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STOCHASTIC GROWTH MODELS: BOUNDS ON CRITICAL VALUES

R. DURRETT,· Cornell University

Abstract

We give upper bounds on the critical values for oriented percolation and some
interacting particle systems by computing their behavior on small finite sets.
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1. Introduction

Many results have been proved for interacting particle systems by showing that when
viewed C?n suitable length and time scales, the process dominates oriented percolation.
Here, we use this comparison to give upper bounds on critical values for oriented site
percolation, the contact process and a process with sexual reproduction.

(a) Oriented site percolation. We begin with an account of the necessary defini
tions. See Durrett (1984) or Durrett (1988), Chapter 5, for more details. Let !R =

{(x, n)E7L2 : x + n is even}. The notation indicates that we are thinking o·f the first
coordinate as space and the second as time. Independently each site (x, n) E!R is
designated as open (1/(x, n) = 1) or closed (1/(x, n) = 0) with probabilities p and 1 - p.

We say that (xo, n), (Xl' n + 1),· · ., (xm , n + m) is a path from (x, n) to (y, n + m) if
Xo = x, x.; = Y and for 1 ~ k ~ m, x, E {x, _1 + 1, Xk _ 1 - I} and (Xk' n + k) is open.
Notice that (x, n) is not required to be open. We say that (y, n + m) can be reached from
(x, n) inside A if there is a path from (x, n) to (y, n + m) that lies inA. IfA =!R we drop
the phrase 'inside A ' and write (x, n) --+ (y, n + m).

Let ~o = {(x, n) : (0, 0) --+ (x, n)} and noo = { I~o I = oo}. ~o is the cluster containing
the origin (0, 0). noo is the event that 'percolation' occurs, i.e., ~o is infinite. Let
Pc = inf{ p : pp(noo )> O}, where the subscript p indicates the parameter value. Pc is
called the critical value for percolation because pp(noo ) = 0 if p < Pc and pp(noo ) > 0 if
P > Pc. It is well known that

(1) Pc < 80/81 ~ 0.987654321.
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12 R. DURRETT

This result was proved by a 'contour argument.' By more carefully counting the number
of contours, Toom (1968) was able to show that Pc < 0.93.

To improve Toom's bound we show that if the probabilities ofevents in certain boxes
are large enough then percolation occurs. Suppose for concreteness, B = ( - 1, 11) X

[0, T], and tile the plane with translates of B, i.e., Bm,n = (6m, Tn) + B for (m, n)E.IR'
where z" is a copy of.IR. Let J = {2, 4, 6, 8}, let I = J X {OJ, and translate I in a similar
fashion: Im,n = (6m, Tn) + I. For j E J let G~ be the event that U,0) is connected to 1_ 1,1

and to 11,1 inside Bo,o, i.e., to {O, 2} X {T} and to {8, 10} X {T}. (See Figure 1.) The
boxes Bm,n are disjoint, so the occurrence of translates of G~ by (6m, nT) with
(m, n)E!£' are independent. It is for this reason we allow the first site in the path to be
closed.

o 2 4 6 8 10

Figure 1

Lemma 1. If site percolation with parameter ¢JT( p) percolates on .IR' then site
percolation with parameter p percolates on .IR.

The events are designed so that if G~ occurs in Bm n then we get starting points for
some G} in Bm+l,n+1 and some Gt in Bm-l,n+l. L~t ¢Jr(p) = minj E J l'p(G?). Once
enough notation is introduced, it is not hard to show the following result.

The second ingredient in deriving our new bounds is a result from reliability theory
that appears on p. 211 ofBarlow and Proschan (1965). To state their result we need some
definitions. A monotonic structure function is the indicator function of an increasing
event. That is, it is a function IJI: {O, I} n -+ {O, I} so that if X; ~ y; for 1~ i ~ n then
lJI(x)~ IJI(Y). Intuitively, 0 means failed and 1 means working and lJI(x) gives the
state ofa machine when its n components have states given by x. The reliability function
of a monotonic structure is h(p) = EIJI(Xp ) where Xp is a vector in which the n
components are independent and take the values 1 and 0 with probabilities p and 1 - p.

