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Abstract
Using a laboratory experiment, we investigate complexity in decision problems as a cause of failures in con-
tingent reasoning. For this purpose, we introduce three dimensions of complexity to a decision problem: the
number of contingencies, the dominance property of choices, and reducible states. Each decision problem
is designed to reflect variations in complexity across the three dimensions. Experimental results show that
the number of contingencies has the most significant effect on failures in contingent reasoning. The second
dimension, the dominance property of choices, also has a statistically significant effect, though the effect
size is smaller than in the existing literature. In contrast, the third complexity dimension has no impact;
presenting the decision problem in a reduced or reducible form does not change subjects’ performance on
contingent reasoning. Additionally, we examine the Power of Certainty and show its existence. This effect
is particularly pronounced when the number of contingencies is large.
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1. Introduction
Deviations from optimal behavior have long been studied in economics using various approaches. In
the experimental literature, many studies have examined such deviations, especially when contingent
reasoning is engaged. Another strand of literature studies how complexity creates a cognitive burden
and affects optimal choices.

In this paper, we bridge complexity in decision problems and contingent reasoning. Specifically,
we investigate complexity in decision problems as a cause of failures in contingent reasoning. For this
purpose, we introduce three dimensions of complexity: the number of contingencies, the existence
of dominant or obviously dominant choices, and reducible states.

We do this in a decision problem that we develop, which has a similar structure to the decision
problem studied by Martínez-Marquina et al. (2019). Specifically, we consider a labor market setting
where there are two workers who vary in two dimensions: The revenue they bring and their willing-
ness to accept. With this information about workers (revenue and willingness to accept) but without
knowing which worker they will hire, a subject chooses one wage for a job for the potential hire.
Calculating the optimal wage requires contingent reasoning because the subject needs to consider
which workers would accept any given wage.

For complexity, we consider three dimensions: the number of contingencies, the existence of
reducible states, and the dominance property of choices. We borrow the first two concepts from
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Oprea (2020). He considers the number of states as a measure of complexity, whereas we consider
the number of contingencies as a measure of complexity. In our setting, states represent the uncer-
tainty resolved by nature, while contingencies are also affected by the worker’s actions. For example,
for each wage choice, both which worker they are assigned and whether the assigned worker would
accept the wage matters. For the second dimension of complexity, a decision problem has reducible
states if there exists an equivalent representation of the problem involving fewer states. We say this
equivalent problem then involves “reduced” states. Finally, we also consider the dominant/obviously
dominant strategies concept suggested by Li (2017), but adapt to individual choice problems.

In addition, we test the Power of Certainty (henceforth PoC) – suggested by Martínez-Marquina
et al. (2019) – by changing the baseline setting to one without uncertainty while keeping the number
of contingencies and the existence of dominant/obvious dominance the same.1

Our results show that the number of contingencies has the largest effect on the failures in contin-
gent reasoning. The existence of dominant and obviously dominant choices also has an effect, but the
degree of obvious dominance is smaller than the existing literature suggests. Redundant states do not
affect the failures in contingent reasoning. We also examine how often subjects choose un-dominated
choices and suggest that people may exhibit contingent reasoning partially, even if they fail to imple-
ment it fully. Lastly, the PoC exists in our setting, too, and has the largest effect in problems with a
higher number of contingencies.

1.1. Related literature
Existing papers in the literature that study contingent reasoning have done so using decision prob-
lems that differ from our labor market decision problem. For example, Charness & Levin (2009)
and Martínez-Marquina et al. (2019) use an acquiring-a-company game to test for failures in con-
tingent reasoning. Although these decision problems are different from ours, the problem studied
by Martínez-Marquina et al. (2019) shares some similarities with ours. Specifically, both decision
problems require subjects to eliminate dominated choices first. Then, non-dominated choices involve
contingencies that depend on whether each firm (or worker) will reject a given offer or not. However,
their work has a winner’s curse feature that ours does not have. Other decision problems that have
been studied include voting games (Ali et al., 2021; Esponda & Vespa, 2014), dynamic public goods
games (Calford & Cason, 2024), investment decisions with endogenous selection (Esponda & Vespa,
2018), the sure-thing principle (Esponda & Vespa, 2021; Shafir & Tversky, 1992), and the Monty Hall
problem (Friedman, 1998).2

Ours is not the first paper to use the number of states as a measure of complexity. As mentioned
earlier, Oprea (2020) considers the number of states as one measure of complexity in a typing task.3
He shows that rules that require more states are more complex and they incur higher costs. We apply
this concept of complexity to the number of contingencies in decision problems. Similarly, in her
experiment, Puri 2020 defines the complexity of a lottery by its number of possible outcomes.4 For
reducibility as a complexity measure, Oprea (2020) finds that reducible states are more costly than
reduced states, which implies reducible states make a rule more complex.5

1The third case, reducible states, always requires uncertainty in our design. Also, the results with uncertainty show that there
are no effects of reducible states, so we omit this complexity when testing the PoC.

2Several studies have been conducted using theoretical frameworks in relation to the experimental works on contingent
reasoning. Echenique et al. (2022) provides one theoretical explanation for a failure in contingent reasoning by weakening the
dominance axiom. This relates to our focus on dominance choices.

