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Abstract

In this paper we consider a class of quasi-birth-and-death processes for which explicit
solutions can be obtained for the rate matrix R and the associated matrix G. The
probabilistic interpretations of these matrices allow us to describe their elements in terms
of paths on the two-dimensional lattice. Then determining explicit expressions for the
matrices becomes equivalent to solving a lattice path counting problem, the solution of
which is derived using path decomposition, Bernoulli excursions, and hypergeometric
functions. A few applications are provided, including classical models for which we
obtain some new results.
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1. Introduction

Multidimensional Markov processes arise in many fields of science, engineering, and
business. The two-dimensional case is of particular theoretical and practical importance, often
occurring directly or through decomposition of higher-dimensional processes. In this paper our
general interest is in a class of two-dimensional Markov processes, called quasi-birth-and-death
(QBD) processes, whose transitions are skip-free to the left and to the right, with no restrictions
upward or downward, in the two-dimensional lattice. A wide variety of stochastic models fall
within this class, including random walks in the quarter-plane with unit-bounded jumps and
many applications in queueing theory.

The invariant distributions of QBD processes, under appropriate conditions, are well known
to have a matrix-geometric form. More precisely, the stationary probability vector has a geomet-
ric solution in terms of a so-called rate matrix R, which is closely related to another matrix, typ-
ically denoted by G. Together, R and G play a fundamental role in the general theory of matrix-
analytic methods. These two matrices are most often obtained by numerically computing the
solutions of nonlinear matrix equations, and many algorithms have been developed for doing so.
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On the other hand, the probabilistic significance of the R and G matrices has been well
established. Hence, in theory, these probabilistic interpretations can be used together with the
structural properties of the QBD process to derive explicit expressions for the elements of R

and G.
The research literature is quite limited with respect to explicit solutions for the R and G

matrices. Ramaswami and Latouche [17] explicitly determined R and G in QBD processes
for the special cases when the rows of the birth or death transition matrix are proportional to
a common row vector, allowing the state space to be infinite in both dimensions. Some of
these results were extended much later in [13] to Markov processes of the GI/M/1-type and
M/G/1-type. A few studies consider QBD processes with less restrictive transitions, but further
restrict attention to the R matrix and to state spaces infinite in only one dimension. Squillante
and Nelson [14], [19], [20], [21] exploited the probabilistic interpretation of R to determine
explicit solutions for its elements in various stochastic models based on path decomposition
and lattice path counting. An explicit description of R for a class of QBD processes, which
includes those in [19], [20], and [21], is presented in van Leeuwaarden and Winands [12].

In this paper we investigate a more general class of QBD processes for which we exploit
the probabilistic interpretations of R and G, and derive solutions for these matrices using
path decomposition, Bernoulli excursions, and lattice path counting. Our results are then used
to determine explicit expressions for the elements of R and G in terms of hypergeometric
functions. These explicit expressions can be used in turn to obtain explicit solutions for the
stationary distribution and related quantities of interest. Our approach, which combines various
areas of applied probability such as matrix-analytic methods and lattice path counting, is quite
general and can be applied to a wide variety of QBD processes.

We make several contributions, the first being the introduction of a class of QBD processes for
which the R and G matrices can be explicitly determined. This class includes QBD processes
that are infinite in one or both dimensions and that allow less restrictive transitions than in
previous studies, thus making the mathematical problem much more intricate and significantly
increasing the applicability of the results. Stochastic models that turn out to be members of this
class include certain random walks in the quarter-plane and various queueing systems such as
the classical longest queue, priority, and feedback models.

A second contribution is that our exact expressions for the fundamental matrix elements
provide an explicit characterization of the probabilistic and dynamic behaviors of the stochastic
process itself. Moreover, the results derived within our framework for a general class of QBD
processes lead to new results for some specific stochastic models, e.g. the longest queue model.

A final contribution is that our results provide an efficient alternative for computing the
invariant distribution over those based on numerical algorithms. Moreover, these results may
facilitate the implementation and performance of more effective numerical methods. As an
example, numerical algorithms for QBD processes that are infinite in both dimensions must be
intrinsically based on truncation of one of the dimensions. The explicit results derived in this
study can be used to reveal the potential errors induced by such truncations.

