𝛼) defines a lift of 𝔤 to 𝑈𝛼 × C if and only if 𝑑1𝜆𝛼 = 0. Furthermore,
two cocycles 𝜆𝛼, �̃�𝛼 define equivalent lifts if and only if �̃�𝛼 = 𝜆𝛼 + 𝑑

0𝜇𝛼 for some 𝜇𝛼 ∈ O(𝑈𝛼).
Thus, equivalence classes of lifts of 𝔤|𝑈𝛼 to 𝑈𝛼 × C are in one-to-one correspondence with elements in
H1 (𝔤,O(𝑈𝛼)). (Note also that H0 (𝔤,O(𝑈𝛼)) = O(𝑈𝛼)

𝔤 consists of 𝔤-invariants.)
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Remark 2.2. If 𝑈𝛼 is a polydisc for each 𝛼, then any function in O×(𝑈𝛼) is of the form 𝑒𝜇, and the
argument above works. If𝑈𝛼 is a general open set, one replaces 𝑒𝜇𝛼 𝑓𝛼 with 𝜇𝛼 𝑓𝛼, where 𝜇𝛼 ∈ O×(𝑈𝛼).
Then the local lifts are in one-to-one correspondence with elements in the cohomology group of the
complex

0 −→ O×(𝑈𝛼)
𝑑0 log
−−−−→ 𝔤∗ ⊗ O(𝑈𝛼)

𝑑1

−−→ Λ2𝔤∗ ⊗ O(𝑈𝛼) −→ · · · . (2.3)

We will use this slightly modified complex below with the notation

H̃1 (𝔤,O(𝑈𝛼)) =
ker(𝑑1)

im(𝑑0 log)
.

Elements in H̃1 (𝔤,O(𝑈𝛼)) yield local lifts of 𝔤 to 𝜋−1 (𝑈𝛼) that may not glue together to a global lift
on L. On𝑈𝛼 ∩𝑈𝛽 , a lift is given by both 𝑋 +𝜆𝛼 (𝑋) 𝑢𝛼𝜕𝑢𝛼 and 𝑋 +𝜆𝛽 (𝑋) 𝑢𝛽𝜕𝑢𝛽 . The fiber coordinates
relate on overlaps by 𝑢𝛼 = 𝑔𝛼𝛽𝑢𝛽 , where the transition functions {𝑔𝛼𝛽} represent an element of
Ȟ1 (U ,O×(𝑀)). Thus, 𝑋 + 𝜆𝛼 (𝑋) 𝑢𝛼𝜕𝑢𝛼 becomes 𝑋 + (𝜆𝛼 (𝑋) − 𝑋 (𝑔𝛼𝛽)/𝑔𝛼𝛽) 𝑢𝛽𝜕𝑢𝛽 , resulting in the
following compatibility condition on 𝑈𝛼 ∩𝑈𝛽:

𝜆𝛼 (𝑋) − 𝜆𝛽 (𝑋) =
𝑋 (𝑔𝛼𝛽)

𝑔𝛼𝛽
= 𝑋 (log 𝑔𝛼𝛽), ∀𝑋 ∈ 𝔤. (2.4)

2.2. A double complex

To better understand the compatibility condition, consider the double complex

𝐶0,0 𝐶1,0 𝐶2,0

𝐶0,1 𝐶1,1 𝐶2,1

𝐶0,2 𝐶1,2 𝐶2,2

𝛿0,0

𝛿0,1

𝑑0,0 𝑑1,0

𝑑0,1 𝑑1,1

𝑑0,2

𝛿1,0

𝛿1,1

𝛿2,0

𝛿0,2 𝛿1,2

𝑑1,2

𝛿2,1

𝛿2,2

𝑑2,0

𝑑2,1

𝑑2,2

where 𝐶 𝑝,𝑞 are given by

𝐶0,𝑞 =
∏

𝛼0 , · · · ,𝛼𝑞

O×(𝑈𝛼0 ∩ · · · ∩𝑈𝛼𝑞 ),

𝐶 𝑝,𝑞 =
∏

𝛼0 , · · · ,𝛼𝑞

Λ𝑝𝔤∗ ⊗ O(𝑈𝛼0 ∩ · · · ∩𝑈𝛼𝑞 ), 𝑝 ≥ 1,

and the differentials 𝛿𝑝,𝑞 : 𝐶 𝑝,𝑞 → 𝐶 𝑝,𝑞+1 and 𝑑 𝑝,𝑞 : 𝐶 𝑝,𝑞 → 𝐶 𝑝+1,𝑞 are defined for 𝑝 = 0 by

(𝛿0,𝑞𝜇)𝛼0 · · ·𝛼𝑞+1 =
𝑞+1∏
𝑖=0

𝜇 (−1)𝑖+1
𝛼0 · · ·�̂�𝑖 · · ·𝛼𝑞+1

���
𝑈𝛼0∩···∩𝑈𝛼𝑞+1

,

(𝑑0,𝑞𝜇𝛼0 · · ·𝛼𝑞 ) (𝑋) = 𝑋 (log 𝜇𝛼0 · · ·𝛼𝑞 ) =
𝑋 (𝜇𝛼0 · · ·𝛼𝑞 )

𝜇𝛼0 · · ·𝛼𝑞

,
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and for 𝑝 > 0 by

(𝛿𝑝,𝑞𝜇)𝛼0 · · ·𝛼𝑞+1 =
𝑞+1∑
𝑖=0
(−1)𝑖+1𝜇𝛼0 · · ·�̂�𝑖 · · ·𝛼𝑞+1

���
𝑈𝛼0∩···∩𝑈𝛼𝑞+1

,

(𝑑 𝑝,𝑞𝜇𝛼0 · · ·𝛼𝑞 ) (𝑋0, . . . , 𝑋𝑝) =
𝑝∑

𝑖=0
(−1)𝑖𝑋𝑖 (𝜇𝛼0 · · ·𝛼𝑞 (𝑋0, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋𝑝))

+
∑
𝑖< 𝑗

(−1)𝑖+ 𝑗 (𝜇𝛼0 · · ·𝛼𝑞 ([𝑋𝑖 , 𝑋 𝑗 ], 𝑋0, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋 𝑗−1, 𝑋 𝑗+1, . . . , 𝑋𝑝)).

We will sometimes write 𝐶 𝑝,𝑞 (𝔤, U ) for precision when there would otherwise be ambiguity. The
horizontal lines (q fixed) are nearly Chevalley-Eilenberg complexes of 𝔤 with coefficients in the 𝔤-
modules O(𝑈𝛼),O(𝑈𝛼 ∩𝑈𝛽), etc; however, (𝐶0,𝑞 , 𝑑0,𝑞) are adjusted in accordance with Remark 2.2.
The vertical lines (p fixed) are Čech complexes with respect to the open cover U .

Remark 2.3. For 𝐶0,𝑞 , it is natural to use multiplicative notation (with identity element 1), while for
𝐶 𝑝,𝑞 for 𝑝 ≥ 1, it is better to use additive notation (with identity element 0). Using these notations
consistently becomes difficult when we are dealing with this double complex, and even more so when
we work with the total complex defined below. We will therefore use 0 to denote the identity element in
these groups and in the corresponding cohomology groups.

The total complex corresponding to the double complex 𝐶•,• is defined as follows:

Tot𝑟 (𝐶) =
∏

𝑝+𝑞=𝑟

𝐶 𝑝,𝑞 , 𝜕𝑟 =
∑

𝑝+𝑞=𝑟

(𝑑 𝑝,𝑞 + (−1) 𝑝𝛿𝑝,𝑞) : Tot𝑟 (𝐶) → Tot𝑟+1(𝐶).

The identity 𝜕𝑖+1 ◦ 𝜕𝑖 = 0 expresses the fact that the double complex is a commutative diagram. The
cohomology groups of the total complex are defined in the usual way:

H0 (Tot•(𝐶)) = ker(𝜕0), H𝑖 (Tot•(𝐶)) =
ker(𝜕𝑖)

im(𝜕𝑖−1)
.

The double complex also gives us several complexes of cohomology groups. The cohomology groups
with respect to 𝑑𝑖, 𝑗 (with j fixed) make up the following complexes:

H0
𝑑 (𝐶

•,0) H1
𝑑 (𝐶

•,0) H2
𝑑 (𝐶

•,0)

H0
𝑑 (𝐶

•,1) H1
𝑑 (𝐶

•,1) H2
𝑑 (𝐶

•,1)

H0
𝑑 (𝐶

•,2) H1
𝑑 (𝐶

•,2) H2
𝑑 (𝐶

•,2)

𝛿0,0
∗

𝛿0,1
∗

𝛿1,0
∗

𝛿1,1
∗

𝛿2,0
∗

𝛿2,1
∗

𝛿1,2
∗𝛿0,2

∗ 𝛿2,2
∗
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Simultaneously, the cohomology groups with respect to 𝛿𝑖, 𝑗 (with i fixed) also give complexes:

H0
𝛿 (𝐶

0,•) H0
𝛿 (𝐶

1,•) H0
𝛿 (𝐶

2,•)

H1
𝛿 (𝐶

0,•) H1
𝛿 (𝐶

1,•) H1
𝛿 (𝐶

2,•)

H2
𝛿 (𝐶

0,•) H2
𝛿 (𝐶

1,•) H2
𝛿 (𝐶

2,•)

𝑑0,0
∗ 𝑑1,0

∗

𝑑0,1
∗ 𝑑1,1

∗

𝑑0,2
∗ 𝑑1,2

∗ 𝑑2,2
∗

𝑑2,1
∗

𝑑2,0
∗

Thus, we get the induced cohomology groups

H𝑖
𝛿 (H

𝑗
𝑑 (𝐶

•,•)) =
ker(𝛿 𝑗 ,𝑖

∗ )

im(𝛿 𝑗 ,𝑖−1
∗ )

, H𝑖
𝑑 (H

𝑗
𝛿 (𝐶

•,•)) =
ker(𝑑𝑖, 𝑗

∗ )

im(𝑑𝑖−1, 𝑗
∗ )

,

for 𝑖 ≥ 1 and

H0
𝛿 (H

𝑗
𝑑 (𝐶

•,•)) = ker(𝛿 𝑗 ,0
∗ ), H0

𝑑 (H
𝑗
𝛿 (𝐶

•,•)) = ker(𝑑0, 𝑗
∗ ).

In the general setting of the total complex, we have the two projections (homomorphisms)

H1(Tot•(𝐶))

H1
𝛿 (𝐶

0,•) H1
𝑑 (𝐶

•,0)

Φ1 Φ2

defined by

Φ1([(𝑔, 𝜆)]) = [𝑔], Φ2([(𝑔, 𝜆)]) = [𝜆],

where [(𝑔, 𝜆)] denotes the equivalence class of (𝑔, 𝜆) ∈ ker(𝜕1). We use the notation 𝑔 = {𝑔𝛼𝛽} for an
element in 𝐶0,1 and 𝜆 = {𝜆𝛼} for an element in 𝐶1,0, and note that

H1
𝛿 (𝐶

0,•) = Ȟ1(U ,O×), H1
𝑑 (𝐶

•,0) =
∏
𝛼

H̃1(𝔤,O(𝑈𝛼)).

Lemma 2.4. The maps Φ1,Φ2 have the following kernels:

ker(Φ1) � H1
𝑑 (H

0
𝛿 (𝐶

•,•)), ker(Φ2) � H1
𝛿 (H

0
𝑑 (𝐶

•,•)).

Proof. The arguments for the two isomorphisms are similar to each other, so we prove the statement
only for ker(Φ2). If [(𝑔, 𝜆)] ∈ ker(Φ2), then there exists an element �̃� ∈ ker(𝛿0,1) such that [(�̃�, 0)] =
[(𝑔, 𝜆)]. We have 𝑑0,1�̃� = 𝛿1,00 = 0, so that �̃� ∈ ker(𝑑0,1). Furthermore, since (�̃�, 0) + 𝜕0(𝜇) =
(�̃� · 𝛿0,0𝜇, 𝑑0,0𝜇), the freedom in choice of representative �̃� is exactly 𝛿0,0 (ker(𝑑0,0)). Thus, ker(Φ2) =
H1

𝛿 (H
0
𝑑 (𝐶

•,•)). �

Lemma 2.4 is equivalent to exactness of the two sequences

0 −→ H1
𝑑 (H

0
𝛿 (𝐶

•,•)) −→ H1 (Tot•(𝐶)) −→ im(Φ1) −→ 0, (2.5)

0 −→ H1
𝛿 (H

0
𝑑 (𝐶

•,•)) −→ H1 (Tot•(𝐶)) −→ im(Φ2) −→ 0, (2.6)
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and furthermore, we have

lim
−−→

H1
𝛿 (H

0
𝑑 (𝐶

•,•)) = Ȟ1 (𝑀, (O×)𝔤), lim
−−→

H1
𝑑 (H

0
𝛿 (𝐶

•,•)) = H̃1(𝔤,O(𝑀)),

where (O×)𝔤 ⊂ O× is the subsheaf of 𝔤-invariants.

Corollary 2.5. (i) If H1
𝛿 (𝐶

0,•) = 0, then H1(Tot•(𝐶)) � H1
𝑑 (H

0
𝛿 (𝐶

•,•)).
(ii) Likewise, if H1

𝑑 (𝐶
•,0) = 0, then H1(Tot•(𝐶)) � H1

𝛿 (H
0
𝑑 (𝐶

•,•)).

Lemma 2.6. The images of Φ1,Φ2 are given by the following exact sequences:

0 −→ im(Φ1) −→ H0
𝑑 (H

1
𝛿 (𝐶

•,•)) −→ H2
𝑑 (H

0
𝛿 (𝐶

•,•)),

0 −→ im(Φ2) −→ H0
𝛿 (H

1
𝑑 (𝐶

•,•)) −→ H2
𝛿 (H

0
𝑑 (𝐶

•,•)).

Proof. We give the proof for the first exact sequence. The proof for the second one is similar. Consider
an element [𝑔] ∈ im(Φ1) ⊂ H1

𝛿 (𝐶
0,•). Since it lies in the image of Φ1, there exists an element

𝜆 ∈ 𝐶1,0 satisfying 𝛿1,0𝜆 = 𝑑0,1𝑔. This implies that 𝑑0,1
∗ [𝑔] = [𝑑0,1𝑔] = [𝛿1,0𝜆] = 0, and thus,

[𝑔] ∈ H0
𝑑 (H

1
𝛿 (𝐶

•,•)). The map H1
𝛿 (𝐶

0,•) ⊃ im(Φ1) → H0
𝑑 (H

1
𝛿 (𝐶

•,•)) is obviously injective.
Now, consider an element [𝑔] ∈ H0

𝑑 (H
1
𝛿 (𝐶

•,•)). Since 𝑑0,1
∗ [𝑔] = 0, there exists an element 𝜆 ∈ 𝐶1,0

satisfying 𝛿1,0𝜆 = 𝑑0,1𝑔. If �̃� ∈ 𝐶1,0 is another such element, then �̃� − 𝜆 = 𝜆0 ∈ H0
𝛿 (𝐶

1,•). The
element 𝑑1,0 (𝜆 + 𝜆0) ∈ 𝐶2,0 is 𝛿2,0-closed since 𝛿2,0 ◦ 𝑑1,0 = 𝑑1,1 ◦ 𝛿1,0 and 𝛿1,0𝜆 = 𝑑0,1𝑔. Thus,
𝑑1,0 (𝜆 + 𝜆0) ∈ H0

𝛿 (𝐶
2,•). Since the freedom in representative 𝜆 + 𝜆0 is exactly H0

𝛿 (𝐶
1,•), we obtain a

unique element [𝑑1,0𝜆] ∈ H2
𝑑 (H

0
𝛿 (𝐶

•,•)). We have [𝑑1,0𝜆] = 0, or equivalently, 𝑑1,0𝜆 ∈ 𝑑1,0
∗ (H0

𝛿 (𝐶
1,•)),

if and only if [𝑔] ∈ im(Φ1). �

While Pic(𝑀) = lim
−−→

H1
𝛿 (𝐶

0,•) plays an important role, the group H1
𝑑 (𝐶

•,0) will in general grow
without bound as the cover U becomes finer. Therefore, as a counterpart to Ȟ1(U ,O×) = H1

𝛿 (𝐶
0,•),

we define 𝔐𝔤 (U ) := H0
𝛿 (H

1
𝑑 (𝐶

•,•)) which can be interpreted as the collection of local (infinitesimal)
multipliers of 𝔤 with respect to the cover U that are equivalent on overlaps. Note that this is also a
reasonable definition in this context due to Lemma 2.6.

Definition 2.7. The group of multipliers of 𝔤 on M is the direct limit 𝔐𝔤 (𝑀) := lim
−−→

𝔐𝔤 (U ).

The group 𝔐𝔤 (𝑀) should not be confused with the group of global multipliers H̃1(𝔤,O(𝑀)), which
is often trivial as the algebra of global functions O(𝑀) may be small (for instance, C for compact M).
To see the difference, consider an element 𝜆 = {𝜆𝛼} ∈ ker(𝑑1,0). We have [𝜆] ∈ H1

𝑑 (H
0
𝛿 (𝐶

•,•)) if and
only if 𝜆𝛼 = 𝜆𝛽 on𝑈𝛼 ∩𝑈𝛽 , and [𝜆] ∈ 𝔐𝔤 ({𝑈𝛼}) = H0

𝛿 (H
1
𝑑 (𝐶

•,•)) if and only if 𝜆𝛼 = 𝜆𝛽 + 𝑑 log 𝜇𝛼𝛽

for some 𝜇 = {𝜇𝛼𝛽} ∈ O×(𝑈𝛼 ×𝑈𝛽).

2.3. The equivariant Picard group

From the description of lifts at the end of Section 2.1, we see that the pair (𝑔, 𝜆) ∈ 𝐶0,1 × 𝐶1,0 defines
a 𝔤-equivariant line bundle if and only if

𝛿0,1𝑔 = 0, 𝑑1,0𝜆 = 0, 𝑑0,1𝑔 = 𝛿1,0𝜆 ⇔ (𝑔, 𝜆) ∈ ker(𝜕1).