3Oprea (2020) does not directly deal with rational decision-making. Rather, they focus on complexity in general decision
rules themselves and costs incurred in decision rules. As we apply the complexity concepts to rational decision-making, we
interpret cost as possible loss due to deviations from the optimal choices.

4Theory allows for a more general measure of complexity.
5Though the paper shows that the mistake rates of the tasks of the reducible state are just slightly higher than reduced states

tasks, those mistakes are not perfectly compatible with our decision-problem. The mistake rates in the paper are failures to
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In other related work, Halevy (2007) studies the Ellsberg paradox and shows that a substantial por-
tion of subjects violate the axiom of reduction of compound lotteries, which relates to our reducibility
result. Other than Li (2017), there are several papers that consider dominance in a decision prob-
lem. Kagel et al. (1987) and Kagel and Levin (1993) show failures in contingent reasoning in an
auction setting, where optimal strategies in each auction have different dominance notions. Like
ours, their settings also separate dominance and obvious dominance. Rabin & Weizsäcker (2009)
also study dominated choices. They show that some subjects choose a first-order stochastically dom-
inated option, which is consistent with our observation that a substantial portion of subjects fail to
make an optimal choice, even when a dominant choice exists.

There are other papers on complexity that consider dimensions different from ours. Banovetz and
Oprea 2022 and Mononen (2022) consider complexity as (mental) costs, which may explain why sub-
jects fail in contingent reasoning with certain domains of complexity more than others. (For further
work on complexity, see Araujo & Piermont, 2023; Bossaerts & Murawski, 2017; Campbell, 1988;
Carvalho & Silverman, 2019; Echenique et al., 2011). In addition, there are papers in ambiguity liter-
ature that explain ambiguity preference with complexity. For example, Ková ̌rík et al. (2016) explain
the Ellsberg paradox via complexity aversion, and Aydogan et al. (2023) show that complexity and
ambiguous preferences explain heterogeneity in Ellsberg’s urn setting.

The rest of the paper is organized as follows: Section 2 presents the experimental design. Section 3
shows the results, and Section 4 concludes the paper with a discussion.

2. Experimental design
2.1. Framework
We study a decision maker who faces wage decision problems under uncertainty with different
dimensions of complexity. A decision-maker (henceforth DM) has to decide on one wage for a job
when they do not know the exact quality of workers. In this section, we formalize the notions of
complexities that we consider.

2.1.1. Baseline – one job problem
There is one available job, and the DM wants to hire a worker to maximize their profits. There are
two candidate workers: Ann and Bob. Only one of Ann or Bob applies for the job, each with an equal
chance. The DM has to decide one wage for the job before observing who applies. Ann and Bob have
different willingnesses to accept (𝜃A and 𝜃B) and bring different revenues (vA and vB). We assume
Ann always brings higher revenue than Bob (vA > vB), Ann’s willingness to accept is lower than that
of Bob (𝜃A < 𝜃B), and the revenue Ann brings is higher than Ann’s willingness to accept (vA > 𝜃A).
A worker will accept the job if and only if the wage the DM chooses is greater than or equal to their
willingness to accept. Since Bob’s willingness to accept is greater than Ann’s, there is no wage that
Ann rejects and Bob accepts. If the worker who applies rejects the wage, then the DM’s payoff will be
0. In this problem, the set of states of the world is Ω = {A,B}, where A represents the state where
Ann applies for the job and B represents the other.

Niederle and Vespa (2023) describe the contingent reasoning process as thinking of all hypotheti-
cal states and computing payoffs for each action-state pair.6 We slightly modify this concept to define
contingent reasoning. As a first step, we define the action-derived states as contingencies. Specifically,
for any wage choice w, each state can be extended to be one where either a worker Accepts or Rejects
(for simplicity, A and R, respectively). Thus, for the entire set of wage choices, ℛ+, we can consider a
Cartesian product of extended states {A, R} × {A, R} = {(A, A), (A, R), (R, A), (R, R)}, where the

follow the commanded rules rather than rational decision-making. Thus, our results should be understood in relation to the
cost-wise result.

6They focus on the acquiring-a-company problem. This problem has a similar structure to ours, which has two states of the
world, a high value or low value, and a decision maker choosing one price.
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first element of the pair represents Ann’s decision and the second element represents Bob’s decision.7
Each wage w will trigger exactly one of these extended states. We define each element of this Cartesian
product as a contingency.

Next, for each of these contingencies, we call the wage that maximizes their utility in that con-
tingency the contingency-optimal wage. Thus, there will be four contingency-optimal wages in our
problem. We then define two levels of contingent reasoning: First, does the DM choose one of the
contingency-optimal wages? Second, do they choose the utility-maximizing wage from that set?