In Section 2 we consider a class of homogeneous QBD processes that serve as the initial
basis for our analysis. In Section 3 we solve for each element of R and G in terms of counting
paths on the two-dimensional lattice, and then in Section 4 we reformulate these solutions in
terms of hypergeometric functions. In Section 5 we remove several initial assumptions made
to simplify the presentation and discuss various generalizations of our analysis. In Section 6
we then present some classical stochastic models that fall within the introduced class of QBD
processes.
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2. QBD processes

Consider a continuous-time Markov process {X(t), t ∈ R+} on the two-dimensional state
space {(n, j) : n ∈ Z+, j ∈ {1, . . . , M}} that is partitioned as

⋃∞
n=0 l(n), where

l(n) = {(n, 1), (n, 2), . . . , (n, M)},
and Z+ and R+ denote the nonnegative integer and real numbers. The first coordinate n is
called the level and the second coordinate j is called the phase of state (n, j), with the set l(n)

referred to as level n. Each level may have a finite or infinite number of states, M .
This Markov process is called a QBD process when its one-step transitions from each state

are restricted to states in the same level or in the two adjacent levels, and a homogeneous
QBD process when these transition rates are additionally level independent. The infinitesimal
generator Q of the Markov process then takes the block tridiagonal form

Q =

⎛
⎜⎜⎜⎝

B A0
A2 A1 A0

A2 A1 A0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , (1)

where A0 and A2 are nonnegative matrices, and A1 and B have nonnegative off-diagonal
elements and strictly negative diagonals. Each of these matrices has dimension M × M .

Let π denote the stationary probability vector of this homogeneous QBD process. We shall
assume throughout the paper that the QBD process is irreducible and ergodic. Hence, the
stationary probability vector exists and is uniquely determined as the solution of πQ = 0 and
πe = 1, where e denotes a column vector of appropriate dimension containing all 1s. We
partition the vector π by levels into subvectors πn, n ∈ Z+, where πn has M components
corresponding to the states of l(n). The matrix-geometric solution of this partitioned stationary
probability vector is given by the following theorem.

Theorem 1. Consider a continuous-time QBD process with infinitesimal generator Q in the
form of (1). Suppose that the QBD process is irreducible and ergodic. Then its stationary
distribution π is given by

πn = π0R
n, n ∈ N, (2)

where R is the minimal nonnegative solution of the nonlinear matrix equation

A0 + RA1 + R2A2 = 0 (3)

with sp(R) < 1. Furthermore, the stationary probability vector π0 exists and is uniquely
determined by solving the boundary condition

π0B + π1A2 = π0(B + RA2) = 0 (4)

and the normalization condition

∞∑
i=0

πie = π0(I − R)−1e = 1, (5)

where I denotes the identity matrix of appropriate dimension.
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This theorem is due to Neuts for the case in which M < ∞ (see [15]); the theorem for
the case in which M = ∞ follows from the results of [23] (see also [11] and [17]) with the
spectrum and inverse related to the operator R appropriately defined (see [6], [7], and [8]).
From Theorem 1 we know that the stationary distribution is determined once R is obtained.
Several iterative algorithms exist for numerically solving (3); an overview of such algorithms
is provided in [11].

A related matrix, typically denoted by G, also plays an important role together with R in the
general theory of matrix-analytic methods. This related G matrix is the minimal nonnegative
solution of the nonlinear matrix equation

A0G
2 + A1G + A2 = 0

(see [11], [15], and [16]). Some recent algorithms for numerically solving (3) involve first
computing the matrix G and then computing the matrix R based on the relationship

R = A0(−[A1 + A0G])−1

(see [11]).

2.1. Probabilistic interpretations

Our analysis of QBD processes is based on the probabilistic significance of R and G. The
matrix R records the expected rate of visits to the states of l(n+1) per unit of local time in l(n).
More precisely, the element Rij is the expected sojourn time in (n+1, j) before the first return
to l(n) given that the process starts in (n, i), expressed in units of the mean sojourn time in
(n, i) (see [11] and [15]). Equivalently,

Rij = Vij
�ii

�jj
, (6)

where Vij is the expected number of visits to (n + 1, j) before the first return to l(n) given that
the process starts in (n, i), and � = −diag(A1) so that the fraction in (6) is the ratio of the ith
and j th diagonal elements of A1.