The three conditions correspond to the cocycle condition for transition functions, the cocycle condition
for the local lift (2.1) and the compatibility condition (2.4), respectively. Rescaling the fiber coordinates
𝑢𝛼 in the line bundle corresponds exactly to changing the cocycle (𝑔, 𝜆) by a coboundary in im(𝜕0).

Definition 2.8. The group of equivalence classes of 𝔤-equivariant line bundles is called the 𝔤-equivariant
Picard group and denoted by Pic𝔤 (𝑀) := lim

−−→
H1 (Tot•(𝐶)), where we exploit the direct limit by refine-

ments (or use a fine cover U ) as before.

https://doi.org/10.1017/fms.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.20


12 B. Kruglikov and E. Schneider

Denoting by ℭ𝔤 the modified Chevalley-Eilenberg sheaf complex (2.3), Pic𝔤 (𝑀) may be identified
with the first hypercohomology H1 (𝑀,ℭ𝔤), cf. [11, Ch. 3.5] for a discussion of hypercohomology H𝑞 .

The maps Φ1 : H1 (Tot•(𝐶)) → H1
𝛿 (𝐶

0,•) and Φ2 : H1(Tot•(𝐶)) → H1
𝑑 (𝐶

•,0) induce maps

Φ1 : Pic𝔤 (𝑀) → Pic(𝑀), Φ2 : Pic𝔤 (𝑀) →𝔐𝔤 (𝑀),

denoted by the same letters (Lemma 2.6 justifies the choice of codomain for the second map). We define
Picred

𝔤 (𝑀) := im(Φ1 ×Φ2) ⊂ Pic(𝑀) ×𝔐𝔤 (𝑀), which we call the reduced 𝔤-equivariant Picard group,
and denote by Ψ1,Ψ2 the projections

Ψ1 : Picred
𝔤 (𝑀) → Pic(𝑀), Ψ2 : Pic𝔤 (𝑀) →𝔐𝔤 (𝑀).

Then 𝜛 := Φ1 ×Φ2 epimorphically maps Pic𝔤 (𝑀) to Picred
𝔤 (𝑀).

Proposition 2.9. Picred
𝔤 (𝑀) � ker(𝜕1)/∼, where the equivalence relation is defined by (𝑔, 𝜆) ∼ (�̃�, �̃�)

if �̃� = 𝑔 · 𝛿0,0𝜈 and �̃� = 𝜆 + 𝑑0,0𝜇, where 𝜇, 𝜈 ∈ 𝐶0,0 satisfy

𝜇/𝜈 ∈ ker(𝑑0,1 ◦ 𝛿0,0) = ker(𝛿1,0 ◦ 𝑑0,0).

Proof. The reduced equivalence relation is weaker, as the coboundaries for g and 𝜆 can be chosen
independently. Thus, if (𝑔, 𝜆) ∈ ker(𝜕1) and (𝑔 · 𝛿0,0𝜈, 𝜆+ 𝑑0,0𝜇) ∈ 𝐶0,1×𝐶1,0 is an equivalent cocycle,
then it automatically satisfies the first two conditions: 𝛿0,1(𝑔 · 𝛿0,0𝜈) = 0 and 𝑑1,0(𝜆 + 𝑑0,0𝜇) = 0.
However, the third condition applied to the new pair is 𝑑0,1 (𝑔 · 𝛿0,0𝜈) = 𝛿1,0 (𝜆 + 𝑑0,0𝜇), which is
equivalent to 𝜇/𝜈 ∈ ker(𝑑0,1 ◦ 𝛿0,0) = ker(𝛿1,0 ◦ 𝑑0,0). �

Let us investigate the relationship between Pic𝔤 (𝑀) and Picred
𝔤 (𝑀). By Proposition 2.9, the admissible

pair (𝜈, 𝜇) ∈ 𝐶0,0 × 𝐶0,0 characterizing the freedom in choice of representatives (𝑔, 𝜆) ∈ ker(𝜕1) for
the reduced group can be rewritten as (𝜈, 𝜇) = (𝜈/𝜇, 1) · (𝜇, 𝜇) � (𝜈/𝜇, 𝜇) ∈ ker(𝑑0,1 ◦ 𝛿0,0) ×𝐶0,0. It
follows that (for a good cover) Picred

𝔤 (𝑀) is equal to

ker(𝜕1)

im(𝜕) · im(𝜕0)
=

ker(𝜕1)

im(�̃�)
im(�̃�)∩im(𝜕0)

· im(𝜕0)
=

H1 (Tot•(𝐶))
im(�̃�)

im(�̃�)∩im(𝜕0)

,

where the map 𝜕 : ker(𝑑0,1 ◦ 𝛿0,0) → 𝐶0,1 × 𝐶1,0 is defined as 𝛿0,0 × 0. We have

im(𝜕0) = {(𝛿0,0𝜇, 𝑑0,0𝜇) ∈ 𝐶0,1 × 𝐶1,0 | 𝜇 ∈ 𝐶0,0},

im(𝜕) = {(𝛿0,0𝜅, 0) ∈ 𝐶0,1 × 𝐶1,0 | 𝜅 ∈ ker(𝑑0,1 ◦ 𝛿0,0)} � ker(𝑑0,1 ◦ 𝛿0,0)/ker(𝛿0,0).

If 𝑑0,0𝜇 = 0, then 𝜇 ∈ ker(𝛿1,0 ◦ 𝑑0,0) = ker(𝑑0,1 ◦ 𝛿0,0), and therefore,

im(𝜕) ∩ im(𝜕0) = {(𝛿0,0𝜇, 0) ∈ 𝐶0,1 × 𝐶1,0 | 𝜇 ∈ ker(𝑑0,0)}

= 𝛿0,0 (ker(𝑑0,0)) � ker(𝑑0,0)/(ker(𝛿0,0) ∩ ker(𝑑0,0)).

It follows that
im(𝜕)

im(𝜕) ∩ im(𝜕0)
=

ker(𝑑0,1 ◦ 𝛿0,0)

ker(𝛿0,0) · ker(𝑑0,0)
.

Defining

𝑇𝔤 (U ) :=
ker(𝑑0,1 ◦ 𝛿0,0)

ker(𝛿0,0) · ker(𝑑0,0)
, 𝑇𝔤 (𝑀) := lim

−−→
𝑇𝔤 (U ) (2.7)

gives us the relation between Pic𝔤 (𝑀) and Picred
𝔤 (𝑀):
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Figure 1. Commutative diagram: The dotted and dashed long sequences as well as three straight line
sequences are exact.

Proposition 2.10. The following sequence is exact:

0→ 𝑇𝔤 (𝑀) −→ Pic𝔤 (𝑀)
𝜛
−−→ Picred

𝔤 (𝑀) → 0. (2.8)

The commutative diagram in Figure 1 gives relations between the groups we have considered, leading
to vanishing conditions for Pic𝔤 (𝑀) and various isomorphisms.

The diagram contains the short exact sequence (2.8), the (direct limit of) short exact sequences
(2.5)–(2.6), and also two longer exact sequences. For instance, exactness at 𝛿0,0

∗ and 𝑑0,0
∗ can be seen as

follows. If 𝜇 ∈ ker(𝑑0,1 ◦ 𝛿0,0), then 𝛿0,0𝜇 ∈ ker(𝑑0,1) ∩ ker(𝛿0,1) and 𝑑0,0𝜇 ∈ ker(𝛿1,0) ∩ ker(𝑑1,0),
whence [𝛿0,0𝜇] ∈ H1

𝛿 (H
0
𝑑 (𝐶

•,•)) and [𝑑0,0𝜇] ∈ H1
𝑑 (H

0
𝛿 (𝐶

•,•)). We have [𝛿0,0𝜇] = 0 if and only if
there exists an element 𝜇0 ∈ ker(𝑑0,0) such that 𝛿0,0𝜇 = 𝛿0,0𝜇0. This happens if and only if 𝜇 = 𝜇

𝜇0
𝜇0 ∈

ker(𝛿0,0) · ker(𝑑0,0). By a similar argument, [𝑑0,0𝜇] = 0 if and only if 𝜇 ∈ ker(𝛿0,0) · ker(𝑑0,0).
Note that the maps Ȟ1 (𝑀, (O×)𝔤) → Pic𝔤 (𝑀) and H̃1(𝔤,O(𝑀)) → Pic𝔤 (𝑀) in the commutative

diagram are defined by [𝑔] ↦→ [(𝑔, 0)] and [𝜆] ↦→ [(1,−𝜆)], respectively.
Corollary 2.11. If Ȟ1(𝑀, (O×)𝔤) = 0 or H̃1 (𝔤,O(𝑀)) = 0, then Picred

𝔤 (𝑀) � Pic𝔤 (𝑀).
Corollary 2.12.
(i) We have H̃1 (𝔤,O(𝑀)) = 0 if and only if Φ1 : Pic𝔤 (𝑀) → Pic(𝑀) is injective.

(ii) Likewise, Ȟ1 (𝑀, (O×)𝔤) = 0 if and only if Φ2 : Pic𝔤 (𝑀) →𝔐𝔤 (𝑀) is injective.
Notice im(Ψ1) = im(Φ1) and im(Ψ2) = im(Φ2), which are described by Lemmata 2.4 and 2.6.

Proposition 2.13. The group 𝑇𝔤 (𝑀) of equivariant line bundles with trivial reduction corresponds to
global locally trivial lifts of 𝔤 to the trivial line bundle over M modulo globally trivial lifts.
Proof. First, note that an element [(𝑔, 𝜆)] ∈ Pic𝔤 (𝑀) in the kernel of 𝜛 also belongs to the kernel of
Φ1 = Ψ1 ◦𝜛, so g determines a trivial line bundle. Similarly, using Φ2 = Ψ2 ◦𝜛, we conclude that 𝜆
yields a locally trivial lift (the multiplier is cohomologous to zero on open sets 𝑈𝛼).

Next, applying 𝑑0,0 to both the numerator and the denominator of the right-hand side of (2.3), we get
𝑇𝔤 (𝑀) � ker

(
𝛿1,0 |im𝑑0,0

)
/𝑑0,0 (ker 𝛿0,0), whence the required interpretation.

Finally, by applying 𝛿0,0 to (2.3), we conclude 𝑇𝔤 (𝑀) � ker
(
𝑑0,1 |im𝛿0,0

)
/𝛿0,0 (ker 𝑑0,0), which

corresponds to line bundles with 𝔤-invariant transition functions modulo global 𝔤-invariants. �
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Propositions 2.10 and 2.13 combine into Theorem 1.1.

Example 2.14 (Rational curve). Consider the projective space C𝑃1 with charts 𝑈0 � C
1(𝑥) and 𝑈∞ �

C1 (𝑦), with coordinates related by 𝑦 = 1/𝑥 on 𝑈0 ∩𝑈∞. The Lie algebra 𝔰𝔩(2,C) acts naturally on this
space with the basis 𝑋,𝑌, 𝑍 given in local coordinates:

𝑋 |𝑈0 = 𝜕𝑥 , 𝑌 |𝑈0 = 𝑥𝜕𝑥 , 𝑍 |𝑈0 = 𝑥2𝜕𝑥 , 𝑋 |𝑈∞ = −𝑦2𝜕𝑦 , 𝑌 |𝑈∞ = −𝑦𝜕𝑦 , 𝑍 |𝑈∞ = −𝜕𝑦 .

Let 𝜆𝑖 be a representative of an element in 𝐻1 (𝔰𝔩(2,C),O(𝑈𝑖)) for 𝑖 = 0,∞.
Taking 𝜇0 = 𝑒

∫
𝜆0 (𝑋0)𝑑𝑥 (the integral sign denotes the anti-derivative on C) gives

(𝜆0 − 𝑑
0,0𝜇0) (𝑋0) = 𝜆0(𝑋0) − 𝜕𝑥 (log 𝜇0) = 0,

so we can without loss of generality assume that 𝜆0(𝑋) = 0. The values 𝜆0(𝑌 ) and 𝜆0(𝑍) are now
determined by the cocycle conditions

𝑋 (𝜆0 (𝑌 )) − 𝑌 (𝜆0 (𝑋)) = 𝜆0([𝑋,𝑌 ]) = 𝜆0(𝑋) = 0,
𝑋 (𝜆0(𝑍)) − 𝑍 (𝜆0 (𝑋)) = 𝜆0([𝑋, 𝑍]) = 2𝜆0(𝑌 ),

𝑌 (𝜆0 (𝑍)) − 𝑍 (𝜆0(𝑌 )) = 𝜆0([𝑌, 𝑍]) = 𝜆0(𝑍).

This leads to

𝜆0(𝑋) = 0, 𝜆0(𝑌 ) = 1
2 𝐴, 𝜆0(𝑍) = 𝐴𝑥.

Analogous computations on 𝑈∞ give

𝜆∞(𝑋) = 𝐵𝑦, 𝜆∞(𝑌 ) = 1
2𝐵, 𝜆∞(𝑍) = 0.

Next, we require that 𝑑0,1𝑔0∞ = (𝛿1,0𝜆)0∞ for some 𝛿0,1-cocycle 𝑔0∞ ∈ O×(𝑈0 ∩𝑈∞). Evaluating
this on X, Y and Z leads to the following overdetermined system of ODEs:

𝜕𝑥 (𝑔0∞)

𝑔0∞
= −

𝐵

𝑥
,

𝑥𝜕𝑥 (𝑔0∞)

𝑔0∞
=
𝐴 − 𝐵

2
,

𝑥2𝜕𝑥 (𝑔0∞)

𝑔0∞
= 𝐴𝑥.

The system has a solution if and only if 𝐴 = −𝐵, in which case, 𝑔0∞ = 𝐶𝑥𝐴. This solution is holomorphic
on𝑈0∩𝑈∞ if and only if 𝐴 ∈ Z. The constant C can be set equal to 1 by multiplying 𝑔0∞ with (𝛿0,0𝜇)0∞
for 𝜇 = {𝜇0 = 1, 𝜇∞ = 𝐶} ∈ ker(𝑑0,0). Thus, the global lifts are given by (𝜆0, 𝜆∞) with 𝐴 = −𝐵 ∈ Z,
and the corresponding 𝔰𝔩(2,C)-equivariant line bundle has transition function 𝑔0∞ = 𝑥𝐴. To sum up,
the cover U = {𝑈0,𝑈∞} is nice and we get

Pic𝔰𝔩 (2,C) (C𝑃1) � Picred
𝔰𝔩 (2,C) (C𝑃

1) � Z.

The first isomorphism is a consequence of Ȟ1(𝑀, (O×)𝔤) � H1
𝛿 (H

0
𝑑 (𝐶

•,•)) = 0 and Corollary 2.11.
SinceC𝑃1 is covered by two open charts, we have𝐶0,2 = 0, implying H0

𝑑 (𝐶
•,2) = 0 and H2

𝛿 (H
0
𝑑 (𝐶

•,•)) =
0. By Lemma 2.6, im(Ψ2) � H0

𝛿 (H
1
𝑑 (𝐶

•,•)) = 𝔐𝔤 ({𝑈0,𝑈∞}), which for this cover is isomorphic to Z.
A straightforward generalization of this computation gives 𝑇𝔤 (C𝑃𝑛) = 0, 𝔐𝔤 (C𝑃

𝑛) = C (for 𝑛 = 1
this is parametrized by the above 𝐴 = −𝐵, but with a finer cover U it is unconstrained: 𝐴 ∈ C) and
Pic𝔤 (C𝑃𝑛) = Z for 𝔤 = 𝔰𝔩(𝑛 + 1,C).

Remark 2.15. Recall that Pic(C𝑃𝑛) = {OC𝑃𝑛 (𝑘)}𝑘∈Z � Z, where OC𝑃𝑛 (0) is the trivial line bundle
and OC𝑃𝑛 (−1) is the tautological line bundle and for 𝑘 > 0:

OC𝑃𝑛 (−𝑘) = OC𝑃𝑛 (−1)⊗𝑘 , OC𝑃𝑛 (𝑘) =
(
OC𝑃𝑛 (−1)⊗𝑘

)∗
.
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The canonical line bundle is 𝐾C𝑃𝑛 = Λ𝑛𝑇∗C𝑃𝑛 = OC𝑃𝑛 (−𝑛 − 1), cf. [15, Ch. 2.2].

We will see later that Ψ1 and Φ1 may be non-injective. The following shows it for Ψ2 and Φ2.

Example 2.16 (Elliptic curve). Consider C2 with coordinates (𝑥, 𝑢) and two commuting maps

ℎ1 (𝑥, 𝑢) = (𝑥 + 1, 𝑢), ℎ2 (𝑥, 𝑢) = (𝑥 + 𝜔1, 𝜔2𝑢),

where 𝜔1 ∈ C \R, 𝜔2 ≠ 0. Both of these maps respect the projection C2 → C given by (𝑥, 𝑢) ↦→ 𝑥, and
the vector field 𝜕𝑥 . Thus, in the quotient by the Z2 action generated by ℎ1, ℎ2, we get that the vector field
𝜕𝑥 on the elliptic curve Γ = C/Z2 lifts to the vector field 𝜕𝑥 on the line bundle C2/Z2 over the elliptic
curve. This line bundle 𝐿𝜔 is topologically trivial but holomorphically nontrivial for 𝜔2 ≠ 𝑒2𝜋𝑖𝜔1 , and
all line bundles of this form lie in ker(Ψ2); see Section 27 of [2] for details. The general lift of 𝔤 is given
by 𝜕𝑥 + 𝑐 𝑢𝜕𝑢 , 𝑐 ∈ C.