In our baseline setting, we can simplify the set of contingencies. Since 𝜃A < 𝜃B, we can rule out
(R, A) and consider three relevant contingencies for any wage w: (1) w ≥ 𝜃B, which triggers (A, A),
(2) 𝜃A ≤ w < 𝜃B, which triggers (A, R), and (3) w < 𝜃A, which triggers (R, R). Assuming expected
utility, the DM evaluates each w according to

U(w) =

⎧{{
⎨{{⎩

1

2
u(vA − w) + 1

2
u(vB − w) if w ≥ 𝜃B

1

2
u(vA − w) if 𝜃A ≤ w < 𝜃B

0 if w < 𝜃A,
where u(⋅) is an increasing function with u(0) = 0. Since u(⋅) is an increasing function, U decreases
in w. Thus, the contingency-optimal wage is the threshold value in each contingency: w = 𝜃B, w =
𝜃A, and w ∈ [0, 𝜃A) respectively. Our first question is whether the DM chooses one of these three
contingency-optimal wages. Then, we ask if they choose optimally from that set. Since vA > 𝜃A, it
is trivial that w < 𝜃A would give a lower utility than 𝜃A, so we can rule out w ∈ [0, 𝜃A). Thus, fully
successful contingent reasoning requires choosing the wage that maximizes the DM’s utility from
{𝜃B, 𝜃A}.

2.1.2. Various notions of dominance
As one dimension of complexity, we consider the dominance property of choices. Specifically, we
introduce a modified concept of dominant and obviously dominant strategies, called dominant and
obviously dominant choices. In addition to the well-known dominant strategies concept, Li (2017)
suggests a concept called “obviously dominant strategies” and shows that obviously dominant strate-
gies lead to rational choices more often than dominant strategies. We apply this notion, restricting
choices first to those that are contingent-optimal.8

Specifically, let W* be the set of contingency-optimal choices. By a slight abuse of notation, let u
be a function of wage and state, (w, s), in this subsection. We say that w* is dominant (or a dominant
choice) if u(w*, s) ≥ u(w, s) for all s ∈ Ω and for all w ∈ W*. We say that w* is obviously domi-
nant (or an obviously dominant choice) if mins∈Ω u(w*, s) ≥ maxs∈Ω u(w, s) for all w ∈ W*. Note
that any obviously dominant choice is also a dominant choice. For convenience, a “dominant choice”
henceforth refers to a dominant but not obviously dominant choice. We regard a decision problem
without a dominant choice to be more complex than one with a dominant choice, and a decision
problem with a dominant choice is regarded as more complex than one with an obviously dominant
choice.

In the baseline setting, if vB − 𝜃B ≤ 0 ≤ vA − 𝜃B, then 𝜃A is a dominant choice, as in Panel (b)
of Figure 1. If vB − 𝜃B ≤ 0, then 𝜃A is an obviously dominant choice (Panel (c) of Figure 1). When a
decision problem does not have a dominant choice, the success in contingent reasoning is determined
by the DM’s risk preference. For example, as in Panel (a) of Figure 1, w = 𝜃A has a higher mean but
also higher variance compared to w = 𝜃B. In this case, the optimal choice depends on the DM’s risk
preference. How we elicit a risk preference in the experiment is explained in Subsection 2.2.

7The other way to think about this is that we can understand the action-derived states as the first-order perception of the
payoff relevant states contingent on an action.

8Li (2017) uses “strategy” because the paper studies decision in game settings. In this paper, we use “choice” instead since
we consider a one-person decision problem.

https://doi.org/10.1017/eec.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/eec.2025.7


204 Hyoeun Park

Fig. 1 Dominance property of choices and the payoffs given in each state when (a) neither choice is dominant, (b) w = 𝜃A
dominates w = 𝜃B, and (c) w = 𝜃A obviously dominates w = 𝜃B.

2.1.3. Reducible problem
Oprea (2020) proposes several notions of complexity in a decision problem based on the automata
literature. “Reduciblity” is one such notion. If a decision problem can be reduced to an equivalent
problem with fewer states, then the non-reduced (we call it reducible) problem is more complex than
the reduced problem. In line with this measure of complexity, we construct a decision problem with
a reducible state that can be reduced to the one job problem.9

Consider the following decision that corresponds to this complexity. Similar to the one job prob-
lem, suppose that there is only one available job position. In the one job problem, there is always only
one applicant, either Ann or Bob. In our reducible problem, there are now three states: Ann applies
(A), Bob applies (B), and both apply (AB). If the true state is that both apply for the job (AB), then a
randomization device decides who will get the job. The DM has to decide the wage w before knowing
which is the true state.

Let a probability that the randomization device assigns to Ann in state AB be r and let the proba-
bility of a state 𝜔 being realized be p𝜔. If we assume that the DM satisfies the reduction of compound
lotteries axiom then this decision problem is equivalent to a decision problem with Ω = {A,B} with
probabilities (pA + pABr, pB + pAB(1 − r)). If pA + pABr = pB + pAB(1 − r) = 1

2
, then the problem

can be reduced to the one job problem. We regard this reducible problem as more complex than the
corresponding (reduced) one job problem.

9More precisely, Oprea (2020) refers to this notion of complexity/simplicity as “the lowest-state equivalent rule that delivers
an identical sequence of actions over all possible sequence of events.” The concept “state” used in the paper will be described
with more details in the following subsection.
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Within the reducible problems, we can also create additional complexity due to the dominance
property of choices (without dominant choices, with dominant choices, and with obviously dominant
choices) by using the same parametrizations as the one job problems.