The matrix G records the probability, starting from l(n + 1), of visiting level l(n) in finite
time. Suppose that the process is in l(n + 1) at time 0, and define τ as the first passage time
from l(n + 1) to l(n). The element Gij then has the probabilistic description

Gij = P[τ < ∞, X(τ) = (n, j) | X(0) = (n + 1, i)]
(see [11], [15], and [16]). Under our assumption that {X(t), t ∈ R+} is irreducible and ergodic,
it follows that τ < ∞ with probability 1 and, thus,

Gij = P[X(τ) = (n, j) | X(0) = (n + 1, i), τ < ∞]. (7)

Owing to the homogeneity of Q, the elements of R and G do not depend on n ∈ Z+. We
shall exploit the probabilistic interpretations (6) and (7) in our analysis in the next two sections
to obtain explicit solutions for R and G.

3. Lattice path counting

Let us denote by 〈e1, e2〉 a one-step transition of the QBD process from state (n, j) to state
(n + e1, j + e2), n ∈ N, where the probability that this step occurs is denoted by ϕ〈e1, e2〉 and
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obtained straightforwardly from uniformization using A0, A1, A2, and �. We shall restrict our
attention to the class of QBD processes for which the only transitions from state (n, j), n ∈ N,
j ∈ {1, . . . , M − 1}, are horizontal steps 〈−1, 0〉 and 〈1, 0〉, diagonal steps 〈−1, 1〉 and 〈1, 1〉,
and a vertical step 〈0, 1〉; and the only transitions from state (n, M), n ∈ N, are horizontal
steps 〈−1, 0〉 and 〈1, 0〉.

The above restrictions imply that, from the states in l(n), n ∈ N, the QBD process cannot
move in the downward direction, and, thus, the matrices R and G are of upper-triangular form.
To elucidate the exposition, we further restrict our attention to the case where M is infinite
and the diagonal elements of A1 are all equal. The former restriction is not prohibitive and its
relaxation is discussed in Section 5, whereas the latter simply implies that Rij = Vij such that
we would instead use (6) whenever the restriction does not hold. Then, with Rh ≡ Ri,i+h and
Gh ≡ Gi,i+h, we obtain

R =

⎛
⎜⎜⎜⎝

R0 R1 R2 . . .

R0 R1 . . .

R0 . . .

. . .

⎞
⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎝

G0 G1 G2 . . .

G0 G1 . . .

G0 . . .

. . .

⎞
⎟⎟⎟⎠ . (8)

3.1. The G matrix

We now derive expressions for each element of G in (8) using its probabilistic interpretation.
Assume that at time τ the QBD process undergoes its νth transition. In order to calculate the
probability in (7), we then need to count all of the paths on the two-dimensional lattice that start
in (n+ 1, i) and end in (n, i +h) after ν steps, without visiting any of the states in l(n) prior to
the νth transition. Each step of the path will be one of the steps 〈−1, 0〉, 〈1, 0〉, 〈−1, 1〉, 〈1, 1〉,
and 〈0, 1〉.

The main idea in deriving a tractable lattice path counting problem is the decoupling of the
paths into horizontal and vertical directions.

(i) Consider a path from state (n + 1, i) to state (n, i + h), h ∈ Z+, that consists of ν steps
and that goes from l(n+1) to l(n) only at the last νth step. Assume that this path includes
s 〈−1, 1〉 steps, u 〈1, 1〉 steps, and, hence, t = h − s − u 〈0, 1〉 steps.

(ii) We first consider the path in the horizontal direction only. The diagonal steps 〈−1, 1〉 and
〈1, 1〉 influence both the horizontal and vertical directions. Therefore, we decompose
these diagonal steps into

〈−1, 1〉 = 〈0, 1〉 + 〈−1, 0〉,
〈1, 1〉 = 〈0, 1〉 + 〈1, 0〉.

(iii) The decomposition of the diagonal steps ensures that the path includes at least s 〈−1, 0〉
steps and u 〈1, 0〉 steps. Now denote the total number of 〈1, 0〉 steps by m. We then know
that the total number of 〈−1, 0〉 steps is m + 1 (including the νth step). Furthermore, it
should hold that m ≥ max(u, s − 1).