For holomorphic curves, we have a short exact sequence (where 𝑐1 is the first Chern class)

0→ Pic0(Γ) −→ Pic(Γ)
𝑐1
−→ 𝐻2(Γ,Z) → 0,

and for elliptic curves Pic0(Γ) = Div0(Γ) � Γ, 𝑥 ↦→ 𝑥 − 𝑥0, whence Pic(Γ) � Γ ⊕ Z.
The summand Z in Pic(Γ) corresponds to divisors 𝑚 · 𝑥0, 𝑚 ∈ Z, 𝑥0 ∈ Γ. However, for topologically

nontrivial line bundles, 𝑚 = 𝑐1 (𝐿) ≠ 0, the algebra 𝔤 does not possess a lift to L. Indeed, such a lift
would define a flat connection, at which point we can use the formula 𝑐1 (𝐿) =

[
−1
2𝜋𝑖 tr𝑅∇

]
. Alternatively,

denoting by 𝜋 : C→ Γ the quotient-projection by the lattice 〈1, 𝜔1〉, the pullback 𝜋∗𝐿 is trivial and can
be identified withC2(𝑥, 𝑢), on whichZ2 acts through the above ℎ1, ℎ2. Invariance of the lift 𝜕𝑥+ 𝑓 (𝑥) 𝑢𝜕𝑢
gives periodicity 𝑓 (𝑥 + 1) = 𝑓 (𝑥) and the constraint 𝑓 (𝑥 +𝜔1) − 𝑓 (𝑥) = 2𝜋𝑖𝑚, which are incompatible
unless 𝑚 = 0.

It is easy to see that 𝔐𝔤 (Γ) = 0. Moreover, 𝑇𝔤 (Γ) = C as it corresponds to 0-cochains 𝑐𝛼𝑒𝑠𝑥 ∈
O(𝑈𝛼) modulo local constants {𝑐𝛼} (so the quotient coordinate is s). This can be also identified with
H̃1 (𝔤,O(𝑀)) = C generated by global 1-form 𝑑𝑥 on Γ.

We conclude:

Picred
𝔤 (Γ) = Γ, Pic𝔤 (Γ) = C2/Z2.

Note that the equivariant Picard group can be identified with Ȟ1 (𝑀, (O×)𝔤) = (C×)2, but simultaneously,
it corresponds to trivial one-dimensional bundle, with fibersC(𝑐), over Γ. This fits well the commutative
diagram of Figure 1.

Corollary 2.12 gives a sufficient condition for Φ1 to be injective. For a connected algebraic group G,
Mumford’s Proposition 1.4 in [22] gives a sufficient condition for the map Pic𝐺 (𝑀) → Pic(M) to be
injective, in terms of nonexistence of a homomorphism 𝐺 → 𝐺𝐿(1,C). (The group of G-equivariant
line bundles will be discussed in Section 2.5.) This does not straightforwardly adapt to the infinitesimal
analytic setting, yet below we obtain a result inspired by that of Mumford.

Let 𝔤𝑝 ⊂ 𝔤 denote the isotropy algebra of the point 𝑝 ∈ 𝑀:

𝔤𝑝 = {𝑋 ∈ 𝔤 | 𝑋𝑝 = 0}.

Let H𝑘
𝑑𝑅 (𝑀) denote the holomorphic de Rham cohomology of M. It is known that in the affine case (for

Stein manifolds) as well as for the compact Kähler case, this coincides with the singular cohomology
H𝑘 (𝑀,C), see [12, 11]. In general, the holomorphic de Rham cohomology H𝑘

𝑑𝑅 (𝑀) is equal to the
hypercohomology H𝑘 (𝑀,Ω•𝑀 ) of the sheaf of holomorphic forms on M.

Lemma 2.17. Let 𝔤 be a transitive Lie algebra of vector fields on a manifold M. Define 𝑍 = {[𝜆] ∈
H̃1 (𝔤,O(𝑀)) | 𝜆(𝑌 )𝑝 = 0∀𝑌 ∈ 𝔤𝑝 ,∀𝑝 ∈ 𝑀} (the defining property is representative-independent).
Then we have a natural embedding 𝑍 ↩→ H1

𝑑𝑅 (𝑀).

https://doi.org/10.1017/fms.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.20


16 B. Kruglikov and E. Schneider

In particular, if H1
𝑑𝑅 (𝑀) = 0, then every [𝜆] ∈ 𝑍 is exact: 𝜆 = 𝑑0,0𝜇 for some 𝜇 ∈ ker(𝛿0,0).

Proof. Consider [𝜆] ∈ 𝑍 . Since its representative 𝜆 is defined globally on M, the value 𝜆(𝑋)𝑝 ∈ C is
well defined for any 𝑝 ∈ 𝑀 and any 𝑋 ∈ 𝔤. Transitivity of 𝔤 implies that for every 𝑣 ∈ 𝑇𝑝𝑀 , there exists
𝑋 ∈ 𝔤 satisfying 𝑋𝑝 = 𝑣, which means that the following linear function on 𝑇𝑝𝑀 is well defined:

𝛼𝑝 : 𝑋𝑝 ↦→ 𝜆(𝑋)𝑝 .

This gives a well-defined 1-form 𝛼 on M. Choosing 𝑋𝑖 ∈ 𝔤 for 𝑣𝑖 ∈ 𝑇𝑝𝑀 such that 𝑣𝑖 = (𝑋𝑖)𝑝 , we get
for every 𝑝 ∈ 𝑀 ,

(𝑑𝛼)𝑝 (𝑣1, 𝑣2) = 𝑑𝛼(𝑋1, 𝑋2)𝑝 = (𝑋1(𝛼(𝑋2)) − 𝑋2 (𝛼(𝑋1)) − 𝛼([𝑋1, 𝑋2]))𝑝 = 𝑑1,0𝜆(𝑋1, 𝑋2)𝑝 = 0.

Thus, 𝑑𝛼 = 0, so the closed 1-forms in two cohomologies correspond; the same clearly concerns exact
1-forms. This yields the embedding [𝜆] ↦→ [𝛼].

If H1
𝑑𝑅 (𝑀) = 0, then 𝛼 = 𝑑 log 𝜇 for some 𝜇 ∈ O×(𝑀), and therefore, 𝜆 = 𝑑0,0𝜇. �

Proposition 2.18. Let 𝔤 be a transitive Lie algebra of vector fields on a manifold M such that
dim H̃1 (𝔤,O(𝑀)) > dim H1

𝑑𝑅 (𝑀). This holds, for instance, when H̃1 (𝔤,O(𝑀)) ≠ 0 and H1
𝑑𝑅 (𝑀) = 0.

Then for all 𝑝 ∈ 𝑀 , there exists a surjective Lie algebra homomorphism 𝔤𝑝 → 𝔤𝔩(1,C).

Proof. Consider an element [𝜆] ∈ H̃1(𝔤,O(𝑀)) \ 𝑍 (by our assumption and Lemma 2.17, this set is
nonempty). Since 𝛿1,0𝜆 = 0, 𝜆 defines a global lift of 𝔤 to the trivial bundle 𝑀 × C,

𝔤𝜆 = {𝑋 + 𝜆(𝑋)𝑢𝜕𝑢 | 𝑋 ∈ 𝔤}.

For any point 𝑝 ∈ 𝑀 , all vector fields of the Lie subalgebra

{𝑌 + 𝜆(𝑌 )𝑢𝜕𝑢 | 𝑌 ∈ 𝔤𝑝} ⊂ 𝔤𝜆

are tangent to the fiber 𝜋−1 (𝑝). Therefore, the restriction to the fiber results in a Lie algebra homomor-
phism:

𝔤𝑝 � 𝑌 ↦→ 𝜆(𝑌 )𝑝𝑢𝜕𝑢 ∈ 𝔤𝔩(1,C). (2.9)

By definition of Z, 𝜆(𝑌 )𝑝 � 0 for a generic point p. Thus, at this point, (2.9) is surjective. Since, for a
transitive 𝔤, the isotropies 𝔤𝑝 at different points p are conjugate, the claim follows. �

The existence of a surjective Lie algebra homomorphism to 𝔤𝔩(1,C) implies that 𝔤𝑝 has an ideal of
codimension 1, the kernel of (2.9). Corollary 2.12 then leads to the following statement.

Corollary 2.19. Let 𝔤 be a transitive Lie algebra of vector fields on a manifold M with H1
𝑑𝑅 (𝑀) = 0. If

𝔤𝑝 does not have an ideal of codimension 1, then Pic𝔤 (𝑀) → Pic(𝑀) is injective.

As a consequence, Φ1 is injective if 𝔤𝑝 is perfect [𝔤𝑝 , 𝔤𝑝] = 𝔤𝑝 (this also applies to infinite-
dimensional Lie algebras 𝔤) and, in particular, if 𝔤𝑝 is semisimple (for finite-dimensional 𝔤).

Example 2.20 (Special affine algebra on the plane). Consider the Lie algebra

𝔤 = 〈𝜕𝑥 , 𝜕𝑦 , 𝑦𝜕𝑥 , 𝑥𝜕𝑦 , 𝑥𝜕𝑥 − 𝑦𝜕𝑦〉 ⊂ D(C2).

The Lie algebra is transitive with simple isotropy 𝔤𝑝 . By Proposition 2.18, we have H̃1 (𝔤,O(𝑀)) = 0,
implying that Pic𝔤 (C2) → Pic(C2) is injective by Corollary 2.12. Since Pic(C2) = 0, it follows that
Pic𝔤 (C2) = 0.

Next, for the Lie algebra

𝔥 = 〈𝑦𝜕𝑥 ,−𝑥𝑦𝜕𝑥 − 𝑦
2𝜕𝑦 , 𝜕𝑥 ,−𝑥

2𝜕𝑥 − 𝑥𝑦𝜕𝑦 , 2𝑥𝜕𝑥 + 𝑦𝜕𝑦〉 ⊂ D(C2),
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the isotropy of the point 𝑝 = 0

𝔥0 = 〈𝑦𝜕𝑥 ,−𝑥𝑦𝜕𝑥 − 𝑦
2𝜕𝑦 ,−𝑥

2𝜕𝑥 − 𝑥𝑦𝜕𝑦 , 2𝑥𝜕𝑥 + 𝑦𝜕𝑦〉

is 4-dimensional and solvable, and it has a 3-dimensional ideal. In this case, Pic𝔥 (C2) = C.
Note that 𝔤 and 𝔥 can be viewed as the same Lie subalgebra 𝔰𝔩(2,C) � C2 ⊂ 𝔰𝔩(3,C) ⊂ D(C𝑃2)

restricted to two different open charts of C𝑃2.

2.4. Line bundles admitting a transversal lift

We start by recalling some basic information about divisors; cf. [11, 15]. Let O× denote the multi-
plicative sheaf of nonvanishing holomorphic functions on a complex manifold M, and M× the sheaf of
meromorphic functions that are not identically zero on M. A divisor D is a global section of M×/O×.
It is defined by a collection of functions 𝑓𝛼 ∈ M×(𝑈𝛼) for an open cover {𝑈𝛼} of M, such that
𝑓𝛼/ 𝑓𝛽 ∈ O×(𝑈𝛼 ∩ 𝑈𝛽). Any divisor D gives rise to a line bundle, denoted by [𝐷], whose transition
functions are given by 𝑔𝛼𝛽 = 𝑓𝛼/ 𝑓𝛽 ∈ O×(𝑈𝛼 ∩𝑈𝛽), and the long exact sequence (see [11]) relates the
group of divisors Div(𝑀) := Ȟ0 (𝑀,M×/O×) to the Picard group on M:

· · · → Ȟ0 (𝑀,M×) → Div(𝑀) → Pic(𝑀) → Ȟ1(𝑀,M×) → · · · (2.10)

Here, Ȟ0(𝑀,M×) is the group of global meromorphic functions on M, and Div(𝑀)/Ȟ0 (𝑀,M×) is
the group of equivalence classes of divisors (equivalent divisors give equivalent line bundles).

Definition 2.21. Let 𝔤 ⊂ D(𝑀) be a Lie algebra of vector fields on M. The divisor 𝐷 = { 𝑓𝛼} defined
on the open cover {𝑈𝛼} of M is a 𝔤-invariant divisor if for each 𝛼

𝑋 ( 𝑓𝛼) = 𝜆𝛼 (𝑋) 𝑓𝛼, ∀𝑋 ∈ 𝔤,

where 𝜆𝛼 ∈ 𝔤∗ ⊗ O(𝑈𝛼). The group of 𝔤-invariant divisors is denoted by Div𝔤 (𝑀). The collection
𝜆 = {𝜆𝛼} is called the weight of D.

It follows that 𝔤 is tangent to the set of zeros of D, and also to the set of poles. In this way, D defines
a (possibly reducible) invariant hypersurface in M.

Proposition 2.22. Let 𝔤 ⊂ D(𝑀) be a Lie algebra of vector fields on M, and let 𝐷 = { 𝑓𝛼} be a 𝔤-
invariant divisor with weight 𝜆 = {𝜆𝛼}. Set 𝑔𝛼𝛽 = 𝑓𝛼/ 𝑓𝛽 and define 𝑔 = {𝑔𝛼𝛽}. Then the pair (𝑔, 𝜆)
defines a 𝔤-equivariant line bundle 𝐿 = [𝐷], which is independent of the choice of representative
functions 𝑓𝛼.

Proof. To show that the pair defines a 𝔤-equivariant line bundle, we must verify that 𝜕1(𝑔, 𝜆) = 0. It is
clear that 𝛿0,1𝑔 = 0 since 𝑔𝛼𝛽 are transition functions of [𝐷]. Next, the condition 𝑑1,0𝜆𝛼 = 0 holds for
each 𝛼 since 𝑓𝛼 � 0, and for arbitrary vector fields 𝑋,𝑌 ∈ 𝔤, we have

𝜆𝛼 ([𝑋,𝑌 ]) 𝑓𝛼 = [𝑋,𝑌 ] ( 𝑓𝛼) = 𝑋 (𝑌 ( 𝑓𝛼)) − 𝑌 (𝑋 ( 𝑓𝛼)) = (𝑋 (𝜆𝛼 (𝑌 )) − 𝑌 (𝜆𝛼 (𝑋))) 𝑓𝛼.

What remains is to verify that the weights 𝜆𝛼 are compatible with the transition functions 𝑔𝛼𝛽 = 𝑓𝛼/ 𝑓𝛽 .
On 𝑈𝛼 ∩𝑈𝛽 , we have

𝜆𝛼 (𝑋) 𝑓𝛼 = 𝑋 ( 𝑓𝛼) = 𝑋 (𝑔𝛼𝛽 𝑓𝛽) = 𝑋 (𝑔𝛼𝛽) 𝑓𝛽 + 𝑔𝛼𝛽𝑋 ( 𝑓𝛽) =

(
𝑋 (𝑔𝛼𝛽)

𝑔𝛼𝛽
+ 𝜆𝛽 (𝑋)

)
𝑓𝛼,

which is equivalent to 𝛿1,0𝜆 = 𝑑0,1𝑔.
Next, to show that the 𝔤-equivariant bundle is independent of representative functions 𝑓𝛼 of D, take

another representative 𝑓𝛼 = 𝜇𝛼 𝑓𝛼 with 𝜇𝛼 ∈ O×(𝑈𝛼). This results in an equivalent 𝔤-equivariant line
bundle ({�̃�𝛼𝛽}, {�̃�𝛼}): �̃�𝛼𝛽 = 𝑔𝛼𝛽𝜇𝛼/𝜇𝛽 and �̃�𝛼 (𝑋) = 𝜆𝛼 (𝑋) + 𝑋 (𝜇𝛼)/𝜇𝛼 for all 𝑋 ∈ 𝔤. �
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The lifted Lie algebra 𝔤𝜆 ⊂ D([𝐷]) is given locally on 𝜋−1 (𝑈𝛼) � 𝑈𝛼 × C by

𝔤𝜆 |𝜋−1 (𝑈𝛼)
= {�̂� |𝜋−1 (𝑈𝛼)

= 𝑋 |𝑈𝛼 + 𝜆𝛼 (𝑋)𝑢𝜕𝑢 | 𝑋 ∈ 𝔤}.

The lift 𝔤𝜆 has exactly the same form as the lifts in Section 2.1, the only difference being that 𝜆 is now
specifically determined by a 𝔤-invariant divisor. Thus, we have a map

𝑗𝔤 : Div𝔤 (𝑀) → Pic𝔤 (𝑀), 𝐷 ↦→ ([𝐷], 𝔤𝜆).

In general, this map is neither injective nor surjective. For instance, the kernel of this map contains
all global 𝔤-invariant functions in M×(𝑀). If 𝔤 is transitive, then Div𝔤 (𝑀) = 0, but Pic𝔤 (𝑀) may be
nontrivial as in Example 2.14. The next example exhibits nontrivial Div𝔤 (𝑀).

Example 2.23 (𝔰𝔩(2,C) ⊂ D(C𝑃2)). The manifold C𝑃2 is covered by the three charts

𝑈3 = {[𝑥 : 𝑦 : 𝑧] ∈ C𝑃2 | 𝑧 ≠ 0},
𝑈2 = {[𝑥 : 𝑦 : 𝑧] ∈ C𝑃2 | 𝑦 ≠ 0},
𝑈1 = {[𝑥 : 𝑦 : 𝑧] ∈ C𝑃2 | 𝑥 ≠ 0},

on which coordinates are given respectively by

(𝑥1, 𝑥2) = (𝑥/𝑧, 𝑦/𝑧), (𝑦1, 𝑦3) = (𝑥/𝑦, 𝑧/𝑦), (𝑧2, 𝑧3) = (𝑦/𝑥, 𝑧/𝑥).

Consider the Lie algebra 𝔰𝔩(2,C) ⊂ 𝔰𝔩(3,C) given in the respective charts by

〈𝑥2𝜕𝑥1 , 𝑥1𝜕𝑥2 , 𝑥1𝜕𝑥1 − 𝑥2𝜕𝑥2〉,

〈𝜕𝑦1 ,−𝑦
2
1𝜕𝑦1 − 𝑦1𝑦3𝜕𝑦3 , 2𝑦1𝜕𝑦1 + 𝑦3𝜕𝑦3〉,

〈−𝑧2
2𝜕𝑧2 − 𝑧2𝑧3𝜕𝑧3 , 𝜕𝑧2 ,−2𝑧2𝜕𝑧2 − 𝑧3𝜕𝑧3〉.