2.1.4. Two jobs problem: Increasing the number of contingencies
Suppose now that there are two jobs, job x and job y. There is only one available position for each job.
There are two workers, Ann and Bob, who differ in their willingness to accept for each job (𝜃ij, i is Ann
or Bob, and j is job x or job y), and the revenue they bring for each job is (vij). We impose the parameter
conditions that Bob’s willingness to accept is higher than Ann’s for both jobs (𝜃Bj > 𝜃Aj, j = x, y),
Ann brings more revenue than Bob for both jobs (vAj > vBj, j = x, y), both workers have a higher
willingness to accept for job x (𝜃ix > 𝜃iy, i =Ann, Bob), and Ann brings more revenue than her
willingness to accept for both jobs (vAj > 𝜃Aj, j = x, y).

With equal chances, (1) Ann applies for job x and Bob applies for job y, or (2) Ann applies for job
y and Bob applies for job x. That means the states of the world are in Ω = {(AB), (BA)} where first
letter indicates which worker applies to job x. Under this uncertainty, the DM must decide one wage
for each job, namely, wx and wy. Like in the one job case, a worker will accept a wage offer as long as
it is greater than or equal to their willingness to accept.10 The payoff of the DM is the sum of their
earnings from the two jobs.

Even if the number of states is the same as the one job case, the number of contingencies is different.
After ruling out non-feasible contingencies, there are nine contingencies: {Both accept job x, Only
Ann accepts job x, Both rejects job x } × {Both accept job y, Only Ann accepts job y, Both rejects job
y }.11 Assuming an expected utility representation, we have the following form:

U(w) =

⎧{{{{{{{{{{{
⎨{{{{{{{{{{{⎩

1

2
u(vAx − wx + vBy − wy) + 1

2
u(vBx − wx + vAy − wy) if wx ≥ 𝜃Bx, wy ≥ 𝜃By

1

2
u(vAx − wx) + 1

2
u(vBx − wx + vAy − wy) if wx ≥ 𝜃Bx, 𝜃Ay ≤ wy < 𝜃By

1

2
u(vAx − wx) + 1

2
u(vBx − wx) if wx ≥ 𝜃Bx, wy < 𝜃Ay

1

2
u(vAx − wx + vBy − wy) + 1

2
u(vAy − wy) if 𝜃Ax ≤ wx < 𝜃Bx, wy ≥ 𝜃By

1

2
u(vAx − wx) + 1

2
u(vAy − wy) if 𝜃Ax ≤ wx < 𝜃Bx, 𝜃Ay ≤ wy < 𝜃By

1

2
u(vAx − wx) if 𝜃Ax ≤ wx < 𝜃Bx, wy < 𝜃Ay

1

2
u(vBy − wy) + 1

2
u(vAy − wy) if wx < 𝜃Ax, wy ≥ 𝜃By

1

2
u(vAy − wy) if wx < 𝜃Ax, 𝜃Ay ≤ wy < 𝜃By

0 if wx < 𝜃Ax, wy < 𝜃Ay

By a similar logic as the one job case, we can rule out wages wj < 𝜃Aj for any job j as they are
dominated by w = 𝜃Aj. Then the only possible optimal wages are either 𝜃Aj or 𝜃Bj, for j ∈ {x, y}.
Thus, the contingency-optimal wage profiles (wx, wy) are given by W* = {(𝜃Ax, 𝜃Ay),(𝜃Ax, 𝜃By),
(𝜃Bx, 𝜃Ay), (𝜃Bx, 𝜃By)}. In other words, after eliminating trivially dominated cases, the number of
relevant contingencies is four.

Like in the one job problem, the range of parameters can be divided into three cases: (1) 0 ≤
vBj − 𝜃Bj ≤ vAj − 𝜃Bj ≤ vAj − 𝜃Aj for all j ∈ {x, y}, (2) vAj − 𝜃Aj ≥ vAj − 𝜃Bj for all j ∈ {x, y},
and (3) min{vAj − 𝜃Aj, 0} ≥ max{vAj − 𝜃Bj, vBj − 𝜃Bj} for all j ∈ {x, y}. The first case does not

10Each worker’s acceptance decision is not affected by the other’s decision. That means hiring only one of the workers is
possible, depending on wage choices. For example, suppose that Ann applies for job x and Bob applies for job y. If wx > 𝜃Ax
and wy < 𝜃By, then Ann will accept, but Bob will reject, and the DM will get a payoff only from Ann at job x.

11Since 𝜃Bj > 𝜃Aj, j = x, y, it is not feasible for any job j that Ann rejects and Bob accepts.
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have a dominant choice, thus an optimal choice depends on the DM’s risk preference. Again, how we
elicit a risk preference will be explained in Subsection 2.2. The second case is one with a dominant
choice, and the third case is one with an obviously dominant choice. In these two cases, (𝜃Ax, 𝜃Ay) is
the optimal wage profile.

2.1.5. Power of certainty
Martínez-Marquina et al. (2019) show that if a decision problem is represented in two different ways,
one in a probabilistic version and the other one in a deterministic version, then failures in contingent
reasoning increase in the probabilistic version. They call the difference in failure rates due to the
existence of uncertainty the Power of Certainty. Even though the PoC might not be directly related to
complexity, we also test whether the PoC exists in our setting with a simple modification.