(iv) The path then consists of a total number of ν = 2m + t + 1 steps, 2m + 1 of which are
in the horizontal direction. When we omit the νth step, the 2m horizontal steps form
a Bernoulli excursion (see [22]). The excursion starts in (n + 1, i) and consists of m

〈1, 0〉 steps and m 〈−1, 0〉 steps. Any sequence of steps may occur provided that there
are, at each point during the excursion, at least as many 〈1, 0〉 steps as 〈−1, 0〉 steps; for
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(n, i) 2 4 7 5 1

(n, i + 5)

(n, i)

1 1

1 3 2

1

1 1

2

1 1 2 1

2 1

(a) Path from state (n + 1, i) to (n, i + 5).

(n, i + 5)

(n, i)

1 1

2 2

1

111

1

1 1 2 1

12 2

3

(b) Same path as (a) without diagonal steps.

(c) Bernoulli excursion.

Figure 1: Example of path decomposition and corresponding Bernoulli excursion.

otherwise, l(n) is visited, and the condition in (i) is violated. The number of possible
Bernoulli excursions is given by the mth Catalan number:

1

m + 1

(
2m

m

)
. (9)

To further elucidate the main idea, let us illustrate the above procedure with an example. In
Figure 1(a) we depict a path from state (n+1, i) to state (n, i +5) that consists of ν = 21 steps
and that goes from l(n + 1) to l(n) only at the νth step. We have indicated in Figure 1(a) the
number of times each state is visited. The path includes s = 2 〈−1, 1〉 steps, u = 1 〈1, 1〉 step,
and t = 2 〈0, 1〉 steps. The diagonal steps are decomposed, leading to the path in Figure 1(b).
We then remove the vertical steps to obtain the Bernoulli excursion shown in Figure 1(c). This
path is just one out of 1

10

(18
9

) = 4862 possible Bernoulli excursions that consist of 2m = 18
steps. In the above procedure we consider just one path from state (n, i) to state (n, i +h), and
reduce it to a Bernoulli excursion.

Let us now change perspective to reflect our original lattice counting problem. Namely,
starting from a Bernoulli excursion of length 2m, we consider how many paths from state (n, i)

to state (n, i+h) can be constructed with s 〈−1, 1〉 steps, u 〈1, 1〉 steps, and, thus, t = h−s−u

〈0, 1〉 steps. First, some definitions are needed.

Definition 1. Define Lh(s, u, m) to be the number of paths from (n+1, i) to (n, i+h), h ∈ Z+,
that consist of ν = 2m + 1 + t steps and that go from l(n + 1) to l(n) only at the νth step.
Assume that each path includes s 〈−1, 1〉 steps, u 〈1, 1〉 steps, and, hence, t = h − s − u 〈0, 1〉
steps. Define Ph(s, u, m) to be the probability of each such path.
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Obviously, we have

Ph(s, u, m) = ϕ〈−1, 1〉sϕ〈0, 1〉t ϕ〈1, 1〉uϕ〈1, 0〉m−uϕ〈−1, 0〉m+1−s . (10)

For Lh(s, u, m), we establish the following result.

Lemma 1. Given values of s and u such that s + u + t = h, we have

Lh(s, u, m) = 1

m + 1

(
2m

m

)(
m + 1

s

)(
m

u

)(
2m + t

t

)
. (11)

Proof. (a) Consider a Bernoulli excursion of length 2m. We will extend the Bernoulli ex-
cursion, which describes the path in the horizontal direction, by the vertical steps to reconstruct
a path from state (n+1, i) to state (n, i +h). The vertical steps consist of s + t +u 〈0, 1〉 steps.
However, because of the decomposition in (ii), s steps should be matched to 〈−1, 0〉 steps and
u steps should be matched to 〈1, 0〉 steps. The number of ways to do this is

(
m + 1

s

)(
m

u

)
. (12)

(b) This leaves the placement of the t original 〈0, 1〉 steps, which can be placed in every state
visited by the Bernoulli excursion. This means that we have 2m + 1 possible states in which
the t 〈0, 1〉 steps can be placed. Note that it is possible for multiple steps to be placed in one
state. Therefore, placing the t 〈0, 1〉 steps is equivalent to distributing t balls over 2m + 1 bins,
and the number of ways to do so is (

2m + t

t

)
. (13)

Combining (9), (12), and (13) completes the proof.

Using (7) and Gh = Gi,i+h, we arrive at our main result for the elements of G.