A computation shows that the Chevalley-Eilenberg cohomology groups are

H1 (𝔰𝔩(2,C),O(𝑈3)) = 0, H1(𝔰𝔩(2,C),O(𝑈2)) = C
2, H1(𝔰𝔩(2,C),O(𝑈1)) = C

2

with representative cocycles

𝜆3 = (0, 0, 0), 𝜆2 = (0, 𝐵1𝑦1 + 𝐵2𝑦
2
3,−𝐵1), 𝜆1 = (𝐶1𝑧2 + 𝐶2𝑧

2
3, 0, 𝐶1).

The holomorphic transition functions, compatible via overdetermined system (2.4), exist only for 𝐵2 =
𝐶2 = 0, 𝐶1 = 𝐵1 = 𝑏 and are given by formulae

𝑔32 = 𝐴1𝑦
𝑏
3 = 𝐴1𝑥

−𝑏
2 , 𝑔31 = 𝐴2𝑧

𝑏
3 = 𝐴2𝑥

−𝑏
1 , 𝑔21 = 𝐴3𝑧

𝑏
2 = 𝐴3𝑦

−𝑏
1 .

Requiring 𝑔𝛼𝛽 to be holomorphic gives the further restriction 𝑏 ∈ Z. The constants 𝐴1, 𝐴2, 𝐴3 can be
set equal to 1 by multiplying with an 𝔰𝔩(2,C)-invariant 𝛿0,0-coboundary. We conclude:

Pic𝔰𝔩 (2,C) (C𝑃2) � H1(Tot•(𝐶)) = Z.

In this case, Div𝔰𝔩 (2,C) (C𝑃2) � Pic𝔰𝔩 (2,C) (C𝑃2). The unique divisor 𝐷 = { 𝑓1, 𝑓2, 𝑓3} corresponding to
𝑏 ∈ Z is given by

𝑓1 = 𝑧−𝑏3 , 𝑓2 = 𝑦−𝑏3 , 𝑓3 = 1.

We will now describe an obstruction for the existence of invariant divisors, elaborating upon [7]. The
following definition is adapted from [1] where it was used for group actions.
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Definition 2.24. For a Lie algebra 𝔤 ⊂ D(𝑀) and a holomorphic line bundle 𝜋 : 𝐿 → 𝑀 , a lift �̂� ⊂ D(𝐿)
is called transversal if generic �̂�-orbits on L 𝜋-project biholomorphically.

Note that singular orbits of �̂� may project non-injectively (but indeed surjectively) to 𝔤-orbits on M
(see Example 2.27 below). The following is a reformulation of Theorem 1.3.

Proposition 2.25. Let (𝐿, �̂�) be a 𝔤-equivariant line bundle over M. Suppose 𝐿 ∈ im(Ψ1 ◦ 𝑗𝔤) (i.e.,
𝐿 = [𝐷] for some 𝔤-invariant divisor D with weight 𝜆 and �̂� = 𝔤𝜆). Then �̂� is transversal.

Proof. Let 𝐷 = { 𝑓𝛼} be a 𝔤-invariant divisor with weight 𝜆 = {𝜆𝛼}, and [𝐷] the corresponding
line bundle defined by transition functions 𝑔𝛼𝛽 = 𝑓𝛼/ 𝑓𝛽 . Any element �̂� ∈ 𝔤𝜆 takes on 𝑈𝛼 the form
�̂� |𝑈𝛼 = 𝑋 |𝑈𝛼 + 𝜆𝛼 (𝑋)𝑢𝜕𝑢 for some 𝑋 ∈ 𝔤. A straightforward computation shows that

�̂� (𝑢/ 𝑓𝛼) =
�̂� (𝑢) 𝑓𝛼 − 𝑢�̂� ( 𝑓𝛼)

𝑓 2
𝛼

=
𝑢𝜆𝛼 (𝑋) 𝑓𝛼 − 𝑢𝑋 ( 𝑓𝛼)

𝑓 2
𝛼

= 0.

Thus, the function 𝑢/ 𝑓𝛼 on 𝑈𝛼 × C is a meromorphic absolute invariant (constant on 𝔤𝜆-orbits). It
follows that the dimension of generic 𝔤-orbits on 𝑈𝛼 is equal to the dimension of generic 𝔤𝜆-orbits on
𝑈𝛼 × C. This holds simultaneously on each 𝑈𝛼, and therefore globally on M. �

Remark 2.26. Local absolute invariants 𝑢/ 𝑓𝛼 define a collection of local sections tangent to 𝔤𝜆, which
are given by 𝑢 = 𝐶 𝑓𝛼 with C being an absolute 𝔤-invariant. Choosing C to be a global invariant on M
gives a global 𝔤𝜆-invariant section of [𝐷].

Returning to Example 2.14 on 𝔰𝔩(2,C) ⊂ D(C𝑃1), we observe that generic orbits of any nontrivial
lift are 2-dimensional. Thus, there are no nontrivial invariant divisors, which also follows from the fact
that 𝔰𝔩(2,C) is transitive on C𝑃1. Here is another demonstration of Proposition 2.25.

Example 2.27 (𝔞𝔣𝔣(1,C) ⊂ D(C𝑃1)). Consider again coordinate charts 𝑈0 � C
1 (𝑥) and 𝑈∞ � C1 (𝑦)

of C𝑃1, with the Lie subalgebra 𝔤 = 𝔞𝔣𝔣(1,C) = 〈𝑋,𝑌〉 ⊂ 𝔰𝔩(2,C) given by

𝑋 |𝑈0 = 𝜕𝑥 , 𝑌 |𝑈0 = 𝑥𝜕𝑥 , 𝑋 |𝑈∞ = −𝑦2𝜕𝑦 , 𝑌 |𝑈∞ = −𝑦𝜕𝑦 .

General representatives 𝜆𝑠 of elements in H1(𝔞𝔣𝔣(1,C),O(𝑈𝑠)), for 𝑠 = 0,∞, in basis (𝑋,𝑌 ) are given
by

𝜆0 = (0, 𝐴), 𝜆∞ = (𝐵2𝑦, 𝐵1), 𝐴, 𝐵1, 𝐵2 ∈ C.

A general compatible transition function exists only when 𝐴 = 𝐵1−𝐵2, in which case it is cohomologous
to 𝑔0∞ = 𝑦𝐵2 = 𝑥−𝐵2 . Requiring 𝑔0∞ to be holomorphic results in 𝐵2 ∈ Z. The local lifts corresponding
to 𝜆0 and 𝜆∞ are given by

𝔤𝜆0 = 〈𝜕𝑥 , 𝑥𝜕𝑥 + (𝐵1 − 𝐵2)𝑢𝜕𝑢〉, 𝔤𝜆∞ = 〈−𝑦2𝜕𝑦 + 𝐵2𝑦𝑢𝜕𝑢 ,−𝑦𝜕𝑦 + 𝐵1𝑢𝜕𝑢〉.

It is clear that the generic orbit dimension is 1 if and only if 𝐵2 = 𝐵1. In this case, we get the invariant
divisor D given by 𝑓0 = 1 and 𝑓∞ = 𝑦−𝐵1 . Thus,

Div𝔤 (C𝑃1) = Z � C × Z = Pic𝔤 (C𝑃1).

Note that the map Ψ1 : Pic𝔤 (C𝑃1) → Pic(C𝑃1) is not injective: ker(Ψ1) � H1
𝑑 (H

0
𝛿 (𝐶

•,•)) = C. Similar
to Example 2.14, we have 𝔐𝔤 (𝑀) = C even though 𝔐𝔤 ({𝑈0,𝑈∞}) = Z.

Proposition 2.25 can be viewed as a global version of [7, Th. 5.4]. According to it, locally, in smooth
regular case, the statement allows a converse, giving a criterion for the (local) existence of relative
invariants. Globally, in general analytic context, there is no converse to Proposition 2.25, due to other
reasons for nonexistence of meromorphic invariant divisors/relative invariants. This is shown in the
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following simple example and also in a more complicated example of Section 3.4. Yet, in the following
section, we will give a converse statement in the algebraic context.
Example 2.28. Consider the Lie algebra 𝔤 = 〈𝑥2𝜕𝑥〉 ⊂ D(C). All line bundles over C are trivial,
Pic𝔤 (C) = 0, while we have Pic𝔤 (C) = C2. A general representative cocycle of H̃1(𝔤,O(C)) has the
form 𝜆(𝑥2𝜕𝑥) = 𝐴 + 𝐵𝑥 with 𝐴, 𝐵 ∈ C, and the corresponding lifted Lie algebra is

𝔤𝜆 = 〈𝑥2𝜕𝑥 + (𝐴 + 𝐵𝑥)𝑢𝜕𝑢〉 ⊂ D(C × C).

Generic orbits of both 𝔤 and 𝔤𝜆 are 1-dimensional for any choice of A and B; thus, 𝔤𝜆 is transversal.
However, the general solution of the system 𝑥2𝜕𝑥 ( 𝑓 (𝑥)) = (𝐴 + 𝐵𝑥) 𝑓 (𝑥) is

𝑓 (𝑥) = 𝑥𝐵𝑒−𝐴/𝑥 .

This is a (meromorphic) 𝔤-invariant divisor on C only when 𝐴 = 0 and 𝐵 ∈ Z (i.e., Div𝔤 (C𝑃1) = Z and
not all equivariant line bundles come from invariant divisors).

2.5. Lie group vs Lie algebra approach

Let G be a Lie group acting on M. We consider the group Pic𝐺 (𝑀) of G-equivariant line bundles over M.
In the setting of algebraic schemes, it was studied in [22, Ch. 1.3]. Here, we give a different description of
Pic𝐺 (𝑀), emphasizing its relation to Pic𝔤 (𝑀) when 𝔤 is the Lie algebra of vector fields corresponding
to the Lie group action, but demonstrate that, in general, Pic𝐺 (𝑀) is not isomorphic to Pic𝔤 (𝑀).
Definition 2.29. A lift �̂� of a group action 𝜌 : 𝐺 × 𝑀 → 𝑀 to a line bundle 𝜋 : 𝐿 → 𝑀 is a map
�̂� : 𝐺× 𝐿 → 𝐿 such that 𝜌𝑔 : 𝐿 → 𝐿 is a vector bundle automorphism for each 𝑔 ∈ 𝐺, and the following
diagram commutes:

𝐺 × 𝐿 𝐿

𝐺 × 𝑀 𝑀

𝜋

�̂�

𝜌

id×𝜋

The pair (𝜋 : 𝐿 → 𝑀, �̂�) is called a G-equivariant line bundle. The space of such bundles, modulo
the natural equivalences, has the group structure with the operation of tensor product. The group of
G-equivariant line bundles Pic𝐺 (𝑀) is called the G-equivariant Picard group.

We assume G acts by biholomorphisms on M. The general description of G-equivariant line bundles
over M can be done in terms of a cohomology theory that generalizes both the Čech cohomology and
the Lie group cohomology with coefficients in the G-module O×(𝑀).

Let 𝜋 : 𝐿 → 𝑀 be a line bundle. Assume there exists a lift of the group action to L (i.e. for each
𝜑 ∈ 𝐺, there exists a (holomorphic) vector bundle automorphism �̂� on L, satisfying 𝜋(�̂�(𝑝)) = 𝜑(𝜋(𝑝))
for each 𝑝 ∈ 𝐿 (to simplify formulas, we use the notation 𝜑 = 𝜌𝑔 and �̂� = �̂�𝑔). Let U = {𝑈𝛼} be a
trivializing chart for L, and 𝑢𝛼 be a (linear) fiber coordinate on 𝜋−1(𝑈𝛼) � 𝑈𝛼 × C. Then �̂� acts on 𝑢𝛼

in the following way:

�̂�∗(𝑢𝛼) = Λ𝛼𝛽 (𝜑)𝑢𝛽 , Λ𝛼𝛽 (𝜑) ∈ O×
(
𝑈𝛽 ∩ 𝜑

−1(𝑈𝛼)
)
. (2.11)

Composing with a second element in the Lie group gives

�̂�∗(�̂�∗(𝑢𝛼)) = 𝜓∗(Λ𝛼𝛽 (𝜑))Λ𝛽𝛾 (𝜓)𝑢𝛾

on 𝑈𝛾 ∩ 𝜓
−1 (𝑈𝛽 ∩ 𝜑

−1(𝑈𝛼)). Simultaneously, on 𝑈𝛾 ∩ 𝜓
−1 (𝜑−1 (𝑈𝛼)), we have

(�̂�∗ ◦ �̂�∗)(𝑢𝛼) = Λ𝛼𝛾 (𝜑 ◦ 𝜓)𝑢𝛾 .
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Thus, on 𝑈𝛾 ∩ 𝜓
−1(𝑈𝛽) ∩ 𝜓

−1(𝜑−1 (𝑈𝛼)) we get

𝜓∗(Λ𝛼𝛽 (𝜑))Λ𝛽𝛾 (𝜓) = Λ𝛼𝛾 (𝜑 ◦ 𝜓). (2.12)

When 𝜑 is equal to the identity transformation on M, equation (2.11) gives Λ𝛼𝛽 (id) = 𝑔𝛼𝛽 , where 𝑔𝛼𝛽

is the transition function of 𝜋 on 𝑈𝛼 ∩𝑈𝛽 . Setting 𝜑 = id in (2.12) gives

Λ𝛼𝛾 (𝜓) = 𝜓∗(𝑔𝛼𝛽)Λ𝛽𝛾 (𝜓),

while setting 𝜓 = id leads to

Λ𝛼𝛾 (𝜑) = Λ𝛼𝛽 (𝜑)𝑔𝛽𝛾 .

The last equality shows that if the transition functions are given, then Λ𝛼𝛽 (𝜑) on 𝑈𝛽 ∩𝑈𝛼 ∩ 𝜑
−1(𝑈𝛼)

is uniquely determined by Λ𝛼𝛼 (𝜑).
Next, changing the fiber coordinates 𝑣𝛼 = 𝜇𝛼𝑢𝛼 for 𝜇𝛼 ∈ O×(𝑈𝛼),

�̂�∗(𝜇𝛼)Λ𝛼𝛽 (𝜑)𝑢𝛽 = �̂�∗(𝜇𝛼𝑢𝛼) = �̂�∗(𝑣𝛼) = Λ̃𝛼𝛽 (𝜑)𝑣𝛽 = Λ̃𝛼𝛽 (𝜑)𝜇𝛽𝑢𝛽

results in the equivalence relation

Λ𝛼𝛽 (𝜑) ∼
𝜑∗(𝜇𝛼)

𝜇𝛽
Λ𝛼𝛽 (𝜑).

Introducing the differentials

(𝐷0𝜇(𝜑))𝛼𝛽 =
𝜑∗(𝜇𝛼)

𝜇𝛽
,

(𝐷1Λ(𝜑, 𝜓))𝛼𝛽𝛾 =
Λ𝛼𝛾 (𝜑 ◦ 𝜓)

𝜓∗(Λ𝛼𝛽 (𝜑))Λ𝛽𝛾 (𝜓)
,

we see that Λ = {Λ𝛼𝛽} defines a G-equivariant line bundle over M if and only if 𝐷1Λ = 0. Moreover,
the G-equivariant line bundles defined by Λ and Λ̃ are equivalent if and only if Λ̃ = Λ · 𝐷0𝜇 for some
𝜇. We define the action group cohomology for a given cover U

H1
U (𝐺,O×) =

ker(𝐷1)

im(𝐷0)
,

and in general, we use the direct limit of this cohomology, H1(𝐺,O×) := lim
−−→

H1
U (𝐺,O×).

Proposition 2.30. The group Pic𝐺 (𝑀) of G-equivariant line bundles is isomorphic to 𝐻1(𝐺,O×).
Let us note that we consider not abstract but rather continuous (van Est) group cohomology; cf. [9].

In fact, the above specifies cochains to be holomorphic.

Remark 2.31. For a trivial line bundle, we get the Lie group cohomology H1(𝐺,O×(𝑀)) of the
Lie group G with the values in the module O×(𝑀). However, with 𝜑 and 𝜓 being id𝑀 , the above
definition gives the Čech cohomology Ȟ1(𝑀,O×) of M with the values in the sheaf O×. Thus, Pic𝐺 (𝑀)
interpolates between the two cohomologies.

Any Lie group action gives rise to a Lie algebra 𝔤 of vector fields. Consider a one-parameter group
𝜑𝑡 ⊂ 𝐺 and the corresponding vector field X. Denote the vector field on L corresponding to �̂�𝑡 by �̂� .
For small t, the set 𝑈𝛼 ∩ 𝜑

−1
𝑡 (𝑈𝛼) is nonempty, and on this set, we have

�̂�∗𝑡 (𝑢𝛼) = Λ𝛼𝛼 (𝜑𝑡 )𝑢𝛼.
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When t approaches 0, 𝑈𝛼 ∩ 𝜑
−1
𝑡 (𝑈𝛼) approaches 𝑈𝛼, and the Lie derivative of 𝑢𝛼 with respect to �̂� on

𝑈𝛼 is given by

𝐿�̂� (𝑢𝛼) =
𝑑

𝑑𝑡

���
𝑡=0

Λ𝛼𝛼 (𝜑𝑡 )𝑢𝛼 .

Comparing this to the lifts �̂� = 𝑋 + 𝜆𝛼 (𝑋)𝑢𝛼𝜕𝑢𝛼 discussed in Section 2.1 results in the relation

𝜆𝛼 (𝑋) =
𝑑

𝑑𝑡

���
𝑡=0

Λ𝛼𝛼 (𝜑𝑡 ).

Thus, a G-equivariant line bundle on M yields a 𝔤-equivariant line bundle for 𝔤 = Lie(𝐺). However, the
map

Pic𝐺 (𝑀) → Pic𝔤 (𝑀)

in general is neither injective nor surjective. Non-injectivity is illustrated by an action of a discrete
group, like Z𝑚 : 𝑧 ↦→ 𝑧𝑚 on C𝑃1. Non-surjectivity is demonstrated as follows.

