
Appendix I

Light-cone variables

In this appendix we introduce light-cone variables and discuss the response
function in deep-inelastic electron scattering (DIS) when analyzed in terms
of these quantities. The discussion follows closely that in [De73], which
provides a much more extensive introduction to this topic.

Suppose that in coordinate space one has a four-vector xμ = (x1, x2, x3,

ix0) = (x, y, z, ict).1 The light-cone variables are defined by

x± ≡ 1√
2
(z ± ct)

x⊥ ≡ (x, y) (I.1)

The situation is illustrated in Fig. I.1, where the new axes are defined by
the lines x∓ = 0. The square of the four-vector xμ is evidently

x2 = xμxμ = 2x+x− + x2
⊥ (I.2)

In inclusive DIS we have two kinematic four-vectors qμ = (k2 − k1)μ =
(qx, qy, qz, iq0) and pμ = (px, py, pz, ip0). We similarly define light-cone com-
binations

p± ≡ 1√
2
(pz ± p0) ; p⊥ = (px, py)

q± ≡ 1√
2
(qz ± q0) ; q⊥ = (qx, qy) (I.3)

The scalar products are given by

mν = p · q = p+q− + p−q+ + p⊥ · q⊥
q2 = 2q+q− + q2

⊥ (I.4)

1 We restore h̄ and c in this appendix for clarity.

331

https://doi.org/10.1017/9781009290616.046 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.046


332 Appendixes

Fig. I.1. Transformation to light-cone variables.

Assume the momentum transfer q defines the z-axis so that q⊥ = 0.
Further, assume for simplicity that p⊥ = 0 (as is true, for example, in the
lab). From the electron scattering kinematics, one has

qz = |k2 − k1| = (k2
1 + k2

2 − 2k1k2 cos θ)1/2

q0 = k2 − k1

q+ =
1√
2
[(k2

1 + k2
2 − 2k1k2 cos θ)1/2 − (k1 − k2)]

q− =
1√
2
[(k2

1 + k2
2 − 2k1k2 cos θ)1/2 + (k1 − k2)] (I.5)

Here we have written |k| ≡ k.
The DIS limit is defined by ν → ∞, q2 → ∞, with constant q2/2mν = xB;

it is evidently achieved by the following:

Fix (q+ , pμ); and let q− → ∞ (I.6)

In this case

mν → p+q− ; q2 → 2q+q− ;
q2

2mν
→ q+

p+
(I.7)

To illustrate the arguments, we consider a very simplified, heuristic
version of Eq. (14.18) where all indices and sums are suppressed

w(p, q) ≡ 1

4π

∫
eiq·x(p|[j(z), j(0)]|p) d4x (I.8)

Now

d4x = d2x⊥dx−dx+

q · x = q+x− + q−x+ (I.9)

In the DIS limit of Eq. (I.6), the integrand in Eq. (I.8) oscillates very
rapidly, and the resulting integral goes to zero, unless there is a finite
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contribution from the region where x+ → 0. If x+ → 0, then Eq. (I.2)
implies that x2 → x2

⊥. This now represents a space-like separation of two
points. The principle of microscopic causality states that the commutator
of two hermitian observables (here the currents) must vanish for space-like
separations since their measurements cannot interfere outside of the light
cone. Hence the only contribution to the integral in Eq. (I.8) will come
from the region where (x+, x⊥) → 0, which implies (for any finite x−)
that x2 → 0; this defines the light cone and illustrates the utility of the
new variables. To obtain the asymptotic form of the response function
in the DIS region, one is led to an investigation of the structure of the
commutator of the two currents on the light cone.

Geometrically, the forward light cone is a cone around the ct axis that
lies in the second quadrant in Fig. I.1. Both the x+ and x− axes lie in the
surface of the cone. In the DIS limit, one is forced to the x+ = 0 plane,
which is tangent to the light cone along the negative x− axis. Since by
causality the commutator of the currents vanishes outside the light cone,
the only contribution to the integral in Eq. (I.8) comes from the negative
x− axis in the DIS limit.

What kind of singularities exist on the light cone for the commutator
of two hermitian operators in field theory? To get some insight, consider
the very simple example of a free, massless, real (neutral), scalar field

φ(xμ) =
1√
Ω

∑
k

(
h̄

2ωk

)1/2 (
cke

ik·x + c
†
ke

−ik·x
)

(I.10)

It is one of the standard introductory exercises in field theory to show
that the commutator of this field taken at two different space-time points
is given by

[φ(xμ), φ(yμ)] =
h̄

ic
Δ(xμ − yμ)

Δ(xμ) =
i

(2π)3

∫
d4k ε(k0) δ(k2) eik·x

=
1

2π
ε(x0) δ(x2) (I.11)

Here d4k = d3kdk0. The invariant commutator has a delta-function singu-
larity on the light cone.