Theorem 2. For all h = 0, 1, . . . , we have

Gh =
h∑

s=0

h−s∑
u=0

∞∑
m=max(u,s−1)

Lh(s, u, m)Ph(s, u, m), (14)

with Ph(s, u, m) as in (10) and Lh(s, u, m) as in (11).

To illustrate this result, we return to the example path in Figure 1(a)–(c). Starting from the
Bernoulli excursion in Figure 1(c), the path in Figure 1(a) is just one of the

(10
2

)(9
1

)(20
2

) = 76 950
paths that can be constructed with s = 2 〈−1, 1〉 steps, u = 1 〈1, 1〉 step, and t = 2 〈0, 1〉 steps.

3.2. The R matrix

We shall now derive expressions for each element of R in (8) using the probabilistic
interpretation in (6). This requires us to determine Vi,i+h, the expected number of visits to
state (n + 1, i + h) in the two-dimensional lattice before a return to l(n), given that the process
starts in (n, i). The main idea is to decompose the lattice path counting problem into first
passage and return visits.

Definition 2. Define κh to be the probability that the QBD process reaches state (n+1, i +h),

h ∈ Z+, before the first visit to l(n), given that the process started in state (n + 1, i).
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Definition 3. Define γ to be the expected number of visits to state (n + 1, i + h) before the
first visit to l(n), given that state (n + 1, i + h) is reached at least once.

It is then clear that

Rh = Vi,i+h = (ϕ〈1, 0〉κh + ϕ〈1, 1〉κh−1)γ. (15)

We first consider γ and suppose that the QBD process enters state (n+1, i+h) for the first time.
Then, the path will go through state (n+ 1, i +h) for a second time (before visiting l(n)) when
the process moves to (n + 2, i + h), starts a Bernoulli excursion of 2m steps (m = 0, 1, . . .),
and returns from state (n + 2, i + h) to state (n + 1, i + h). With ω = ϕ〈1, 0〉ϕ〈−1, 0〉 ≤ 1

4 ,
the probability that this event happens is given by

η = ω

∞∑
m=0

1

m + 1

(
2m

m

)
ωm = 1 − √

1 − 4ω

2
(16)

(see, e.g. [22, p. 561]). Thus, since γ = 1 + ηγ , we eventually obtain

γ = 2

1 + √
1 − 4ϕ〈1, 0〉ϕ〈−1, 0〉 . (17)

Now turning to the probabilities κh, it obviously holds that κ0 = 1, and some reasoning
yields

κh = ϕ〈0, 1〉κh−1 + ϕ〈1, 0〉
h∑

j=0

Gh−j κj + ϕ〈1, 1〉
h−1∑
j=0

Gh−j−1κj , h = 1, 2, . . . .

Rewriting this expression renders, for h = 1, 2, . . . ,

κh = ϕ〈0, 1〉κh−1 + ϕ〈1, 0〉 ∑h−1
j=0 Gh−j κj + ϕ〈1, 1〉 ∑h−1

j=0 Gh−j−1κj

1 − ϕ〈1, 0〉G0
. (18)

A combination of (15), (17), and (18) leads to our main result for a description of the elements
of R.

Theorem 3. For all h = 0, 1, . . . , we have

Rh = 2(ϕ〈1, 0〉κh + ϕ〈1, 1〉κh−1)

1 + √
1 − 4ϕ〈1, 0〉ϕ〈−1, 0〉 ,

where κh is as in (18), κ0 = 1, and κ−1 is taken to be 0.

4. Hypergeometric functions

We next express our results for the elements of G and R in terms of hypergeometric functions,
which are defined as

F(a, b; c; z) = 	(c)

	(a)	(b)

∞∑
n=0

	(a + n)	(b + n)

	(c + n)

zn

n! , (19)

where 	(·) is the gamma function. We shall need the following result.
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Lemma 2. For n = 1, 2, . . . and t = 1, 2, . . . ,

	

(
n + t

2

)
=

√
π

22(n−1)+t

	(2n + t − 1)

	(n + t/2 − 1/2)
. (20)

Proof. The case in which t = 1 can be found in [1, pp. 255–256], and is given by

	

(
p + 1

2

)
=

√
π

22p−1

	(2p)

	(p)
, p = 1, 2, . . . . (21)

For t = 2m, m = 1, 2, . . . , identity (20) reduces to

	(n + m) =
√

π

22(n+m−1)

	(2(n + m) − 1)

	(n + m − 1/2)
.