Let Lx (or O;x) be the vectors obtained by setting the ith component of x to 1 (or 0).
Component i is said to be essential if IJI( Lx) =F IJI(O;x) for some x and inessential
otherwise.

Lemma 2. Let h(p) be the reliability function ofa monotonic structure with at least
two essential components. Then for p E (0, 1)
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h'(p» h(p)(l-h(p».
p(1 - p)

When h(p) = p this says h '( p) > 1, so the graph of h can only cross the line y = x
from below to above. In particular if h(p) > p then h(q) > q for all q E ( p, 1). Using
the last conclusion with h = ¢Jr it follows that if ¢Jr( p) > p then iteration of ¢Jr
drives ¢J~(p) t 1, so repeatedly applying Lemma 1 and then using (1) gives the following
result.

Theorem 1. If¢Jr( p) > p for some T> 0 then Pp(Qoo) > O.

The probabilities ¢Jr( p) are tedious to compute by hand. However for a fixed value
ofp, it is not hard to evaluate ¢Jr( p) on a computer. For fixedj, Wn = {x : U, 0)~ (x, n)
in B} is a Markov chain whose state at even times is a subset of {O, 2, 4, 6, 8, 10}
and at odd times is a subset of {I, 3, 5, 7, 9}, and it is easy to write a formula for the
transition probability. A little experimentation shows that ¢J12(0.901) = 0.90194, and
hence Pc < 0.901.

There is nothing special about the choice ofB in the argument above. By using larger
boxes and intervals one gets better results as shown in Table 1.

TABLE I

Sites

6/5
8/7

10/9

B

(-I,II)X[O,12]
( - I, 15) X [0, 18]
( - I, 19) X [0, 25]

I

[2, 8]
[2,12]
[2,16]

Bound

0.901
0.842
0.819

The first column indicates the number of sites at even and odd times. For a given
width, the interval and time have been chosen to optimize the result. The sequence ends
with strips of width 20 because in this case each value of p investigated took about 35
minutes on a personal computer running at 12 Mhz, and the next case (12/ 11) would take
at least 16 times as long. One could of course turn to a bigger, faster computer but our
experimentation showed that the next bound would not be a big improvement
(> 0.805). In our exploratory runs we saved work by just checking that Pp(Gl-) > p,
trusting in the fact that the worst case is j = 2. Because the bound

(2) Pc<0.819

is crucial for the developments below, we have verified our intuition in this case:

2
0.82062

4
0.86012

6
0.87084

8
0.87380

The answers for 16, 14, 12, and 10 are the same, by symmetry.
The bounds just given stop far short of the critical value, which is estimated to be

0.7058 (see Kinzel and Yeomans (1981». A little thought reveals that even in very large
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14 R. DURRETT

boxes we can have ¢JT( p) > P only if pp(n,xJ> p so the bounds, as they are formulated
now, cannot converge to the critical value. This defect could be remedied by replacing
the G~ by events that start with more than one occupied site, but for the boxes
considered above this does not give a better bound.

(b) Contact process. Again we begin with an account of the necessary definitions.
This time the reader can find more details in Chapter VI ofLiggett (1985) or Chapter 4 of
Durrett (1988). In the (basic one-dimensional) contact process et C 7L. and the system
evolves as follows:

(i) Particles die at rate 1; i.e., if x E et then P(x fI- et +s Iet) = s + o(s) as s -+ o.
(ii) Particles are born at rate A times the number of occupied neighbors; i.e. if

x fl-et then

as s -+0.

In this model the empty set is an absorbing state and attention focuses on noo = {e? =1= 0
for all t}, i.e. the event that the process does not die out starting from a single particle at
O. P). (Q oo) is a non-decreasing function of A, so there is a critical value Ac =

inf'[L: P).(Qoo ) > OJ. Comparing with a branching process shows Ac ~ 1/2, but it is much
harder to show that Ac < 00. Harris (1974) was the first to do this. He compared the
contact process with oriented site percolation, and used (1) to conclude that Ac < 00.