The PoC environment offers the deterministic version of the wage decision problem we have dis-
cussed thus far. The PoC environment is equivalent to the main model in terms of the contingency
and (expected) outcomes but has no randomness in the states of the world. We implement this by
having two jobs, one for Ann and one for Bob. A worker will accept a wage as long as it is greater than
or equal to their willingness to accept. The DM chooses only one wage that is used for both positions.
In other words, the DM does not choose different wages for Ann and Bob. They choose only one
wage, and Ann and Bob decide whether to accept the offer independently. Thus, they can hire two
workers, one worker, or no worker depending on the chosen wage w. If w is greater than or equal to a
worker’s willingness to accept, the worker accepts the offer. The DM is paid the sum of their earnings
from both jobs. To have consistency in payoffs with the one job problem, we divide total profits by
two. We refer to this as the one job PoC problem since it mimics the original one job problem but
features deterministic problems.

Contingent reasoning requires choosing a wage from the set {𝜃A, 𝜃B}. With an expected utility
representation, we have

U(w) =

⎧{{
⎨{{⎩

u( 1

2
(vA − w) + 1

2
(vB − w)) if w ≥ 𝜃B

u( 1

2
(vA − w)) if 𝜃A ≤ w < 𝜃B

0 if w < 𝜃A

This is equivalent to the original one job problem not only in a contingency sense but also in a utility
sense if the DM is risk-neutral.

The two jobs PoC problem is also modified in a similar way. There are two kinds of jobs, job x
and job y, and there are two available positions for each job. Both Ann and Bob apply for both jobs,
and they can work for both jobs if they accept both jobs. Each worker’s willingness to accept and
the revenue they bring are known to the DM. The DM submits one wage for each job, i.e., one wage
for job x, and one wage for job y. Depending on the wage chosen, the DM can hire two workers,
one worker, or no workers for each job. For consistency, we again divide total profits by two. The
contingency-optimal wages are W* = {(𝜃Ax, 𝜃Ay), (𝜃Ax, 𝜃By), (𝜃Bx, 𝜃Ay), (𝜃Bx, 𝜃By)}. Thus, the rele-
vant contingencies and preferences are the same as the original problem if the DM is risk-neutral. We
can derive the expected utility from similar arguments. Note that since there is no uncertainty, risk
preferences do not affect optimal choices in either PoC treatment.

The PoC treatment cannot include reducible problems because certainty is a key feature of that
design. Thus, we exclude reducible problems.
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Table 1. Complexity and hypotheses

2.2. Experimental implementation and hypotheses
2.2.1. Main treatment
Table 1 summarizes our design and hypotheses. The main treatment of the experiment employs a
within-subjects design consisting of two parts: (1) wage choice problems and (2) lottery choice prob-
lems. Each subject experiences both. The first part of the experiment contains the labor market setting
where a subject chooses a wage(s) for a job(s) as complexity in decision problems varies. In total, there
are nine types of questions: {one job, two jobs, reducible} × {no dominant choice, dominant choice,
obviously dominant choice}. Each question type has three questions with different parameters; thus,
there is a total of 27 questions. That means each cell of Table 1 has three questions. After the 27 wage
decision problems, subjects have 27 lottery choice problems that are equivalent to the wage decision
problems. The purpose of the lottery choice problems is to measure subjects’ risk preferences. By
doing so, we can identify subjects’ optimal wage choices for the problems where there is no dominant
choice in the equivalent wage choice problem.

From this structure, we say that a subject fails in contingent reasoning if they choose (1) any wage
other than workers’ minimum willingness to accept (for example, in the one job case, any wage other
than 𝜃A and 𝜃B) or (2) a wage in the original problem that does not correspond to their chosen lottery
in the lottery choice problem. With this concept of failures in contingent reasoning, we have the
following three hypotheses.

Hypothesis 1. Failures in contingent reasoning increase in the number of contingencies.

The first hypothesis can be tested by comparing the first (one job problems) and second row (two
jobs problems) results in Table 1. That means if a subject is more successful in the nine questions
from the first row compared to the nine questions from the second row, we can argue that failures in
contingent reasoning increase in the number of contingencies.

Hypothesis 2. Failures in contingent reasoning are more common in the reducible than in the
equivalent reduced problem.

This hypothesis is also related to the reducibility argument in Oprea (2020). The questions in the
third row (reducible problems) in Table 1 can be further reduced to the first row (one job (reduced)
problems). Thus, if subjects perform better in questions corresponding to the first row compared to
the third row, then this hypothesis is supported.

Hypothesis 3. Failures in contingent reasoning decrease when a dominant choice exists. It further
decreases when an obviously dominant choice exists.
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This hypothesis follows from Li (2017) and can be tested by comparing frequencies of choosing
optimal choices in the first (obviously dominant choice), second (dominant choice), and third (no
dominant choice) columns of Table 1.

The second part of the experiment, lottery choices, is devised to identify optimal choices in prob-
lems without a dominant choice. As stated in the previous section, when there is no dominant
choice, there is no objectively optimal wage from the set of contingency-optimal choices. Instead,
the utility-maximizing choice depends on the DM’s risk preferences.