Example 2.32 (Projective action revisited). The Lie groups 𝑆𝐿(2,C) and 𝑃𝐺𝐿(2,C) act on C𝑃1 by
Möbius transformations. In the open cover given by charts 𝑈0 � C(𝑥) and 𝑈∞ � C(𝑦), the action is

𝜑 =

(
𝑎 𝑏
𝑐 𝑑

)
: 𝜑∗(𝑥) =

𝑎𝑥 + 𝑏

𝑐𝑥 + 𝑑
, 𝜑∗(𝑦) =

𝑑𝑦 + 𝑐

𝑏𝑦 + 𝑎
.

For 𝑆𝐿(2,C), the lifts are given by

�̂�∗(𝑢0) =
𝑢0

(𝑐𝑥 + 𝑑)𝐴
, �̂�∗(𝑢∞) =

𝑢∞
(𝑏𝑦 + 𝑎)𝐴

,

where 𝐴 ∈ Z, as in Example 2.14. However, for 𝑃𝐺𝐿(2,C), the lifts are given by

�̂�∗(𝑢0) =
(𝑎𝑑 − 𝑏𝑐)𝐴/2𝑢0

(𝑐𝑥 + 𝑑)𝐴
, �̂�∗(𝑢∞) =

(𝑎𝑑 − 𝑏𝑐)𝐴/2𝑢∞
(𝑏𝑦 + 𝑎)𝐴

,

which is well defined if and only if 𝐴 = 2𝑚 ∈ 2Z. In other words, the line bundle OC𝑃1 (1) is not
𝑃𝐺𝐿(2,C)-equivariant, but OC𝑃1 (2) is.

This example, borrowed from [22, Ch. 1.3], works in any dimension n: the line bundle OC𝑃𝑛 (𝑘) is
𝑃𝐺𝐿(𝑛 + 1,C)-equivariant iff 𝑘 ∈ (𝑛 + 1)Z (i.e., this group lifts only to the powers of the canonical
bundle 𝐾C𝑃𝑛 ). However, all bundles OC𝑃𝑛 (𝑘) are 𝑆𝐿(𝑛 + 1,C)-equivariant. (Note that the center of
𝑆𝐿(𝑛 + 1,C) is Z𝑛+1 and 𝑃𝐺𝐿(𝑛 + 1,C) = 𝑆𝐿(𝑛 + 1,C)/Z𝑛+1.) This difference cannot be seen at the
Lie algebra level, since the two Lie group actions give rise to the same Lie algebra of vector fields.
Summarizing, we have

Pic𝑆𝐿 (𝑛+1,C) (C𝑃
𝑛) = Pic𝔰𝔩 (𝑛+1,C) (C𝑃𝑛) = Z = Pic(C𝑃𝑛) ⊃ (𝑛 + 1)Z = Pic𝑃𝐺𝐿 (𝑛+1,C) (C𝑃

𝑛).

Note that in this example, both groups 𝑃𝐺𝐿(𝑛+1,C) and 𝑆𝐿(𝑛+1,C) are algebraic, so this example
illustrates a general result in [22, Cor. 1.6] on G-linearization of high powers 𝐿𝑚 of an algebraic line
bundle L. Next, we discuss a similar effect for invariant divisors.

Recall that an algebraic Lie algebra is 𝔤 = Lie(𝐺) for an algebraic Lie group G. If M is an algebraic
variety, we call a Lie algebra 𝔤 ⊂ D(𝑀) algebraic if it is the Lie algebra of an algebraic action by an
algebraic Lie group on M. The following is a converse to Proposition 2.25 in the algebraic context (there
is a version of this statement for Pic𝐺 (𝑀)).

Theorem 2.33. Let (𝐿, �̂�) ∈ Pic𝔤 (𝑀) be a 𝔤-equivariant line bundle over an algebraic variety M for an
algebraic Lie algebra 𝔤 of vector fields. Assume that the lift �̂� is algebraic and transversal. Then there
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exists an integer 𝑚 ∈ Z+ such that 𝐿𝑚 ∈ im(Φ1 ◦ 𝑗𝔤) (i.e., 𝐿𝑚 = [𝐷] for some invariant divisor D with
weight 𝜆, and �̂� = 𝔤𝜆/𝑚).

Proof. Since 𝔤 is transversal, it admits on L an absolute invariant 𝐼 = 𝐼 (𝑥, 𝑢), with x coordinate on M
and u a fiber coordinate on L, such that 𝜕𝑢 (𝐼) � 0. This complements absolute invariants 𝐽 = 𝐽 (𝑥)
obtained by pullback from M. By Rosenlicht’s theorem [26] the algebraicity of the action implies that
the invariant I can be chosen rational in proper (local) variables 𝑥, 𝑢 (on 𝑈𝛼 with algebraic overlaps).
Decompose I into its Laurent series by the fiber variable u

𝐼 =
∞∑

𝑘=−𝑁

ℎ𝑘 (𝑥)𝑢
𝑘 . (2.13)

Since [𝑢𝜕𝑢 , �̂�] = 0, we get that (𝑢𝜕𝑢)𝑟 (𝐼) is an absolute invariant for every r. The spectrum of the
operator 𝑢𝜕𝑢 on generators 𝑢𝑘 is simple, and due to rationality, the coefficients of I are determined by
a finite number of base functions ℎ(𝑥). Thus, every term in the series (2.13) is an absolute invariant.
Choose such invariant of the lowest (in absolute value) degree by u. This degree m does not depend on
local coordinate chart 𝑈𝛼, 𝛼 ∈ 𝐴, we are using, and we get

𝐼𝛼 =
𝑢𝑚
𝛼

𝑓𝛼 (𝑥)
=⇒ 1 =

𝐼𝛼
𝐼𝛽

=
𝑢𝑚
𝛼/ 𝑓𝛼 (𝑥)

𝑢𝑚
𝛽 / 𝑓𝛽 (𝑥)

= 𝑔𝑚
𝛼𝛽

𝑓𝛽

𝑓𝛼
on 𝑈𝛼 ∩𝑈𝛽 .

The collection of functions { 𝑓𝛼 ∈ O(𝑈𝛼) : 𝛼 ∈ 𝐴} defines a 𝔤-invariant divisor D with weight
𝜆𝛼 (𝑋) = 𝑋 (log 𝑓𝛼), 𝑋 ∈ 𝔤, and the corresponding line bundle [𝐷] has transition functions

�̃�𝛼𝛽 =
𝑓𝛼
𝑓𝛽

= 𝑔𝑚
𝛼𝛽 .

Thus, [𝐷] = 𝐿𝑚, and the claim follows. �

Example 2.34. Consider the Lie algebra 𝔤 = 〈𝑥𝜕𝑥〉 on C and its lift �̂� = 〈𝑥𝜕𝑥 +𝐶𝑢𝜕𝑢〉 on the trivial line
bundle C ×C. It is algebraic if 𝐶 = 𝑝

𝑞 ∈ Q with absolute invariant 𝐼 = 𝑢𝑚

𝑥𝐶𝑚 being algebraic for minimal
𝑚 = 𝑞 (i.e., 𝐼 = 𝑢𝑞

𝑥𝑝 ). Such a situation occurs for differential invariants of curves in Euclidean plane with
respect to the motion group – namely, for the ‘square of the curvature’; see the end of Introduction in
[18]. The 𝔤-equivariant line bundle (C × C, �̂�) is in im( 𝑗𝔤) if and only if 𝐶 ∈ Z.

3. Invariant polynomial divisors on algebraic bundles

In this section, we will consider Lie algebras of vector fields on bundles that have additional structure
on the fibers, and where it makes sense to consider divisors that are polynomial in the fiber coordinates.
More precisely, we will focus on affine bundles in Section 3.1 and on jet bundles in Section 3.2. In the
remaining three subsections, we will apply the obtained results to examples involving Lie algebras of
vector fields on jet spaces.

3.1. Lie algebra action on affine bundles

Let 𝜋 : 𝐸 → 𝑀 be an affine bundle (of rank 𝑟 ≥ 1), and let �̂� ⊂ Dproj (𝐸) be a Lie algebra of projectable
vector fields on E that preserves the affine structure in the fibers. In this section, we will focus on
�̂�-invariant divisors whose restriction to fibers are polynomials. We define for 𝑈 ⊂ 𝑀

𝔓(𝑈) = { 𝑓 ∈ O(𝜋−1 (𝑈)) | 𝑓 |𝜋−1 (𝑝) is a polynomial for every 𝑝 ∈ 𝑈},
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where polynomiality is checked in affine coordinates on E. This space of functions is preserved by
automorphisms: If 𝜑 : 𝐸 → 𝐸 is an automorphism of affine bundles and 𝑓 ∈ 𝔓(𝑈), then 𝜑∗ 𝑓 ∈
𝔓(𝜑−1 (𝑈)).

Assume that U = {𝑈𝛼} is an open cover for M such that 𝜋−1 (𝑈𝛼) � 𝑈𝛼 × C
𝑟 for any affine bundle

𝜋. Then {𝜋−1(𝑈𝛼)} is open cover for the total space E.

Definition 3.1. A divisor 𝐷 = { 𝑓𝛼} on an affine bundle 𝜋 : 𝐸 → 𝑀 is called polynomial if its defining
functions 𝑓𝛼 ∈ O(𝜋−1 (𝑈𝛼)) can be chosen to be in 𝔓(𝑈𝛼).

In local coordinates 𝑥𝑖 , 𝑢 𝑗 on 𝜋−1 (𝑈𝛼) � 𝑈𝛼 × C
𝑟 , 𝑓𝛼 takes the form

𝑓𝛼 =
∑
|𝜎 | ≤𝑠

𝐹𝜎 (𝑥)𝑢
𝜎 , 𝐹𝜎 ∈ O(𝑈𝛼).

Here, 𝑢𝜎 =
∏
(𝑢𝑖)𝑚𝑖 for the multi-index 𝜎 = (𝑚1 . . . 𝑚𝑟 ). The defining functions of a polynomial

divisor D satisfy 𝑔𝛼𝛽 = 𝑓𝛼/ 𝑓𝛽 ∈ O×(𝜋−1 (𝑈𝛼) ∩ 𝜋
−1(𝑈𝛽)), where both the numerator and denominator

are polynomials in 𝑢1, . . . , 𝑢𝑟 . It follows that the polynomials must cancel each other out, which implies
that the transition functions 𝑔𝛼𝛽 = 𝑓𝛼/ 𝑓𝛽 are the pullback of functions �̃�𝛼𝛽 ∈ O×(𝑈𝛼 ∩𝑈𝛽). Thus, we
obtain the following proposition.

Proposition 3.2. Let 𝐷 = { 𝑓𝛼} be a polynomial divisor on the affine bundle 𝜋 : 𝐸 → 𝑀 . Then
[𝐷] = 𝜋∗𝐿 for some line bundle 𝐿 → 𝑀 .

In the above argument, it is clear that the degree s can be taken to be the same for each 𝛼. We call
the smallest such s the degree of the polynomial divisor D.

Next, we let �̂� ⊂ Dproj(𝐸) be a projectable Lie algebra of vector fields on E preserving the affine
structure on fibers, and consider �̂�-invariant polynomial divisors.

Proposition 3.3. Let 𝜋 : 𝐸 → 𝑀 be an affine bundle and let �̂� ⊂ Dproj(𝐸) be a projectable Lie algebra
of vector fields on E preserving the affine structure on fibers; 𝔤 = 𝑑𝜋(�̂�). If D is a �̂�-invariant polynomial
divisor on E, then [𝐷] = 𝜋∗𝐿 for some 𝔤-equivariant line bundle 𝐿 → 𝑀 .

Proof. What remains to be proven is that the bundle 𝜋 : 𝐿 → 𝑀 with transition functions �̃�𝛼𝛽 admits
a 𝔤-lift. In local coordinates 𝑥𝑖 , 𝑢 𝑗 on 𝜋−1 (𝑈𝛼) � 𝑈𝛼 × C

𝑟 , each 𝑋 ∈ �̂� takes the form 𝑋 = 𝑎𝑖 (𝑥)𝜕𝑥𝑖 +
(𝑏

𝑗
0 (𝑥) + 𝑏

𝑗
𝑙 (𝑥)𝑢

𝑙)𝜕𝑢 𝑗 . Consider an invariant divisor D given by 𝑓𝛼 =
∑
|𝜎 | ≤𝑠 𝐹𝜎 (𝑥)𝑢

𝜎 , a polynomial
in 𝑢1, . . . , 𝑢𝑟 of degree s. We have

𝑋 ( 𝑓𝛼) = 𝜆𝛼 (𝑋) 𝑓𝛼 .

Looking at the coordinate form of X, it is clear that 𝑋 ( 𝑓𝛼) is a polynomial in 𝑢1, . . . , 𝑢𝑟 and, furthermore,
that its degree is ≤ 𝑠. Thus, 𝜆𝛼 (𝑋) = 𝑋 ( 𝑓𝛼)/ 𝑓𝛼 is a rational function in 𝑢1, . . . , 𝑢𝑟 , and it is defined
everywhere on 𝑈𝛼 × C

𝑟 only if 𝜆𝛼 (𝑋) is the pullback of a function �̃�𝛼 (𝑋) ∈ O(𝑈𝛼). Thus, the �̂�-
equivariant line bundle over E defined by ({𝑔𝛼𝛽}, {𝜆𝛼}) is the pullback of the 𝔤-equivariant line bundle
over M defined by ({�̃�𝛼𝛽}, {�̃�𝛼}). �

Proposition 3.3 (which was reformulated in Theorem 1.4) is relevant, for instance, for investigation
of relative invariants of tensor fields (and other geometric objects like affine connections) on a manifold
M under the action of some Lie algebra 𝔤 ⊂ D(𝑀).

Example 3.4. Consider the bundle 𝐸 = 𝑆2𝑇∗𝑀 → 𝑀 whose sections are symmetric 2-forms on M,
and let 𝔤 be the Lie algebra of holomorphic vector fields on M. There is a canonical lift �̂� ⊂ D(𝐸) of 𝔤.
Let 𝑥1, . . . , 𝑥𝑛 be coordinates on M and 𝑢11, 𝑢12, . . . , 𝑢𝑛𝑛 be the additional induced coordinates on E.
The function det([𝑢𝑖 𝑗 ]), with 𝑢 𝑗𝑖 = 𝑢𝑖 𝑗 for 𝑖 < 𝑗 , is the local expression for a 𝔤-invariant divisor, and
its (local) weight is −2div𝑑𝑥1∧···∧𝑑𝑥𝑛 . Globally, the line bundle given by this 𝔤-invariant divisor is the
pullback of the line bundle (Λ𝑛𝑇∗𝑀)⊗2 = (𝐾𝑀 )

⊗2 over M.
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Let us make a brief remark about invariant rational divisors. Each such is a ratio of two invariant
polynomial divisors. The weights of invariant rational divisors form a lattice generated by weights of
invariant polynomial divisors. In other words, we have the following relation:

SpanZ
(
Divpol

𝔤 (𝑀)
)
= Divrat

𝔤 (𝑀). (3.1)

3.2. Lie algebra action on jet bundles

Now we consider polynomial divisors on jet bundles. Most of the arguments here closely resemble those
in Section 3.1, but some additional care must be taken. Our introduction to jets will be very brief, and
we refer to [19, 21, 23] for a more comprehensive treatment.

Let 𝐽𝑘 (𝐸, 𝑚) denote the space of k-jets of codimension-m submanifolds of E, and 𝐽𝑘𝜋 the space of
k-jets of sections of the fiber bundle 𝜋. In statements that are true for both 𝐽𝑘 (𝐸, 𝑚) and 𝐽𝑘𝜋, we will
use the notation J𝑘 which can always be replaced with either of the two (an exception to this convention
occurs only in Section 3.5). There are natural bundle structures 𝜋𝑘,𝑙 : J𝑘 → J𝑙 for 0 ≤ 𝑙 ≤ 𝑘 , and
𝜋𝑘 : 𝐽𝑘𝜋 → 𝑀 .

Coordinates on 𝐽𝑘𝜋 and 𝐽𝑘 (𝐸, 𝑚) are induced from coordinates on the total space of 𝜋 or E,
respectively. Given a bundle 𝜋 : 𝐸 → 𝑀 , and an open cover {𝑈𝛼} of coordinate charts of E, the
collection {𝜋−1

𝑘,0(𝑈𝛼)} is an open cover of 𝐽𝑘𝜋. The split coordinates 𝑥1, . . . 𝑥𝑛, 𝑢1, . . . , 𝑢𝑚 on 𝑈𝛼

induce additional canonical coordinates 𝑢 𝑗
𝜎 , |𝜎 | ≤ 𝑘 where 𝜎 is a multi-index, on 𝜋−1

𝑘,0 (𝑈𝛼).
To get an open cover of 𝐽𝑘 (𝐸, 𝑚), we let {𝑈𝛼} be an open cover of coordinate charts of E that

trivializes the bundle 𝐽1(𝐸, 𝑚) → 𝐸 . On each 𝑈𝛼, for a given set of 𝑚 + 𝑛 coordinates, we choose
a splitting 𝑥1, . . . , 𝑥𝑛, 𝑢1, . . . , 𝑢𝑚, and we denote the corresponding coordinate chart on 𝐽1 (𝐸, 𝑚) by
𝑈𝑖1 · · ·𝑖𝑚

𝛼 with 1 ≤ 𝑖1 < · · · < 𝑖𝑚 ≤ dim 𝐸 . For each way of splitting, there is one chart. The split
coordinates on 𝑈𝛼 induce additional canonical coordinates 𝑢𝑖𝜎 (|𝜎 | ≤ 𝑘) on 𝜋−1

𝑘,1 (𝑈
𝑖1 · · ·𝑖𝑚
𝛼 ) for 𝑘 ≥ 1.

The collection {𝜋−1
𝑘,1(𝑈

𝑖1 · · ·𝑖𝑚
𝛼 )} is an open cover of 𝐽𝑘 (𝐸, 𝑚). We define for 𝑈 ⊂ J𝑖

𝔓𝑖 (𝑈) = { 𝑓 ∈ O(𝜋−1
∞,𝑖 (𝑈)) | 𝑓 |𝜋−1

∞,𝑖 (𝑝)
is a polynomial for every 𝑝 ∈ 𝑈}.