This yields

	

(
n + m − 1

2

)
=

√
π

22(n+m−1)

	(2(n + m) − 1)

	(n + m)

=
√

π

22(n+m−1)−1

	(2(n + m − 1))

	(n + m − 1)
,

which is equivalent to (21) for p = m+n−1. In the case in which t = 2m+1, m = 0, 1, . . . ,
identity (20) can be written as

	

(
m + n + 1

2

)
=

√
π

22(n+m)−1

	(2(n + m))

	(n + m)
,

which is equivalent to (21) for p = m + n. This completes the proof.

We now consider the infinite series in (14):

∞∑
m=max(u,s−1)

Lh(s, u, m)Ph(s, u, m), (22)

where Ph(s, u, m) and Lh(s, u, m) are as in (10) and (11). For the case in which s − 1 ≥ u,
we can express (22) in terms of the gamma function (see [1, pp. 255ff.]) as

ϕ〈−1, 1〉sϕ〈0, 1〉t ϕ〈1, 1〉uϕ〈1, 0〉s−1−u

s! t ! u!
∞∑

m=0

	(2m + 2s + t − 1)

	(m + s − u)

ωm

m! , (23)

where ω = ϕ〈1, 0〉ϕ〈−1, 0〉, as previously defined. From Lemma 2 we obtain

	(2m + 2s + t − 1) = 22(m+s−1)+t

√
π

	

(
m + s + t

2

)
	

(
m + s + t − 1

2

)
(24)

and
22s−2+t

√
π

= 	(2s + t − 1)

	(s + t/2)	(s + (t − 1)/2)
. (25)
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Substituting (24) and (25) into the series in (23), and using (19), yields

∞∑
m=0

	(2m + 2s + t − 1)

	(m + s − u)

ωm

m! = 22s−2+t

√
π

∞∑
m=0

	(m + s + t/2)	(m + s + (t − 1)/2)

	(m + s − u)

(4ω)m

m!

= (2s + t − 2)!
(s − u − 1)! F

(
s + t

2
, s + t − 1

2
; s − u; 4ω

)
,

and, hence (suppressing the indices of Lh and Ph),

∞∑
m=s−1

LhPh = ϕ〈−1, 1〉sϕ〈0, 1〉t ϕ〈1, 1〉uϕ〈1, 0〉s−1−u

× (2s + t − 2)!
s! t ! u! (s − u − 1)!F

(
s + t

2
, s + t − 1

2
; s − u; 4ω

)
. (26)

In a similar manner, we obtain, for the case in which u > s − 1 (again suppressing indices),

∞∑
m=u

LhPh = ϕ〈−1, 1〉sϕ〈0, 1〉t ϕ〈1, 1〉uϕ〈−1, 0〉u+1−s

× (2u + t)!
s! t ! u! (u − s + 1)!F

(
u + 1 + t

2
, u + 1 + t − 1

2
; u − s + 2; 4ω

)
. (27)

The hypergeometric function F(a + 1
2 , a; c; z) that emerges in both cases of the infinite

series can be rewritten as

F
(
a + 1

2 , a; c; z
) = F

(
a, a + 1

2 ; c; z
)

= 2c−1	(c)z1/2−c/2(1 − z)c/2−a−1/2P 1−c
2a−c((1 − z)−1/2),

where P
µ
ν (·) is the Legendre function of the first kind (see [1, p. 562]). Using the relation

P µ−1
ν (z) = P

µ
ν+1(z) − P

µ
ν−1(z)

(2ν + 1)
√

z2 − 1

(see [1, p. 334]), we can recursively express the Legendre function P
µ
ν in terms of Legendre

polynomials P 0
ν . In turn, these Legendre polynomials have the following explicit form

P 0
ν (x) = 1

2ν


ν/2�∑
m=0

(−1)m
(

ν

m

)(
2(ν − m)

m

)
xν−2m

(see [1, p. 775]), which implies that all of the above hypergeometric functions can be computed
in a finite number of steps.