One can quite generally define

w(p, q) ≡ 1

iπ

∫
eiq·xG(p, x)D(x2) d4x (I.12)

Assume now that the free-field singularities of the commutator have been
isolated in D(x2) and that the function G(p, x) contains the details of
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the currents and the states. From Lorentz invariance one must have
G(p, x) = G(p · x, x2). In the DIS limit one requires the singularities of the
commutator on the light cone. In extracting the asymptotic limit, one can
then replace the regular coefficient G by its value on the light cone

G(p · x, x2) ≈ G(p · x, 0) ≡ g(p · x) ; DIS (I.13)

Introduce the Fourier transform of this function

g(σ) =

∫
e−iασF(α) dα (I.14)

Substitution into Eq. (I.12) then gives

w(p, q) ≈ 1

iπ

∫
F(α) dα

∫
e−i(αp−q)·xD(x2) d4x (I.15)

Again, for simplicity and illustration, suppose the light-cone singularity
structure is that of Eq. (I.11). A four-dimensional Fourier transform then
leads to

w(p, q) ≈ 2

∫
ε(αp0 − q0) δ[(αp − q)2]F(α)dα (I.16)

In the DIS limit q0 → −∞ and with p2/q2 � 1,

w(p, q) ≈ 2

∫
δ(2αp · q − q2)F(α) dα

≈ 1

mν
F(xB) (I.17)

One thus derives the scaling relation of the quark–parton model from the
free-field singularities, and details of the structure, of the commutator of
the currents on the light cone.

With local currents constructed out of bilinear combinations of quark
fields, one first separates the points in the quark fields and introduces
the notion of bilocal operators when evaluating the required current
commutators [De73]. To quote from [De73], . . . “The important lesson
we learn . . . is that the behavior of the structure function in the inelastic
region is strictly related to the light-cone behavior of the commutator
of the currents. The nature of the commutator singularity at x+ = 0
determines the precise nature of the scaling, while the scaling function can
be expressed as the Fourier transform of g(σ), which in turn is related to
the matrix element of a bilocal operator.”

The idea of using the commutation relations of free-quark currents on
the light cone to derive the DIS quark–parton results is due to Fritzsch
and Gell-Mann [Fr71, De73]. It is Wilson’s operator product expansion
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that provides a systematic way of looking at the short-distance behavior
of a field theory [Wi69].

With the asymptotically-free theory QCD, one can justify the use of
the free-field results at very short distances.2 One can then proceed to
calculate corrections to these free-field results. A useful way to proceed is
to make use of the analysis in chapter 14 to rewrite the expression in Eq.
(I.8). First, introduce a scattering amplitude analogous to that for forward
virtual Compton scattering

a(p, q) ≡ i

2π

∫
eiq·z(p|P [j(z), j(0)]|p) d4z (I.18)

Here P denotes the time-ordered product

P [j(z), j(0)] ≡ j(z)j(0)θ(z0) + j(0)j(z)θ(−z0) (I.19)

This expression is immediately analyzed in terms of Feynman diagrams
[Fe71]; the necessary Feynman rules for QCD are given in chapter 25.
Insertion of a complete set of states and explicit evaluation of the in-
tegrals in Eq. (I.18), with the inclusion of an adiabatic damping factor
for convergence in the time integrals, leads to the Low equation for the
scattering amplitude

a(p, q) =
1

π

∑
f

(2π)3
[

δ(3)(q + p′ − p)

q0 + p′
0 − p0 − iη

− δ(3)(q − p′ + p)

q0 − p′
0 + p0 + iη

]

×〈p|j(0)|p′〉〈p′|j(0)|p〉(ΩE) (I.20)

Now take the imaginary part of this expression.3 As in chapter 14, the
second term does not contribute by the stability of the target, and

Im a(p, q) =
∑
f

(2π)3δ(4)(q + p′ − p)〈p|j(0)|p′〉〈p′|j(0)|p〉(ΩE) (I.21)

The right side is recognized as the analog of Eq. (14.8) for the simplified
response function in Eq. (I.8), and therefore

Im a(p, q) = w(p, q) (I.22)

Thus by taking the imaginary part of the scattering amplitude written in
terms of Feynman diagrams, one can evaluate the response function in
DIS.

The quark–parton result for the DIS response function in the impulse
approximation in the p → ∞ frame is derived in chapter 12; it is evidently

2 Indeed, the non-abelian gauge theory QCD was originally developed to do just that!
3 More generally, take the absorptive part.
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obtained by considering the imaginary part of the scattering diagram
where the scattering takes place from a single non-interacting quark in
the target (the so-called handbag diagram). The probability of finding such
a quark in the target, F(xB), still depends on the strong-coupling aspects
of the theory. From the above analysis, this result is equivalent to keeping
the contribution of the singularities of the free-quark commutator on the
light cone, with an amplitude g(σ) again determined by the dynamics.

By considering additional Feynman diagrams, with radiative corrections,
one can obtain perturbation-theory corrections to the response function of
DIS. The evolution equations then allow one to obtain renormalization-
group-improved results [Al77, Ch84, Ro90, Wa95].

The topics of operator product expansion, QCD radiative corrections,
and evolution equations are explored in many texts (e.g. [Ch84]). In
particular, the reader is referred to [Ro90] for an extensive discussion of
the current theory of DIS scattering from the proton (with a summary of
experimental results). Hopefully, the present text and this appendix will
make that discussion more meaningful.
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