Polynomiality is defined with respect to the canonical coordinates described above. For example, in the
case of 𝐽𝑘 (𝐸, 𝑚), then 𝑓 ∈ 𝔓𝑗 (𝑈) if and only if we have, for each 𝛼,

𝑓
���
𝜋−1
∞, 𝑗 (𝑈 )∩𝜋

−1
∞,1

(
𝑈

𝑖1 ···𝑖𝑚
𝛼

) = ∑
𝑗≤ |𝜎 | ≤𝑘, |𝜏 | ≤𝑟

𝐹𝜎
𝜏 𝑢

𝜏
𝜎

for some 𝑘, 𝑟 ∈ Z≥0 and a collection {𝐹𝜎
𝜏 } of functions on 𝐽 𝑗 (𝐸, 𝑚).

If 𝜑 : 𝐸 → 𝐸 is a point transformation and 𝑓 ∈ 𝔓𝑖 (𝑈), then (𝜑 (∞) )∗ 𝑓 ∈ 𝔓𝑖 (𝜑
−1 (𝑈)) for 𝑖 ≥ 1.

Similarly, if 𝜋 : 𝐸 → 𝑀 is a fiber bundle, 𝜑 : 𝐸 → 𝐸 is a fiber-preserving biholomorphism, and
𝑓 ∈ 𝔓𝑖 (𝑈), then (𝜑 (∞) )∗ 𝑓 ∈ 𝔓𝑖 (𝜑

−1 (𝑈)) for 𝑖 ≥ 0. In particular, point transformations preserve 𝔓1,
while fiber-preserving transformations do the same for 𝔓0. Based on this, we introduce the following
notion.

Definition 3.5. A divisor on 𝐽𝑘 (𝐸, 𝑚) is called polynomial if its defining functions 𝑓 𝑖1 · · ·𝑖𝑚𝛼 ∈

O(𝜋−1
𝑘,1 (𝑈

𝑖1 · · ·𝑖𝑚
𝛼 )) can be chosen to be in 𝔓1(𝑈

𝑖1 · · ·𝑖𝑚
𝛼 ). If 𝜋 : 𝐸 → 𝑀 is a fiber bundle, a divisor on

𝐽𝑘𝜋 is called polynomial if its defining functions 𝑓𝛼 ∈ O(𝜋−1
𝑘,0 (𝑈𝛼)) can be chosen to be in 𝔓0(𝑈𝛼).

Proposition 3.6.

(1) Let 𝜋 : 𝐸 → 𝑀 be a fiber bundle, and let 𝐷 = { 𝑓𝛼} be a polynomial divisor on 𝐽𝑘𝜋. Then
[𝐷] = 𝜋∗𝑘,0𝐿 for some line bundle 𝐿 → 𝐸 = 𝐽0𝜋.
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(2) Let E be a manifold and 𝐷 = { 𝑓 𝑖1 · · ·𝑖𝑚𝛼 } be a polynomial divisor on 𝐽𝑘 (𝐸, 𝑚). Then [𝐷] = 𝜋∗𝑘,1𝐿

for some line bundle 𝐿 → 𝐽1(𝐸, 𝑚).

Proof. The proofs of (1) and (2) are very similar, so we prove only (2). Since 𝑓 𝑖1 · · ·𝑖𝑚𝛼 / 𝑓
𝑗1 · · · 𝑗𝑚
𝛽 are

elements inO×(𝜋−1
𝑘,1 (𝑈

𝑖1 · · ·𝑖𝑚
𝛼 ∩𝑈

𝑗1 · · · 𝑗𝑚
𝛽 )), the polynomial parts are required to cancel. Thus, the transition

functions 𝑓 𝑖1 · · ·𝑖𝑚𝛼 / 𝑓
𝑗1 · · · 𝑗𝑚
𝛽 are the pullback of elements inO×(𝑈𝑖1 · · ·𝑖𝑚

𝛼 ∩𝑈
𝑗1 · · · 𝑗𝑚
𝛽 ), which are the transition

functions of a line bundle over 𝐽1(𝐸, 𝑚). �

From the proof, it follows that the order and degree of the polynomials 𝑓 𝑖1 · · ·𝑖𝑚𝛼 and 𝑓
𝑗1 · · · 𝑗𝑚
𝛽 agree.

Therefore, the order and degree are also well-defined notions for 𝐷 = { 𝑓 𝑖1 · · ·𝑖𝑚𝛼 }, and this is true also for
divisors on 𝐽𝑘𝜋. We define the weighted degree of the monomial 𝑐(𝑥, 𝑦, 𝑦𝑖)𝑦 𝑗1

𝜎1 · · · 𝑦
𝑗𝑠
𝜎𝑠
∈ 𝔓1(𝑈

𝑖1 · · ·𝑖𝑚
𝛼 )

(with |𝜎𝑙 | ≥ 2 for each l) to be
∑𝑠

𝑙=1 |𝜎𝑙 |, and the weighted degree of a sum of such to be the maximal
weighted degree of its monomial parts. The weighted degree can be defined for a divisor in the same
way that order and degree were defined above. (In the case when E is a bundle, the weighted degree
also counts the first-order jet variables 𝑦 𝑗

𝑖 .)
Next, consider a Lie algebra of vector fields 𝔤 ⊂ D(J0); in the case J0 = 𝐽0𝜋, assume also that 𝔤 is

𝜋-projectable. The Lie algebra prolongs to a unique Lie algebra 𝔤 (𝑘) ⊂ D(J𝑘 ); see, for instance, [19,
Sec. 1.5]. We are interested in polynomial 𝔤 (𝑘) -invariant divisors on J𝑘 .

Proposition 3.7.

(1) Let 𝔤 be a Lie algebra of projectable vector fields on a fiber bundle 𝜋 : 𝐸 → 𝑀 and let D be a 𝔤 (𝑘) -
invariant polynomial divisor on 𝐽𝑘𝜋. Then [𝐷] = 𝜋∗𝑘,0𝐿 for some 𝔤-equivariant line bundle 𝐿 → 𝐸 .

(2) Let 𝔤 be a Lie algebra of point vector fields on 𝐽0(𝐸, 𝑚) and D a 𝔤 (𝑘) -invariant polynomial divisor
on 𝐽𝑘 (𝐸, 𝑚). Then [𝐷] = 𝜋∗𝑘,1𝐿 for some 𝔤 (1) -equivariant line bundle 𝐿 → 𝐽1(𝐸, 𝑚).

Proof. On 𝐽𝑘 (𝐸, 𝑚) we will use the split coordinate charts 𝜋−1
𝑘,1(𝑈

𝑖1 · · ·𝑖𝑚
𝛼 ). If 𝜋 : 𝐸 → 𝑀 is a bundle,

then the splitting is canonical, and we use the charts 𝜋−1
𝑘,0 (𝑈𝛼) on 𝐽𝑘𝜋.

The prolongation of a vector field 𝑋 = 𝑎𝑖𝜕𝑥𝑖 + 𝑏
𝑗𝜕𝑦 𝑗 ∈ 𝔤 ⊂ D(𝐸) is given by

𝑋 (𝑘) = 𝑎𝑖𝜕𝑥𝑖 +
∑

0≤ |𝜎 | ≤𝑘
𝑏
𝑗
𝜎𝜕𝑦 𝑗

𝜎
,

where 𝑏 𝑗
𝜎 are given recursively by (see [21, Th. 3.4])

𝑏
𝑗
𝜎𝑖 = 𝐷𝑥𝑖 (𝑏

𝑗
𝜎) − 𝑦

𝑗
𝜎𝑙𝐷𝑥𝑖 (𝑎

𝑙). (3.2)

When |𝜎 | = 𝑑, it is clear that 𝑏 𝑗
𝜎 is a sum of monomials of the form 𝑐(𝑥, 𝑦)𝑦

𝑗1
𝜎1 · · · 𝑦

𝑗𝑠
𝜎𝑠

with |𝜎𝑙 | ≤ 𝑑

for each l and |𝜎1 | + · · · + |𝜎𝑠 | ≤ 𝑑 + 1. Thus, the weighted degree of 𝑏 𝑗
𝜎 is ≤ 𝑑 + 1.

If 𝐷 = { 𝑓 𝑖1 · · ·𝑖𝑚𝛼 } is a polynomial invariant divisor on 𝐽𝑘 (𝐸, 𝑚) of weighted degree d, then for
any 𝑋 ∈ 𝔤, the function 𝑋 (𝑘) ( 𝑓 𝑖1 · · ·𝑖𝑚𝛼 ) has weighted degree ≤ 𝑑 + 1. The equality 𝑋 (𝑘) ( 𝑓 𝑖1 · · ·𝑖𝑚𝛼 ) =
𝜆𝑖1 · · ·𝑖𝑚
𝛼 (𝑋) 𝑓 𝑖1 · · ·𝑖𝑚𝛼 implies that 𝜆𝑖1 · · ·𝑖𝑚

𝛼 (𝑋) = 𝑋 (𝑘) ( 𝑓 𝑖1 · · ·𝑖𝑚𝛼 )/ 𝑓 𝑖1 · · ·𝑖𝑚𝛼 is holomorphic on 𝜋−1
𝑘,1 (𝑈

𝑖1 · · ·𝑖𝑚
𝛼 )

if and only if the polynomial parts of the denominator is canceled out by the numerator. In this
case, 𝜆𝑖1 · · ·𝑖𝑚

𝛼 (𝑋) is polynomial of weighted degree ≤ 1, meaning that it is the pullback of a function
�̃�𝑖1 · · ·𝑖𝑚
𝛼 (𝑋) ∈ O(𝑈𝑖1 · · ·𝑖𝑚

𝛼 ). Thus, we see that the 𝔤 (𝑘) -equivariant line bundle over 𝐽𝑘 (𝐸, 𝑚) defined by
the pair ({ 𝑓 𝑖1 · · ·𝑖𝑚𝛼 / 𝑓

𝑗1 · · · 𝑗𝑚
𝛽 }, {𝜆𝑖1 · · ·𝑖𝑚

𝛼 }) is the pullback of a 𝔤 (1) -equivariant line bundle over 𝐽1(𝐸, 𝑚).
If 𝐸 → 𝑀 is a fiber bundle, then we get a similar argument, but now 𝜆𝛼 (𝑋) has weighted degree 0

and is therefore the pullback of a function in O(𝑈𝛼). �

This proposition, whose second part was reformulated in Theorem 1.5, tells us that invariant poly-
nomial divisors on J𝑘 are sections of pullbacks of equivariant line bundles over J1 or J0. In particular,
they are controlled by H1 (Tot•(𝐶)), where 𝐶 𝑝,𝑞 = 𝐶 𝑝,𝑞 (𝔤 (1) , {𝑈𝑖1 · · ·𝑖𝑚

𝛼 }) or 𝐶 𝑝,𝑞 = 𝐶 𝑝,𝑞 (𝔤, {𝑈𝛼}) or,
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more precisely, by Pic𝔤 (𝑟 ) (J𝑟 ) for 𝑟 = 1, 0, respectively. It is remarkable that this fact is independent of
the order k (one should compare to the statement of the Lie-Bäcklund theorem [21, 23], although the
proofs are different).

If the bundle 𝜋 has, in addition, an affine structure, then we can consider divisors with local defining
functions 𝑓𝛼 in

𝔓−1(𝑈𝛼) = { 𝑓 ∈ O(𝜋−1
∞ (𝑈𝛼)) | 𝑓 |𝜋−1

∞ (𝑝)
is a polynomial for every 𝑝 ∈ 𝑈𝛼}

(i.e., divisors that are polynomial on fibers of 𝜋𝑘 : 𝐽𝑘𝜋 → 𝑀). These are preserved under (𝑘 th-
prolongation of) morphisms of affine bundles, and we will refer to them as ‘polynomial divisors’ in this
context. For such a divisor D, we have [𝐷] = 𝜋∗𝑘𝐿 for some line bundle 𝐿 → 𝑀 . We can apply the same
ideas as above to obtain the following result, which we leave without proof.

Proposition 3.8. Let 𝔤 be a Lie algebra of projectable vector fields on an affine bundle 𝜋 : 𝐸 → 𝑀 that
preserves the affine structure, and D be a 𝔤 (𝑘) -invariant polynomial divisor on 𝐽𝑘𝜋. Then [𝐷] = 𝜋∗𝑘𝐿
for some 𝑑𝜋(𝔤)-equivariant line bundle 𝐿 → 𝑀 .

Example 3.9 (Riemannian geometry). Let 𝜋 : 𝑆2
+𝑇
∗𝑀 → 𝑀 denote the bundle of nondegenerate sym-

metric 2-forms on M and 𝔤 the Lie algebra of holomorphic vector fields on M, which induces a Lie
algebra 𝔤 (𝑘) of vector fields on 𝐽𝑘𝜋 for 𝑘 = 0, 1, . . . . If D a polynomial 𝔤 (𝑘) -invariant divisor on 𝐽𝑘𝜋,
then [𝐷] is the pullback of a line bundle 𝐿 → 𝑀 . For example, if D is the divisor on 𝐽2𝜋 that is given
locally by the numerator of the scalar curvature of the metric, then [𝐷] = 𝜋∗2 (Λ

𝑛𝑇∗𝑀)⊗4.

Computations of invariants in jets often result in rational relative differential invariants, which are
related to polynomial differential invariants via a jet analogue of formula (3.1). This will be demonstrated
in the following examples.

3.3. Example A: Three-dimensional Heisenberg algebra on the plane

Consider the following Lie algebra of vector fields on the plane:

𝔤 = 〈𝜕𝑥 , 𝜕𝑦 , 𝑦𝜕𝑥〉 ⊂ D(C2).

It has the structure relations of the Heisenberg algebra and it prolongs naturally to the Lie algebra 𝔤 (1)

of vector fields on 𝐽1(C2, 1). Choosing y as the dependent variable gives

𝔤 (1) |𝑈1 = 〈𝜕𝑥 , 𝜕𝑦 , 𝑦𝜕𝑥 − 𝑦
2
1𝜕𝑦1〉,

where 𝑈1 ⊂ 𝐽1(C2, 1) denotes the open chart determined by our choice of dependent variable on
C2. Taking instead x as the dependent variable results in a different chart 𝑈2 ⊂ 𝐽1(C2, 1), where the
prolongation of 𝔤 takes the form

𝔤 (1) |𝑈2 = 〈𝜕𝑥 , 𝜕𝑦 , 𝑦𝜕𝑥 + 𝜕𝑥1〉.

These two charts cover 𝐽1(C2, 1) = 𝑈1 ∪ 𝑈2. On overlap 𝑈1 ∩ 𝑈2 we get (𝑥, 𝑦, 𝑦1) ≡ (𝑥, 𝑦, 1/𝑥1). In
each of the two charts, we compute the Chevalley-Eilenberg cohomology:

H1(𝔤 (1) ,O(𝑈1)) = C
2, H1(𝔤 (1) ,O(𝑈2)) = 0.

A representative 𝜆1 of a general element in H1 (𝔤 (1) ,O(𝑈1)) takes the form

𝜆1(𝜕𝑥) = 0, 𝜆1(𝜕𝑦) = 0, 𝜆1(𝑦𝜕𝑥 − 𝑦
2
1𝜕𝑦1) = 𝐴 + 𝐵𝑦1, 𝐴, 𝐵 ∈ C.
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The compatibility condition 𝜆1(𝑋) − 𝜆2(𝑋) = 𝑋 (𝑔12)/𝑔12, ∀𝑋 ∈ 𝔤 (1) gives the general transition
function 𝑔12 = 𝐶𝑦−𝐵1 𝑒𝐴/𝑦1 . This function is holomorphic on𝑈1 ∩𝑈2 if and only if 𝐵 ∈ Z. Changing the
representative (𝑔, 𝜆) ∈ 𝐶0,1 ×𝐶1,0 by the coboundary 𝜕0𝜇 where 𝜇1 = 1, 𝜇2 = 𝐶𝑒𝐴𝑥1 , we get 𝑔12 = 𝑦−𝐵1
and

𝜆1 = (0, 0, 𝐴 + 𝐵𝑦1), 𝜆2 = (0, 0, 𝐴).

Thus, Pic𝔤 (1) (J1) = C × Z→ Pic(J1) = Z is epimorphic.
We identify a generating set (𝐼,∇) of absolute differential invariants in charts as follows:

(
−
𝑦2

𝑦3
1
,

1
𝑦1
𝐷𝑥

)
on 𝑈1 ←→

(
𝑥2, 𝐷𝑦

)
on 𝑈2.

The invariant divisors on 𝐽1 (C2, 1) are generated by 𝑓1 = 𝑦1, 𝑓2 = 1 of weight (𝐴, 𝐵) = (0,−1). Note
that the invariant ODE 𝑦1 = 0 is not visible from the local computations on𝑈2. Indeed, its solutions are
𝑦 = const for the independent variable y, which are not graphs 𝑥 = ℎ(𝑦).

General 𝔤 (2) -invariant divisors on 𝐽2 (C2, 1) are generated by 𝑓 = { 𝑓1, 𝑓2} and the absolute invariant
I. In particular, the irreducible invariant submanifolds of codimension 1 in J2 are given by the divisors
𝑓 = { 𝑓1, 𝑓2} = {𝑦2 − 𝐶𝑦

3
1, 𝑥2 + 𝐶} of weight (𝐴, 𝐵) = (0,−3), parametrized by 𝐶 ∈ C.

Note that the nonzero parameter A above is not realizable by an invariant divisor (on J1 such are
𝑦−𝐵1 ). Higher prolongations give no new weights of polynomial divisors, and we conclude, with the help
of Proposition 3.7,

Z = 𝑗𝔤 (∞)Divrat
𝔤 (∞)
(J∞) ⊂ Pic𝔤 (1) (J1) = C × Z.