5. Generalizations

Many assumptions in the foregoing analysis were made to simplify the presentation. Indeed,
our results hold for the class of nonhomogeneous QBD processes in which the levels are divided
into a nonhomogeneous boundary, comprised of l(0), . . . , l(N), and a homogeneous portion,
comprised of l(N +1), l(N +2), . . . , N < ∞. The generator Q in this case takes the form (1)
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but with the four matrices in the upper leftmost corner replaced by B00, B01, B10, and B11
having dimensions NM × NM , NM × M , M × NM , and M × M . Equations (2), (4), and (5)
are then replaced by

πN+n = πNRn, n ∈ N,

and

(π0, π1, . . . ,πN)

(
B00 B01
B10 B11 + RA2

)
= 0,

(π0, π1, . . . ,πN−1)e + πN(I − R)−1e = 1.

The number of phases for l(n), n ∈ {0, . . . , N}, can be further generalized to an arbitrary Mn.
Owing to the homogeneous portion of Q, the elements of R and G do not depend on l(N +n),
n ∈ N, and are given by the results in Sections 3 and 4.

Furthermore, our analysis directly applies to discrete-time Markov processes since the
probabilistic significance of R and G in this case are Rij = Vij and the discrete-time version
of (7) (see [11], [15], and [16]). The restriction of M = ∞ does not cause any major technical
difficulties and our analysis can be extended to handle the M < ∞ case; the technical details
are somewhat tedious due to the additional boundary and the different transitions for phase M

in each level of the homogeneous portion (since no vertical or diagonal transitions are allowed),
and, therefore, are omitted in the present paper. As previously noted, when �ii �= �jj for one
or more i, j ∈ {1, . . . , M}, then our results are straightforwardly adjusted according to (6).

More fundamental extensions of the introduced class of QBD processes are also possible.
A critical factor in our analysis is that these QBD processes cannot move downward due to
directional restrictions on vertical and diagonal transitions. Similar results may be obtained for
classes of QBD processes that cannot move upward (due to the opposite directional restrictions),
leftward or rightward (both due to directional restrictions on horizontal and diagonal transitions);
see [12] for analogous rotations of a strict subset of these transitions. Although the basic
approach may not be fundamentally different from our analysis here, many subtleties need to
be addressed and specific probabilistic arguments are required in the analysis of this extended
class of QBD processes; these technical details remain for future research. Stochastic models
falling in the extended class include a make-to-order/make-to-stock system [3], a two-machine
re-entrant line [2], and many more.

6. Applications

We end this paper by briefly discussing three classical stochastic models that are members
of the introduced class of QBD processes. To simplify the presentation, we primarily focus on
symmetric systems in which two queues are served by a single server. Namely, at each queue
customers arrive according to a Poisson process with rate λ and both customer types require
exponentially distributed service times with mean µ−1. The models differ, however, in the way
the server capacity is shared among the two queues as explained below. Once again, we stress
that many more stochastic models fall within the introduced class.

6.1. Longest queue model

In the first model, the server always serves the longest queue, where ties are resolved
randomly and the service policy is applied preemptively. This model has been investigated
in several studies; see, e.g. [5], [9], and [24]. If (n, j) denotes the state where, in equilibrium,
the difference D = |L1 −L2| between the two queue lengths is n and the shortest queue length
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L∗ = min(L1, L2) is j , then the QBD queue length process under the single-server longest
queue policy is described by the matrices

A0 =
⎛
⎜⎝

λ

λ

. . .

⎞
⎟⎠ , B01 =

⎛
⎜⎜⎜⎝

2λ

µ 2λ

µ 2λ

. . .
. . .

⎞
⎟⎟⎟⎠ , B00 =

⎛
⎜⎝

−2λ

δ

. . .

⎞
⎟⎠ ,

and

A1 = B11 =
⎛
⎜⎝

δ

δ

. . .

⎞
⎟⎠ , A2 = B10 =

⎛
⎜⎝

µ λ

µ λ

. . .
. . .

⎞
⎟⎠ ,

where N = 1 and δ = −(µ + 2λ). The multi-server version of this model also falls
within the introduced class of QBD processes, where N reflects the number of servers and
the nonhomogeneous boundary is appropriately adjusted.

For the single-server and multi-server longest queue policies, where both t = 0 and u = 0,
(26) significantly simplifies as shown below.