Rather than assuming subjects are risk averse, we introduce the lottery choice prob-
lems that are induced by the contingency-optimal wages from part 1 and check whether
choices are consistent between the two. That means we create lotteries using only {𝜃A, 𝜃B} or
{(𝜃Ax, 𝜃Ay), (𝜃Ax, 𝜃By), (𝜃Bx, 𝜃Ay), (𝜃Bx, 𝜃By)}. Let ℒ(p1, z1; … ; pk, zk) be a simple lottery that gives
each zj with probability pj. Similarly, let ̄ℒ(p1,ℒ1; … ; pk,ℒk) be a compound lottery that gives each
simple lotteryℒj with probability pj. Then, each lottery choice problem has one of the following three
types:

(1) A choice betweenℒ( 1

2
, vA −𝜃A; 1

2
, 0) andℒ( 1

2
, vA −𝜃B; 1

2
, vB −𝜃B), for the one job problems,

which corresponds to w = 𝜃A and w = 𝜃B respectively,
(2) A choice between

̄ℒ( 1

3
,ℒ1(

1

2
, vA − 𝜃A; 1

2
, 0); 1

3
,ℒ2(1, vA − 𝜃A; 0, 0); 1

3
,ℒ3(0, vA − 𝜃A; 1, 0) and

̄ℒ( 1

3
,ℒ1(

1

2
, vA −𝜃B; 1

2
, vB −𝜃B); 1

3
,ℒ2(1, vA −𝜃B; 0, vB −𝜃B); 1

3
,ℒ3(0, vA −𝜃B; 1, vB −𝜃B)

for the reducible problems, corresponding to w = 𝜃A and w = 𝜃B respectively,
(3) A choice among

ℒ( 1

2
, vAx − 𝜃Ax;

1

2
, vAy − 𝜃Ay), ℒ( 1

2
, vAx − 𝜃Ax + vBy − 𝜃By;

1

2
, vAy − 𝜃By),

ℒ( 1

2
, vAx −𝜃Ay;

1

2
, vAy−𝜃Ay+vBx −𝜃Bx), andℒ( 1

2
, vAx −𝜃Bx +vBy−𝜃By;

1

2
, vAy−𝜃By+vBx −

𝜃Bx) for the two jobs problems, corresponding to (wx, wy) = (𝜃Ax, 𝜃Ay), (wx, wy) = (𝜃Ax, 𝜃By),
(wx, wy) = (𝜃Bx, 𝜃Ay), and (wx, wy) = (𝜃Bx, 𝜃By) respectively.

In problems without a dominant choice, the success of the contingent reasoning behavior is deter-
mined by the consistency between the wage decision problem and the lottery choice problem. If a
subject chooses a wage other than one of the contingency-optimal wages, then regardless of their
lottery choice, the subject is said to fail in contingent reasoning. If the subject chooses one of the
contingent-optimal wages but chooses a lottery that is induced by a different wage in that set, then it
is still a failure in contingent reasoning since the subject does not have a consistent preference. The
subject succeeds in contingent reasoning only if they choose one of the contingency-optimal wages
in the wage choice problem to accept and the equivalent lottery in the correspondent lottery choice
problem.

Even though problems with a dominant choice and an obviously dominant choice have optimal
solutions regardless of the DM’s risk preference, we still ask subjects to choose between two/four
lotteries to see whether they behave consistently.

2.2.2. Power of certainty treatment
For the Power of Certainty treatment, each subject has 18 questions presented from the first two rows
(one job and two jobs problems) of Table 1 with a deterministic representation (one job PoC and two
jobs PoC problems). For consistency, we present payoffs as 1

2
(vi−w) if a worker i accepts wage offer w.

Since optimal wages are determined regardless of the DM’s risk preference, subjects in this treatment
do not have lottery choice problems. Following Martínez-Marquina et al. (2019), we hypothesize that
the PoC treatment decreases failures in contingent reasoning.
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Hypothesis 4. Failures in contingent reasoning decrease in the deterministic problems.

2.2.3. Procedure
At the start of the experiment, subjects were given instructions and comprehension check problems.
Next, they faced 27 wage decision problems in random order and then 27 lottery choice problems in
random order. In the PoC treatment, subjects instead answered 18 wage decision problems in random
order, but were not given lottery choice problems.

In total, 162 Ohio State undergraduate students participated, 113 subjects for the main treatment
and 49 subjects for the Power of Certainty treatment.12 Subjects were recruited using ORSEE (Greiner,
2015). The participation fee was $6 for the main treatment and $3 for the PoC treatment. Subjects
also received an additional payment from one randomly selected question. Each point in the selected
question is converted to $0.30. The experiment was programmed by oTree (Chen et al., 2016).

3. Results
This section shows the results of the experiment. There was no learning effect, so we include all
decision problems for the analysis. Appendix A provides a graph for the test of the learning effect.

3.1. The number of contingencies
The questions corresponding to the first row (one job problems) and second row (two jobs problems)
of Table 1 are different only in the number of contingencies. Each row has three questions for each
dominance property of choices (without dominance, dominance, and obvious dominance). Thus,
comparing the results from the nine questions in the first row and the nine questions in the sec-
ond row allows for testing the effect of the number of contingencies (Hypothesis 1) on failures in
contingent reasoning.