3.4. Example B: Invariant divisors of curves in the projective plane

Consider the Lie algebra 𝔰𝔩(3,C) ⊂ D(C𝑃2) of projective vector fields. Differential invariants of curves
in the projective plane were studied already in 1878 by Halphen in his PhD thesis [15] (see also the
recent treatment [16] in the real case). In this section, we demonstrate how the framework developed in
this paper sheds new light on those classical invariants.

The manifold C𝑃2 is covered by the three charts𝑈𝑖 = C𝑃2 \ {𝑧𝑖 = 0}, 𝑖 = 1, 2, 3, where [𝑧1 : 𝑧2 : 𝑧3]
are homogeneous coordinates. Let us start by focusing on 𝑈3 with coordinates 𝑥 = 𝑧1/𝑧3, 𝑦 = 𝑧2/𝑧3. In
these local coordinates, we have

𝔰𝔩(3,C) |𝑈3 = 〈𝜕𝑥 , 𝜕𝑦 , 𝑦𝜕𝑥 , 𝑥𝜕𝑦 , 𝑥𝜕𝑥 − 𝑦𝜕𝑦 , 𝑥𝜕𝑥 + 𝑦𝜕𝑦 , 𝑥
2𝜕𝑥 + 𝑥𝑦𝜕𝑦 , 𝑥𝑦𝜕𝑥 + 𝑦

2𝜕𝑦〉.

3.4.1. Equivariant line bundles
The cohomology group H1 (𝔰𝔩(3,C),O(𝑈3)) = C was computed in [10, Table 3], and also in [27]. Our
global approach shows that

Pic𝔰𝔩 (3,C) (C𝑃2) � Pic(C𝑃2) = {OC𝑃2 (𝑘) | 𝑘 ∈ Z} � Z.

Skipping the details of this computation, we instead focus on the corresponding computation in
𝐽1 (C𝑃2, 1). Choosing y as the ‘dependent’ variable, we get an open coordinate chart𝑈𝑦

3 ⊂ 𝐽1(𝑈3, 1) in
which the prolonged vector fields take the form

𝑋1 = 𝜕𝑥 , 𝑋2 = 𝜕𝑦 , 𝑋3 = 𝑦𝜕𝑥 − 𝑦
2
1𝜕𝑦1 , 𝑋4 = 𝑥𝜕𝑦 + 𝜕𝑦1 , 𝑋5 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 − 2𝑦1𝜕𝑦1 ,

𝑋6 = 𝑥𝜕𝑥 + 𝑦𝜕𝑦 , 𝑋7 = 𝑥2𝜕𝑥 + 𝑥𝑦𝜕𝑦 + (𝑦 − 𝑥𝑦1)𝜕𝑦1 , 𝑋8 = 𝑥𝑦𝜕𝑥 + 𝑦
2𝜕𝑦 + (𝑦 − 𝑥𝑦1)𝑦1𝜕𝑦1 .

(3.3)
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Let us start by computing H1 (𝔰𝔩(3,C) (1) ,O(𝑈𝑦
3 )). For a general cocycle 𝜆𝑦

3 , we define

𝑎𝑖 (𝑥, 𝑦, 𝑦1) := 𝜆
𝑦
3 (𝑋𝑖) ∈ O(𝑈𝑦

3 ).

By subtracting a coboundary, we can set 𝑎1 = 0. The cocycle condition involving 𝑋1 and 𝑋2 implies that
𝜕𝑥 (𝑎2) = 0, and by subtracting a coboundary (now x-independent), we set 𝑎2 = 0. The eight cocycle
conditions

𝑋𝑖 (𝑎 𝑗 ) − 𝑋 𝑗 (𝑎𝑖) − 𝜆([𝑋𝑖 , 𝑋 𝑗 ]) = 0, 1 ≤ 𝑖 ≤ 2, 3 ≤ 𝑗 ≤ 6

reduce to 𝑋𝑖 (𝑎 𝑗 ) = 0 and imply that 𝑎3, 𝑎4, 𝑎5, 𝑎6 are independent of x and y.
By subtracting a coboundary (independent of x and y), we set 𝑎4 (𝑦1) = 0. Then for the PDE system

defined by the remaining cocycle conditions, we get the general holomorphic solution:

𝑎1 = 0, 𝑎2 = 0, 𝑎3 = 𝐴2𝑦1, 𝑎4 = 0, 𝑎5 = 𝐴2, 𝑎6 = 𝐴1,

𝑎7 =
3𝐴1 + 𝐴2

2
𝑥, 𝑎8 = 𝐴2𝑥𝑦1 +

3𝐴1 − 𝐴2
2

𝑦,

from which we see that H1 (𝔰𝔩 (1)3 ,O(𝑈𝑦
3 )) = C

2.
A similar computation can be done in the open coordinate chart 𝑈𝑥

3 ⊂ 𝐽1 (𝑈3, 1), where x is the
dependent variable. In these coordinates, related to the previous by 𝑥1 = 1/𝑦1 on overlap 𝑈𝑦

3 ∩𝑈
𝑥
3 , the

prolonged vector fields take the form

𝑋1 = 𝜕𝑥 , 𝑋2 = 𝜕𝑦 , 𝑋3 = 𝑦𝜕𝑥 + 𝜕𝑥1 , 𝑋4 = 𝑥𝜕𝑦 − 𝑥
2
2𝜕𝑥1 , 𝑋5 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 + 2𝑥1𝜕𝑥1 ,

𝑋6 = 𝑥𝜕𝑥 + 𝑦𝜕𝑦 , �̃�7 = 𝑥2𝜕𝑥 + 𝑥𝑦𝜕𝑦 + (𝑥 − 𝑦𝑥1)𝑥1𝜕𝑥1 , 𝑋8 = 𝑥𝑦𝜕𝑥 + 𝑦
2𝜕𝑦 + (𝑥 − 𝑦𝑥1)𝜕𝑥1 .

Defining 𝑏𝑖 (𝑦, 𝑥, 𝑥1) := 𝜆𝑥
3 (𝑋𝑖) ∈ O(𝑈𝑥

3 ), and repeating the computations above, a general representa-
tive of an element in H1(𝔰𝔩 (1)3 ,O(𝑈𝑥

3 )) is given by

𝑏1 = 0, 𝑏2 = 0, 𝑏3 = 0, 𝑏4 = �̃�2𝑥1, 𝑏5 = −�̃�2, 𝑏6 = �̃�1,

𝑏7 = �̃�2𝑦𝑥1 +
3�̃�1 − �̃�2

2
𝑥, 𝑏8 =

3�̃�1 + �̃�2
2

𝑦,

implying H1(𝔰𝔩(3,C) (1) ,O(𝑈𝑥
3 )) = C

2.
The compatibility condition 𝜆

𝑦
3 (𝑋) − 𝜆

𝑥
3 (𝑋) = 𝑋 (𝑔

𝑦𝑥
33 )/𝑔

𝑦𝑥
33 implies that �̃�1 = 𝐴1 and �̃�2 = 𝐴2. In

this case, the transition function has the form 𝑔
𝑦𝑥
33 = 𝐶𝑦−𝐴2

1 , and it is holomorphic if and only if 𝐴2 ∈ Z.
The constant C can be set equal to 1 via a suitable 𝔰𝔩(3,C) (1) -invariant 𝛿0,0-coboundary. Thus, we
conclude Pic𝔰𝔩 (3,C) (1) (𝐽1 (𝑈3, 1)) = C × Z.

Next, we perform similar computations on the remaining charts 𝑈𝑥
1 ,𝑈

𝑦
1 ,𝑈

𝑥
2 ,𝑈

𝑦
2 of 𝐽1(C𝑃2, 1). In

𝑈2 ⊂ C𝑃
2, we have coordinates (𝑥, �̃�) = (𝑧1/𝑧2, 𝑧3/𝑧2). Choosing �̃� as dependent variable results in

coordinates (𝑥, �̃�, �̃�1) on𝑈𝑦
2 ⊂ 𝐽1 (C𝑃2, 1). On𝑈𝑦

3 ∩𝑈
𝑦
2 , we have 𝑥 = 𝑥/�̃�, 𝑦 = 1/�̃� and 𝑦1 = �̃�1/(𝑥�̃�1− �̃�).

In these coordinates, the generators of 𝔰𝔩(3,C) (1) are

𝑋1 = �̃�𝜕�̃� − �̃�
2
1𝜕�̃�1 , 𝑋2 = −𝑥�̃�𝜕�̃� − �̃�

2𝜕�̃� + (𝑥�̃�1 − �̃�) �̃�1𝜕�̃�1 , 𝑋3 = 𝜕�̃� ,

𝑋4 = −𝑥2𝜕�̃� − 𝑥�̃�𝜕�̃� + (𝑥�̃�1 − �̃�)𝜕�̃�1 , 𝑋5 = 2𝑥𝜕�̃� + �̃�𝜕�̃� − �̃�1𝜕�̃�1 ,

𝑋6 = −�̃�𝜕�̃� − �̃�1𝜕�̃�1 , 𝑋7 = −𝑥𝜕�̃� − 𝜕�̃�1 , 𝑋8 = −𝜕�̃� .
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Defining 𝑐𝑖 (𝑥, �̃�, �̃�1) := 𝜆
𝑦
2 (𝑋𝑖) ∈ O(𝑈𝑦

2 ) yields a general element in H1(𝔰𝔩(3,C) (1) ,O(𝑈𝑦
2 )):

𝑐1 =
3𝐵1 + 𝐵2

2
�̃�1, 𝑐2 = −

3𝐵1 + 𝐵2
2

𝑥�̃�1 +
3𝐵1 − 𝐵2

2
�̃�, 𝑐3 = 0,

𝑐4 = −𝐵2𝑥, 𝑐5 = 𝐵2, 𝑐6 = 𝐵1, 𝑐7 = 0, 𝑐8 = 0.

The compatibility condition 𝜆
𝑦
3 (𝑋) − 𝜆

𝑦
2 (𝑋) = 𝑋 (𝑔

𝑦𝑦
32 )/𝑔

𝑦𝑦
32 implies that 𝐵1 = (𝐴2 − 𝐴1)/2 and 𝐵2 =

(3𝐴1+𝐴2)/2. The transition function on𝑈𝑦
3 ∩𝑈

𝑦
2 is given by 𝑔𝑦𝑦

32 = �̃� �̃�−𝐵2 (𝑥�̃�1− �̃�)
𝐴2 . It is holomorphic

if and only if 𝐴2, 𝐵2 ∈ Z. To sum up, we have

𝐴2 ∈ Z and (3𝐴1 + 𝐴2)/2 ∈ Z. (3.4)

By doing a similar analysis on the intersection of the remaining charts, one gets

Pic𝔰𝔩 (3,C) (1) (𝐽1 (C𝑃2, 1)) = Z2. (3.5)

Furthermore, the map Pic𝔰𝔩 (3,C) (1) (𝐽1 (C𝑃2, 1)) → Pic(𝐽1 (C𝑃2, 1)) is injective since we have
H̃1 (𝔰𝔩(3,C) (1) , 𝐽1 (C𝑃2, 1)) = 0.

Let us compare this to known bundles over 𝐽1(C𝑃2, 1), starting with canonical bundles. The line
bundle Λ3𝑇∗𝐽1(C𝑃2, 1) → 𝐽1 (C𝑃2, 1) corresponds to (𝐴1, 𝐴2) = (−2, 2), while the pullback of the
line bundle Λ2𝑇∗C𝑃2 → C𝑃2 via 𝜋1,0 : 𝐽1(C𝑃2, 1) → C𝑃2 corresponds to (𝐴1, 𝐴2) = (−2, 0). This is
easy to check by computing divergences of 𝑋1, . . . , 𝑋8 with respect to the volume forms Ω0 = 𝑑𝑥 ∧ 𝑑𝑦
and Ω1 = 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑦1 on 𝑈3 ⊂ C𝑃

2 and 𝑈
𝑦
3 ⊂ 𝐽1 (C𝑃2, 1), respectively: divΩ0 corresponds to

(𝐴1, 𝐴2) = (2, 0) and divΩ1 corresponds to (𝐴1, 𝐴2) = (2,−2). (Note that divergences with respect to
different volume forms differ (locally) by a coboundary in the modified Chevalley-Eilenberg complex.)

Furthermore, the pullback of the line bundle OC𝑃2 (1) → C𝑃2 corresponds to (𝐴1, 𝐴2) = (2/3, 0)
because of the relation between the canonical and tautological bundles over C𝑃2 (see Remark 2.15). The
vertical bundle 𝑉𝐽1 (C𝑃2, 1) ⊂ 𝑇𝐽1 (C𝑃2, 1) corresponds to (𝐴1, 𝐴2) = (0,−2), while the subbundle
〈𝜔〉 ⊂ 𝑇∗𝐽1(C𝑃2, 1) defined by the contact form 𝜔 ∈ Γ(𝑇∗𝐽1 (C𝑃2, 1)) corresponds to (𝐴1, 𝐴2) =
(−1, 1). The subset (𝐴1, 𝐴2) ⊂ C

2 satisfying (3.4) is generated by the elements (2/3, 0) and (−1, 1).
This leads to the following concrete description:

Proposition 3.10. Consider the standard realization of 𝔰𝔩(3,C) ⊂ D(C𝑃2) and its prolongation
𝔰𝔩(3,C) (1) ⊂ D(𝐽1 (C𝑃2, 1)). The equivariant Picard group (3.5) is

Pic𝔰𝔩 (3,C) (1) (𝐽1 (C𝑃2, 1)) =
{
〈𝜔〉⊗𝑘1 ⊗ 𝜋∗1,0OC𝑃2 (𝑘0) | 𝑘0, 𝑘1 ∈ Z

}
� Z2.

The integer parameters are related to the above weights like this: 𝐴1 = −𝑘1 +
2
3 𝑘0, 𝐴2 = 𝑘1.

3.4.2. Invariant divisors and absolute differential invariants
Generators for the absolute differential invariants are well known; see, for example, [23, Table 5]. The
field of rational absolute differential invariants is generated by

(
𝐼7 =

𝑅3
7

𝑅8
5
,∇ =

𝑅2𝑅7

𝑅3
5

𝐷𝑥

)
,
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where 𝑅2, 𝑅5, 𝑅7 are expressed in the following way on 𝜋−1
7,1 (𝑈

𝑦
3 ):

𝑅2 = 𝑦2,

𝑅5 = 9𝑦2
2𝑦5 − 45𝑦2𝑦3𝑦4 + 40𝑦3

3,

𝑅7 = 18𝑦4
2 (9𝑦

2
2𝑦5 − 45𝑦2𝑦3𝑦4 + 40𝑦3

3)𝑦7 − 189𝑦6
2𝑦

2
6 + 126𝑦4

2 (9𝑦2𝑦3𝑦5 + 15𝑦2𝑦
2
4 − 25𝑦2

3𝑦4)𝑦6

− 189𝑦4
2 (15𝑦2𝑦4 + 4𝑦2

3)𝑦
2
5 + 210𝑦2

2𝑦3 (63𝑦2
2𝑦

2
4 − 60𝑦2𝑦

2
3𝑦4 + 32𝑦4

3)𝑦5 − 4725𝑦4
2𝑦

4
4

− 7875𝑦3
2𝑦

2
3𝑦

3
4 + 31500𝑦2

2𝑦
4
3𝑦

2
4 − 33600𝑦2𝑦

6
3𝑦4 + 11200𝑦8

3.

We use a different set of generators than [23] in order to obtain rational invariants, which by [18] are
sufficient to separate orbits in general position. Table 5 in [23] also contains the Lie determinant 𝑅2𝑅

2
5

on the locus of which the orbit dimension drops. The Lie algebra 𝔰𝔩(3,C) (6) acts simply transitively
on the complement of {𝑅2𝑅5 = 0} ⊂ 𝜋−1

6,1 (𝑈
𝑦
3 ); note that dim 𝐽6(C𝑃2, 1) = dim𝔰𝔩(3,C). A complete

description of the orbit structure (over R) can be found in [16].

Remark 3.11. Proposition 2.25 gains the following insight. Computing orbit dimensions of 𝔤 = 𝔰𝔩(3,C)
in 𝐽4(C𝑃2, 1) shows that an invariant divisor exist only if 𝐴2 = 3𝐴1, in which case it is 𝑦−𝐴1

2 , but this is
meromorphic only if 𝐴1 ∈ Z. For 𝑘 ≥ 5, the generic orbit dimension of 𝔤 (𝑘) on 𝐽𝑘 (C𝑃2, 1) is the same
as that of (𝔤 (𝑘) )𝜆, independently of 𝜆. The general invariant divisor is given by 𝑅2𝐴1−𝐴2

2 𝑅 (𝐴2−3𝐴1)/6
5 ;

however, this function is meromorphic if and only if (2𝐴1− 𝐴2), (𝐴2−3𝐴1)/6 ∈ Z. Together with (3.4),
this implies that weights (𝐴1, 𝐴2) belong to the lattice generated by (3,−3) and (2, 0).

The polynomials 𝑅2, 𝑅5, 𝑅7 are local expressions, defined on 𝜋−1
7,1 (𝑈

𝑦
3 ), for invariant polynomial

divisors. But they extend uniquely to polynomial divisors on 𝐽7(C𝑃2, 1). For 𝑅2, 𝑅5 and 𝑅7, the weight
𝜆
𝑦
3 is given by (𝐴1, 𝐴2) = (−1,−3), (𝐴1, 𝐴2) = (−6,−12) and (𝐴1, 𝐴2) = (−16,−32), respectively. In

particular, 𝑅2 and 𝑅5 do not combine to a rational absolute differential invariant (weight 0), which is
consistent with the fact that 𝔤 (6) has an open orbit on 𝐽6(C𝑃2, 1). It is also clear that 𝑅2 and 𝑅5 are local
generators for polynomial invariant divisors on 𝐽6(C𝑃2, 1) since they generate a 2-dimensional space
of weights.