Proposition 1. If s = 0, we have

∞∑
m=0

Lh(0, 0, m)Ph(0, 0, m) = 1 − √
1 − 4ω

2ϕ〈1, 0〉 , (28)

and if s ≥ 1, we have

∞∑
m=s−1

Lh(s, 0, m)Ph(s, 0, m) = ϕ〈−1, 1〉sϕ〈1, 0〉s−1 (2s − 2)!
s! (s − 1)! (1 − 4ω)1/2−s .

Proof. Equation (28) follows directly from (16). From (26), it follows that

∞∑
m=s−1

Lh(s, 0, m)Ph(s, 0, m) = ϕ〈−1, 1〉sϕ〈1, 0〉s−1 (2s − 2)!
s! (s − 1)!F

(
s, s − 1

2 ; s; 4ω
)
.

The fact that F(s, s − 1
2 ; s; 4ω) = F(s − 1

2 , s; s; 4ω), together with the identity F(a, b; b; z)=
(1 − z)−a (see [1, p. 556]), then completes the proof.

6.2. Priority model

In the second application we investigate the single-server case where queue 1 has (fixed)
priority over queue 2. More specifically, we consider the preemptive priority rule which implies
that type-1 customers are allowed to interrupt type-2 customers. This model has a long history;
see, e.g. [4] and [10]. Let (n, j) denote the state where, in equilibrium, the lengths of queues
1 and 2 are n and j , respectively. The QBD queue length process is described by the matrices

A0 = B01 =
⎛
⎜⎝

λ

λ

. . .

⎞
⎟⎠ , A2 = B10 =

⎛
⎜⎝

µ

µ

.. .

⎞
⎟⎠ ,
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and

A1 = B11 =
⎛
⎜⎝

δ λ

δ λ

. . .
. . .

⎞
⎟⎠ , B00 =

⎛
⎜⎝

−2λ λ

µ δ λ

. . .
. . .

. . .

⎞
⎟⎠ ,

where N = 1 and δ = −(µ + 2λ).
Since both s = 0 and u = 0 in the priority model, (27) can be simplified as follows.

Proposition 2. If s = 0 and u = 0, we have

∞∑
m=0

Lh(0, 0, m)Ph(0, 0, m) = ϕ〈−1, 0〉ϕ〈0, 1〉tF
(

1 + t

2
, 1 + t − 1

2
; 2; 4ω

)
.

Proof. The proof follows immediately from (27).

6.3. Feedback model

In our final example we consider a single-server, two-queue system with feedback, where
queue 1 has preemptive priority over queue 2; see, e.g. [18]. Upon arrival, customers enter
queue 1, and after receiving service, they either depart the system or join queue 2 (with equal
probability); in the latter case, customers depart the system after being served at queue 2. Let
(n, j) denote the state where, in equilibrium, the length of queue 1 is n and the number of
customers that will eventually ask for service in queue 2 (including those still in queue 1) is j .
The associated QBD process is described by the matrices

A0 = B01 =
⎛
⎜⎝

λ λ

λ λ

. . .
. . .

⎞
⎟⎠ , A2 = B10 =

⎛
⎜⎝

µ

µ

.. .

⎞
⎟⎠ ,

and

A1 = B11 =
⎛
⎜⎝

δ

δ

. . .

⎞
⎟⎠ , B00 =

⎛
⎜⎝

δ

µ δ

. . .
. . .

⎞
⎟⎠ ,

where N = 1 and δ = −(µ + 2λ). We again obtain a simplified version of (27).

Proposition 3. If s = 0 and t = 0, we have

∞∑
m=u

Lh(s, u, m)Ph(s, u, m) = ϕ〈1, 1〉uϕ〈−1, 0〉u+1 (2u)!
u! u! (4ω)−u−1B4ω

(
1 + u, 1

2 − u
)
,

where Bx(·, ·) is the incomplete beta function defined by (see [1, p. 263])

Bx(a, b) =
∫ x

0
ta−1(1 − t)b−1 dt.

Proof. In the case in which s = 0 and t = 0, (27) reduces to

∞∑
m=u

Lh(s, u, m)Ph(s, u, m) = ϕ〈1, 1〉uϕ〈−1, 0〉u+1 (2u)!
(u + 1)! u!F

(
u + 1, u + 1

2 ; u + 2; 4ω
)
.
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The identity

Bx(a, b) = xa

a
F (a, 1 − b; a + 1; x)

(see [1, p. 263]) then completes the proof.
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