We graphically illustrate our results. Figure 2 illustrates the results for the number of contingen-
cies. It shows the cumulative distribution functions (CDFs) of the number of questions answered
incorrectly, either with wages that correspond to inconsistent preferences or wages outside of the
contingency-optimal set. As the CDFs show, subjects submit incorrect answers more often in the two
jobs problems. This implies that subjects fail more in contingent reasoning with a higher number of
contingencies. The one-sided Wilcoxon signed-rank test confirms that the difference in two distribu-
tions is statistically significant with more failures in the two jobs problems (p-value < 0.0001). Also,
the Kolmogorov-Smirnov test confirms that the entire distributions are different (p-value < 0.0001).

Our regression results further confirm that the number of contingencies affects the failures in con-
tingent reasoning. For each class of question, if a subject submits correct choices for all nine questions,
then they are defined as a rational type. For one job problems, 26.5% of subjects are classified as a
rational type (p-value < 0.01). On the other hand, for two jobs problems, only 3.5% of subjects are
classified as a rational type (p-value = 0.27). In addition, we conduct Fisher’s exact test, and the test
result is consistent, with p-values less than 0.01. Detailed tables are in Appendix A.

We, therefore, confirm that a larger number of contingencies increases the failure in contingent
reasoning.

Result 1. Increasing the number of contingencies increases the failures in contingent reasoning.

12At first, we recruited 114 subjects, but one subject’s data was missing. We first ran the main treatment and then decided
to run the PoC treatment. Power calculation gives 46 subjects to replicate the results from Martínez-Marquina et al. (2019),
with 113 subjects for the main treatment.
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Fig. 2 CDFs of the number of incorrect answers

3.2. Reducibility
By the same logic applied for testing the effect of the number of contingencies, we compare the first
row (one job (reduced) problems) and the third row (reducible problems) of Table 1 to test the effect
of reducibility.

As the CDFs in Figure 3 depict, the two distributions are very close. Specifically, the one-sided
and two-sided Wilcoxon-signed rank tests show that there is no statistically significant difference (p-
value = 0.7174 and p-value = 0.7174, respectively). Also, the Kolmogorov-Smirnov test confirms that
there is no difference in the shape of distributions (p-value = 0.7189). This suggests that reducibility
does not increase the failures in contingent reasoning.

The regressions corroborate the result. In particular, the contrast p-value is 0.767, meaning there
is no statistical difference between the two. Fisher’s exact test result also shows that the difference
between reduced and reducible problems is insignificant. Detailed result tables for these tests are in
Appendix A.

Result 2. There is no difference in the failures in contingent reasoning between the reducible
problem and the equivalent reduced problem.

3.3. Various notions of dominance
The following result shows the effect of complexity due to the dominance property of choices: with-
out a dominant choice, with a dominant choice, and with an obviously dominant choice. How this
dimension of complexity affects a decision can be tested by comparing the three columns in Table 1.
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Fig. 3 CDFs of the number of incorrect answers

Figure 4 shows the distributions of the number of incorrect answers across dominance prop-
erty of choices. As we hypothesized, subjects perform the worst without dominant choices. For
example, the percentage of subjects who submit incorrect answers for more than five questions
(over half of the total) is 23% for obviously dominant (Obv) choices and 28% for dominant (Dom)
choices. However, this percentage increases drastically to 48% when no dominant choices are present
(NoDom). Moreover, a difference across the three distributions is statistically significant (p-value <
0.001 with a Kruskal-Wallis test). For the Kolmogorov-Smirnov test, the obviously dominant choices
and dominant choices are different at the marginal (p-value=0.0513), and without dominant choices
are significantly different (p-value < 0.001). Thus, the CDFs verify that the complexity due to the
dominance property of choices affects the rate of failures in contingent reasoning, as we hypothesized.

Regression results confirm these conclusions. Subjects fail in contingent reasoning the most when
a dominant choice does not exist (0.9% rational type with p-value = 0.82). The difference between a
dominant choice (34.5% rational type with p-value< 0.01) and an obviously dominant choice (50.4%
rational type with p-value< 0.01) is statistically significant, but the magnitude of difference is smaller
than the difference between without dominant choice and dominant choice. The regression table and
the Fisher’s exact test result, which is consistent with all other results, are in Appendix A.

Result 3. Failures in contingent reasoning increase when there is no dominant choice. The
improvement due to a dominant choice compared to an obviously dominant choice exists but
is smaller.
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Fig. 4 CDFs of the number of incorrect answers

Fig. 5 PoC CDFs. a) Overall b) One job problems c) Two jobs problems

3.4. Power of certainty
We test whether the PoC persists in our setting. For consistency, we exclude reducible problems from
the main treatment and compare the remaining 18 questions with the PoC treatment, which rep-
resents the same problems in a deterministic way. We ran a between-subject design for testing the
PoC.