Combining weights of the invariant divisors, we obtain the above absolute invariant 𝐼7 together with
the following invariant meromorphic tensor fields:

𝛼5 =
𝑅5

𝑅4
2
𝑑𝑥 ∧ 𝑑𝑦 ∈ Γ(𝜋∗5,0Λ

2𝑇∗C𝑃2), 𝛼7 =
𝑅7

𝑅3
2𝑅

2
5
(𝑑𝑦 − 𝑦1𝑑𝑥) ∈ Γ(𝜋

∗
7,1〈𝜔〉).

The inverse bivector 𝛼−1
5 =

𝑅4
2

𝑅5
𝐷𝑥 ∧ 𝜕𝑦 contracted with 𝛼7 gives the invariant derivation ∇ above.

Remark 3.12. These tensor fields can be compared to those of Theorem 5.1 of [16]. Their 𝑅−3
2 𝑅2/3

5 (𝑑𝑦−

𝑦1𝑑𝑥) is multi-valued over C, but its cube is the rational invariant tensor 𝐼−1
7 𝛼3

7.

Note that, in general, polynomial divisors Divpol
𝔤 (𝑀) determine a weight sub-monoid in Pic𝔤 (𝑀),

while rational divisors Divrat
𝔤 (𝑀), obtained as ratios of the former, determine a lattice.

Theorem 3.13. The lattice generated by polynomial divisors for 𝔤 = 𝔰𝔩(3,C) acting on 𝐽∞(C𝑃2, 1) is
a sublattice of order 3 in the equivariant Picard group on 1-jets:

Z2 � 𝑗𝔤 (∞)
(
Divrat

𝔤 (∞)
(
𝐽∞(C𝑃2, 1)

) )
� Pic𝔤 (1)

(
𝐽1 (C𝑃2, 1)

)
� Z2.

This is basically a summary of the computations. Indeed, from the tensor fields 𝛼5, 𝛼7 we see that
(pullbacks of) line bundles in Pic𝔰𝔩 (3,C) (1) (𝐽1(C𝑃2, 1)) are realized as [𝐷] for some rational 𝔰𝔩(3,C) (7) -
invariant divisor D on 𝐽7 (C𝑃2, 1) when 𝑘0/3, 𝑘1 ∈ Z, where 𝑘0 and 𝑘1 are the parameters used in
Proposition 3.10. To understand why OC𝑃2 (1) is not realized in this way, one must consider which Lie
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group is acting here. The Lie algebra 𝔤 = 𝔰𝔩(3,C) on C𝑃2 integrates to the Lie group 𝐺 = 𝑃𝐺𝐿(3,C)
and then results from Example 2.32 apply.

Remark 3.14. Nondegenerate curves in C𝑃𝑛 up to projective transformations 𝔤 = 𝔰𝔩(𝑛 + 1,C) were
studied by Wilczynski [31]. He computed fundamental differential invariants via the correspondence
with linear ordinary differential equations of order 𝑛+ 1. Our results generalize to give two-dimensional
lattice Pic𝔤 (1)

(
𝐽1 (C𝑃𝑛, 1)

)
, which constrains the weights of relative differential invariants.

3.5. Example C: Second-order ODEs modulo point transformations revisited

Finally, for ℎ ∈ O(𝑈), 𝑈 ⊂ 𝐽1(C𝑃2, 1), we consider scalar second-order ODEs

{𝑦2 = ℎ(𝑥, 𝑦, 𝑦1)} ⊂ 𝐽2(C𝑃2, 1) (3.6)

together with the Lie algebra sheaf 𝔤 = D(J0) of germs of holomorphic vector fields on J0 = C𝑃2.
Here and throughout this section, we use the notation J𝑠 = 𝐽𝑠 (C𝑃2, 1), while 𝐽𝑘 (J1) consists of k-jets
of functions h on J1. Our goal is to find generators for the invariant divisors on 𝐽4 (J1).

Relative invariants were first found by A. Tresse in [29] via Lie theory and then by E. Cartan via his
theory of moving frames [5]. We apply our global framework to justify the (two-dimensional) weight
lattice introduced in [17] and generate relative invariants for this classical problem in a novel and
conceptually transparent manner.

Any vector field on J0 prolongs uniquely to a vector field on J2. This action induces an (infinitesimal)
transformation on the space of second-order ODEs. Choose local coordinates 𝑥, 𝑦 on C𝑃2 and denote
𝑝 = 𝑦1, 𝑢 = 𝑦2 the induced coordinates on J2; then an ODE is a hypersurface 𝑢 = ℎ(𝑥, 𝑦, 𝑝) in
𝐽0 (J1) = J2. Redefining 𝔤 to be the image (prolongation) of D(J0) in J2, its further prolongation, the
Lie algebra 𝔤 (𝑘) ⊂ D(𝐽𝑘 (J1)), is spanned by the vector fields of the form

𝑎𝐷𝑥 + 𝑏𝐷𝑦 + 𝑐𝐷 𝑝 +
∑
|𝜎 | ≤𝑘

𝐷 (𝑘)𝜎 (𝜓)𝜕𝑢𝜎 , (3.7)

where 𝑎, 𝑏 are functions of 𝑥, 𝑦, 𝑐 = (𝜕𝑥 + 𝑝𝜕𝑦)𝜑 for 𝜑 = 𝑏 − 𝑝𝑎, 𝐷𝑥 is the operator of total derivative
by x and similar for 𝐷𝑦 , 𝐷 𝑝 , while 𝐷𝜎 is their composition for multi-indices of variables (see [17]),
and the function 𝜓 is given by

𝜓 = (𝜕𝑥 + 𝑝𝜕𝑦)
2𝜑 + 𝑢(𝜕𝑦𝜑 − 2(𝜕𝑥𝑎 + 𝑝𝜕𝑦𝑎) − 𝑎𝑢𝑥 − 𝑏𝑢𝑦 − 𝑐𝑢𝑝 .

The Lie algebra 𝔤 (0) = 𝔤 preserves the fibers of the affine bundle 𝐽0(J1) → J1 (and their affine
structure). Thus, in order to compute invariant divisors that are polynomial on fibers of 𝐽𝑘 (J1) → J1,
we exploit Proposition 3.8 and start with classification of 𝔤-equivariant line bundles on J1.

3.5.1. 𝔤-equivariant line bundles
In Example B, we saw that the 𝔰𝔩(3,C) (1) -equivariant line bundles on J1 were generated by the line
bundles 𝜋∗1,0OC𝑃2 (1) and 〈𝜔〉 ⊂ 𝑇∗J1. Since 𝔰𝔩(3,C) (1) ⊂ 𝔤, we have a natural homomorphism

Pic𝔤 (𝐽1 (C𝑃2, 1)) → Pic𝔰𝔩 (3,C) (1) (𝐽1 (C𝑃2, 1)). (3.8)

Proposition 3.15. Homomorphism (3.8) is an isomorphism.

Proof. We first prove that (3.8) is surjective. Clearly, the bundle OC𝑃2 (−3) � 𝜋∗1,0Λ
2𝑇∗C𝑃2 admits

a 𝔤-lift, due to naturality of the cotangent bundle. The bundle 〈𝜔〉 ⊂ 𝑇∗J1 admits a 𝔤-lift since the
prolongation preserves the Cartan distribution Ann(𝜔) ⊂ 𝑇J1. What remains to be seen is that OC𝑃2 (1)
admits a 𝔤-lift. On OC𝑃2 (1), the local weight 𝜆3 of a general vector field 𝑋 = 𝑎(𝑥, 𝑦)𝜕𝑥 + 𝑏(𝑥, 𝑦)𝜕𝑦 on
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𝑈3 (for example) is 𝜆3(𝑋) = (𝑎𝑥 + 𝑏𝑦)/3, and it is not difficult to check that this extends to a compatible
weight for each 𝑋 ∈ 𝔤.

Now we prove injectivity. Let [(𝑔, 𝜆)] ∈ Pic𝔤 (J1) be in the kernel of (3.8). Then [𝑔] = 0 ∈ Pic(J1),
and there exists a representative for [𝜆] such that 𝜆 |𝔰𝔩 (3,C) (1) = 0.

Take an arbitrary point in J1 and choose a chart with coordinates centered at this point (origin).
Due to transitivity of 𝔰𝔩(3,C) (1) on J1, we can assume, without loss of generality, that the coordinate
chart is 𝑈𝑦

3 from Section 3.4. We will compute 𝜆 |𝑈 𝑦
3

. It is clear that if 𝜆(𝑋) ≠ 0 for some 𝑋 ∈ 𝔤, then
𝜆(𝑋) |𝑈 𝑦

3
≠ 0 since 𝑈𝑦

3 ⊂ J1 is a dense subset.
We continue with the notation from Section 3.4, so that 𝔰𝔩(3,C) (1) |𝑈 𝑦

3
= 〈𝑋1, · · · , 𝑋8〉 with 𝑋𝑖 given

by (3.3). We have 𝜆(𝑋1) = · · · = 𝜆(𝑋8) = 0. Next, consider the vector fields

𝑌1 = 𝑥2𝜕𝑦 + 2𝑥𝜕𝑦1 , 𝑌2 = 𝑥2𝜕𝑥 − 2𝑥𝑦𝜕𝑦 − (4𝑥𝑦1 + 2𝑦)𝜕𝑦1 ,

𝑌3 = 𝑦2𝜕𝑦 − 2𝑥𝑦𝜕𝑥 + (2𝑥𝑦2
1 + 4𝑦𝑦1)𝜕𝑦1 , 𝑌4 = 𝑦2𝜕𝑥 − 2𝑦𝑦2

1𝜕𝑦1 .

The commutation relations

[𝑋1, 𝑌1] = 2𝑋4, [𝑋2, 𝑌1] = 0, [𝑋4, 𝑌1] = 0,
[𝑋1, 𝑌2] = 2𝑋5, [𝑋2, 𝑌2] = −2𝑋4, [𝑋4, 𝑌2] = −3𝑌1,

[𝑋1, 𝑌3] = −2𝑋3, [𝑋2, 𝑌3] = −2𝑋5, [𝑋4, 𝑌3] = −2𝑌2,

[𝑋1, 𝑌4] = 0, [𝑋2, 𝑌4] = 2𝑋3, [𝑋4, 𝑌4] = −𝑌3,

[𝑋6, 𝑌𝑖] = 𝑌𝑖 , 𝑖 = 1, 2, 3, 4

give four differential equations on each function 𝜆(𝑌𝑖), implying 𝜆(𝑌1) = · · · = 𝜆(𝑌4) = 0.
Furthermore, all polynomial vector fields are generated by 𝑋1, . . . , 𝑋8 and 𝑌1, . . . , 𝑌4. Indeed, for

𝑗 ≥ 3, we have

𝑥𝑖𝑦 𝑗−𝑖𝜕𝑥 =
1

𝑖 − 3
[𝑥2𝜕𝑥 , 𝑥

𝑖−1𝑦 𝑗−𝑖𝜕𝑥], 𝑖 ≠ 0, 3,

𝑦 𝑗𝜕𝑥 =
1

𝑗 − 1
[𝑦2𝜕𝑦 , 𝑦

𝑗−1𝜕𝑥],

𝑥3𝑦 𝑗−3𝜕𝑥 =
1

𝑗 − 2

(
[𝑥2𝜕𝑦 , 𝑥𝑦

𝑗−2𝜕𝑥] + 2𝑥2𝑦 𝑗−2𝜕𝑦

)
,

and by swapping x and y, we also generate 𝑥𝑖𝑦 𝑗−𝑖𝜕𝑦 for 𝑖 = 0, . . . , 𝑗 . Thus, all vector fields with
polynomial coefficients of degree ≥ 3 are of the form [𝑍,𝑌 ], where the coefficients of Y have degree
2 and the coefficients of Z have degree strictly lower than those of [𝑍,𝑌 ]. Then the general cocycle
condition

𝜆([𝑋,𝑌 ]) = 𝑋 (𝜆(𝑌 )) − 𝑌 (𝜆(𝑋))

implies that 𝜆(𝑋) = 0 for any polynomial vector field X on 𝑈𝑦
3 .

On any compact subset 𝐾 ⊂ 𝑈𝑦
3 , the subspace of vector fields in D(𝐾) with polynomial coefficients

is dense in D(𝐾). It follows that 𝜆(𝑋) |𝐾 = 0 for every 𝑋 ∈ 𝔤 for any K, and hence that 𝜆(𝑋) |𝑈 𝑦
3
= 0 for

every 𝑋 ∈ 𝔤. Thus 𝜆 = 0. �

3.5.2. Invariant divisors
Now we compute the 𝔤 (4) -invariant divisors on 𝐽4 (J1). Let us work in the coordinate chart 𝜏−1

4 (𝑈
𝑦
3 ),

where 𝜏4 denotes the projection 𝜏4 : 𝐽4 (J1) → J1. From Proposition 3.15, we know that [𝜆] ∈
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𝐻1 (𝔤,O(𝑈𝑦
3 )) has a representative of the form

𝜆 = 𝐶0div𝑑𝑥∧𝑑𝑦 + 𝐶1div𝑑𝑥∧𝑑𝑦∧𝑑𝑦1 ,

where (𝐶0, 𝐶1) is related to (𝐴1, 𝐴2) by 𝐴1 = 2(𝐶0 +𝐶1) and 𝐴2 = −2𝐶1. Condition (3.4) is equivalent
to 3𝐶0, 2𝐶1 ∈ Z. If f is a general polynomial of some fixed degree, then the system

𝑋 (𝑘) 𝑓 = 𝜆(𝑋) 𝑓 , 𝑋 ∈ 𝔤 (0)

reduces to a linear system on the coefficients of f for each choice of (𝐶0, 𝐶1). By sequentially setting
𝐶0 = 0,±1/3,±2/3, . . . and 𝐶1 = 0,±1/2,±1, . . . and letting f be a general polynomial of degree 3
with undetermined coefficients, we get a series of linear systems determining the coefficients of the
polynomial. In this way, we obtain the solutions

𝑓1 = 𝑢𝑝𝑝𝑝𝑝,

𝑓2 = 𝑢𝑥𝑥𝑝𝑝 + 2𝑝𝑢𝑥𝑦𝑝𝑝 + 2𝑢𝑢𝑥𝑝𝑝𝑝 + 𝑝
2𝑢𝑦𝑦𝑝𝑝 + 2𝑝𝑢𝑢𝑦𝑝𝑝𝑝 + 𝑢

2𝑢𝑝𝑝𝑝𝑝 + (𝑢𝑥 + 𝑝𝑢𝑦)𝑢𝑝𝑝𝑝

− 𝑢𝑝𝑢𝑥𝑝𝑝 − 4𝑢𝑥𝑦𝑝 − 4𝑝𝑢𝑦𝑦𝑝 − (𝑝𝑢𝑝 + 3𝑢)𝑢𝑦𝑝𝑝 + 6𝑢𝑦𝑦 + 4𝑢𝑝𝑢𝑦𝑝 − 3𝑢𝑦𝑢𝑝𝑝 ,

which have weights (𝐶0, 𝐶1) = (2,−5/2) and (−2, 1/2), respectively. Computing the rank of prolonged
vector fields at generic point, we conclude that the action of 𝔤 (4) has an open orbit in 𝐽4(J1). Thus,
there are no (nonconstant) absolute invariants on J4. Now, if 𝑓3 was another invariant divisor of general
weight (𝐶0, 𝐶1) = (2𝐴 − 2𝐵, (𝐵 − 5𝐴)/2) with rational 𝐴, 𝐵, then for some integer m, the ratio

𝑓 𝑚3

𝑓 𝐴𝑚1 𝑓 𝐵𝑚
2

is a rational function with weight (0, 0) and hence is an absolute differential invariant, and therefore
constant. Hence, 𝑓 𝑚3 is proportional to 𝑓 𝐴𝑚1 𝑓 𝐵𝑚

2 .
Taking into account Proposition 3.8, we conclude the following.

Theorem 3.16. The lattice generated by polynomial divisors for the Lie algebra 𝔤 = D(J0) acting on
𝐽∞(J1) is a sublattice in the equivariant Picard group on 1-jets:

Z2 � 𝑗𝔤 (∞)
(
Divrat

𝔤 (∞)
(
𝐽∞(J1)

) )
� Pic𝔤

(
J1) � Z2.

Let us note that cohomology of line bundles was explored in [14] to compute Cartan invariants of
projective connections, which correspond to a particular class of ODEs of the form (3.6) with h cubic
in 𝑦1; our methods though are quite distinct.

4. Outlook

In this work, we proposed a theory of global scalar relative differential invariants, based on familiar
notions of divisors and line bundles. While G-equivariant line bundles were known for algebraic and
compact groups, the more general notions of equivariant Picard group Pic𝔤 (𝑀) and invariant divisor
group Div𝔤 (𝑀) for a Lie algebra 𝔤 appear to be new and have certain subtleties. (These notions even
extend to Lie algebra sheaves, as seen in Example C.)

The basic setup is analytic, but we also consider polynomial divisors in affine bundles. Such bundles
arise in successive jet-prolongation, and polynomial relative differential invariants are natural and
sufficient in the equivalence problem of invariant hypersurfaces. We thus explore polynomial divisors
in jet spaces. While 𝑗

(
Div(J∞)

)
= 𝑗

(
Div(J1)

)
in Pic(J∞) = Pic(J1) (in the case of fiber/affine bundle

𝜋, this can be pushed down to J0, resp. M), the 𝔤-equivariant counterpart is more complicated. In
general, Pic𝔤 (∞) (J∞) ≠ Pic𝔤 (1) (J1), and similarly for invariant divisors. However, weights of invariant
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polynomial divisors are 1-jet determined, as Propositions 3.7 and 3.8 state. This gives an effective bound
on multipliers for relative invariants and, in many cases, an algorithmic approach to compute them.

Invariant submanifolds of higher codimensions are related, in the same manner, to higher rank
equivariant vector bundles. While there are no general tools that classify analytic/algebraic vector
bundles of higher rank, some part of the theory generalizes. Weights of vector-valued relative invariants
are matrix-valued cocycles, leading to a more general cohomology theory.

Lastly, there is a differential algebra aspect to the theory of invariant divisors on jet bundles. The
structure theory of these global relative differential invariants will be discussed elsewhere.
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