Figure 5a illustrates the difference in distributions between the main treatment and the PoC
treatment. The difference is statistically significant (Wilcoxon rank sum test, p-value < 0.001;
Kolmogorov-Smirnov test, p-value < 0.001) with subjects submitting incorrect answers more often
in the main treatment. Thus, this shows the existence of the PoC in our setting.
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Table 2. Inconsitent and consistent wages

Inconsistent Consistent Abs. failure

One Job 27.43% 26.55% 46.02%

Two Jobs 30.97 % 3.54% 65.49%

Reducible 28.32% 28.32% 43.36%

NoDom 57.52% 0.89 % 41.19%

Dom – 34.51% 65.49%

Obv – 50.44% 49.56%

We further investigate the PoC by separating the one job and two jobs problems. Figure 5b
and Figure 5c show one job and two jobs problem distributions, respectively. There is no difference
between the two treatments when we restrict our attention to the one job problems (Wilcoxon rank
sum test, p-value = 0.87 and Kolmogorov-Smirnov test, p-value = 0.5602). On the other hand, in the
two jobs problems, subjects in the main treatment perform worse than those in the PoC treatment.
Thus, the PoC is driven by the two jobs problems (p-value < 0.001 for both Wilcoxon rank sum test
and Kolomogorov-Smirnov test). Regressions uphold the results as well. The regression tables are in
Appendix A.

Result 4. The Power of Certainty exists but is only driven by the two jobs cases.

3.5. Contingency-optimal but inconsistent wages
One concern that can arise would be a distinction between contingent reasoning and consistency in
preference: If a subject chooses one of the contingency-optimal wages that is not consistent with their
lottery choice (we call this inconsistent wage from now), then it is unclear whether this is due to failure
in contingent reasoning, inconsistency in preference, or both. Alternatively, such inconsistency could
be due to a preference for randomization over lotteries (Agranov & Ortoleva, 2017; Agranov et al.,
2023). Even though we cannot distinguish between these explanations, we can still look at frequency
of subjects choosing contingency-optimal wages as a minimal measure of contingent reasoning.13

The first column of Table 2 shows the percentage of subjects who always choose a contingency-
optimal wage but choose an inconsistent wage at least once. These numbers suggest that substantial
subjects can at least rule out wages that fall outside of the set of contingency-optimal wages. The
second column is a reiteration of the previous sections and indicates the percentage of subjects who
always choose a contingency-optimal and consistent wage. The third column is the absolute failure,
representing the percentage of subjects who do not choose contingency-optimal wages at least once.

From Table 2, we can see that there is a substantial portion of subjects who unquestionably fail in
contingent reasoning. As for the effect of complexity, the result is ambiguous: The 65.49% who fail
in dominant choices represent all possible failures of contingent thinking, while without dominant
choices, the failures of contingent reasoning are spread between the “inconsistent” and “absolute fail-
ure” categories. Whether without dominant choices (the more complex treatment) has a higher rate
of failures in contingent reasoning thus depends on what share of “inconsistent” subjects are, in fact,
failing in contingent reasoning.

13Since the PoC problems do not have uncertainty, it does not engage any kind of problem regarding inconsistent choices.
Thus, we focus only on the main treatment here.
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4. Discussion
In this paper, we study how the complexity of a decision problem can affect failures in contingent
reasoning. For the three dimensions of complexity we consider, we find that reducible states do not
affect the failures in contingent reasoning, while the other two have an effect.

Specifically, we find that an increase in the number of contingencies increases the failures in
contingent reasoning. We also find that dominance affects the failures in contingent reasoning. A
dominant choice reduces the failures compared to when a dominant choice does not exist, and
obviously dominant choices further reduce the failures. However, the difference between obviously
dominant and dominant choices is not as significant as the existing literature in strategic settings sug-
gests. For example, Kagel et al. (1987) show that in an auction setting, subjects barely deviate from
equilibrium strategies when there is an obviously dominant strategy, but persistently deviate when
an auction has a dominant but not obviously dominant strategy. Li (2017) also shows that subjects’
performance is improved substantially with an obviously dominant strategy compared to a dominant
strategy. The difference in degree between this paper and the existing literature suggests that even if
an (obvious) dominant choice is a parallel concept to an (obviously) dominant strategy, the impact
on rational decision-making can differ depending on the context.

Lastly, we show that the PoC exists but is only significant in the two jobs problems. The magnitude
of the PoC in our paper is smaller than that found by Martínez-Marquina et al. (2019). The difference
could be due to several reasons. One possibility is a population difference: OSU undergraduates and
MTurk subjects might have different sophistication levels. It is possible that as the level of sophisti-
cation of the population increases, the PoC is more likely to be relevant for problems with a higher
number of contingencies. Thus, there appear to be interesting interactions between sophistication and
the number of contingencies. The difference in results could also be driven by other design factors,
such as how risk preferences are measured or a difference in the structure of the decision problems.

In future studies, we can extend the experimental design to capture the different degrees of com-
plexities. One possible direction is to test s-complexity aversion – suggested by Oprea (2020) – in a
contingent reasoning environment by asking whether subjects are willing to bear a cost to avoid a
larger number of contingencies. This would test whether failures in contingent reasoning are due to
cognitive limitations or preferences when the number of contingencies vary. Also, we can dive deeper
into reproducibility by changing the distribution in reducible problems. Our current experiment uses
only uniform distributions. We could change the distribution to one that requires more calculations
but is still equivalent to a reduced problem. If it requires significantly more calculation and the results
change, then that would isolate a different level of complexity in the same family of problems. These
directions would help further understand how complexity and failures in contingent reasoning are
related.
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