Harris did not compute an explicit upper bound, but a slight improvement of his
argument given on pp. 87-89 of Durrett (1988) shows Ac < 1328. One of the problems
with this result is that (1) is crude. Replacing Pc < 80/81 by our new bound (and taking
l5 = 1/12 in the argument in Durrett (1988)) reduces the bound to

(3)

Harris's argument is based on comparison events for which it is easy to compute the
probability. By using events similar to the ones employed in Part (a), the result can be
improved further. Let A = {a, 1,· · ., 2K - I} and let ~t be a version of the contact
process in which births outside A are not allowed. Let J = {I,· · ., 2K - 2} and let
Jm = mK + J. For each j E J let G~ be the event that ~if) contains points in J1 and
J -1 at time T. Here and in what follows the superscript indicates the sites that are
occupied at time O. Let ¢JT(A) = minj E J P( G~). An argument similar to the proof of
Lemma 1 shows

(4) if ¢JT(A) ~ 0.819 for some T> 0 then A > Ac •

Using (4) we get the bounds shown in Table 2. The methods used to obtain them are
explained in Section 3.

The number of sites is 2K. The number of flips is (2AT) times the number ofsites. The
sources column indicates that for 6 or 8 sites we did what was advertised above, but for
10 sites we start with two particles. That is, for {i ,j} C {I,· · ., K - I}, we let G ~j be the
event that ~¥,j} contains at least two points in J1 and in J -1. We only consider sources in
one half of the interval because only half of J1 and J -1 lie in A.
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TABLE 2

15

Sites

6
8

10

Sources

1
1
2

Flips

236
420
690

Bound

6.20
4.95
3.95

The first of these results is already better than the bound Ac < 7 that Gray and
Griffeath (1982) get from a 'continuous time' contour argument. However, none of these
bounds come close to the remarkable result of Holley and Liggett (1978):

(5)

which is only 20 per cent larger than Brower et al.'s (1978) estimate Ac~ 1.645. Indeed,
computer simulations of large systems indicate that we cannot do better than (5) with
less than 60 sites.

As in the case of oriented percolation we saved work by only checking the worst case,
i.e, for 10 sites we checked that P(G~),2})~ 0.819. It seems intuitively clear that moving
one or both particles closer to the middle improves the probability, but we do not know
how to show this. Since our best bound is worse than (5), we have not bothered to verify
(as we did for (2» that the desired event has probability ~ 0.819 for all initial
configurations.

(c) Sexual reproduction. This model is a variation of the contact process in which
two particles are needed to produce a new one for the state at time t, et C 7L and the
system evolves as follows:

(i) Particles die at rate 1.
(ii) If x and x + 1are occupied then new particles are produced at rate 2A and are sent

with equal probability to x-I and x + 2.
(iii) If the site to which the particle is sent is occupied the two particles coalesce to 1.

If (ii) were changed to:
(ii') Ifx is occupied then new particles are produced at rate 2A and are sent with equal

probability to x-I and x + 1,
we would have the contact process. As in that model, the empty set is an absorbing state,
attention focuses on Qoo = {e{O,l} =1= 0 for all t}, and there is a critical value Ac =

inf'[L:p;.(Qoo) > O}. Comparing with a branching process shows Ac ~ 1. (When there are
k particles the death rate is k, and the birth rate is ~ 2A[k/2], where [x] is the greatest
integer ~ x.) By looking at the rightmost occupied site (see Section 4), it is not hard to
improve the last result to

(6)

As usual, upper bounds are harder to come by. Using our new improvement of Harris's
argument (i.e. the proof of (3» we can show

(7)
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16 R. DURRETT

Again details will be given in Section 4.
The bound (7) can be improved dramatically by using the methods we applied to the

contact process. Let A = {O, 1,· · ., 2K - I} and let ~t be a version of sexual reproduc
tion in which births outside A are not allowed. Let J = {I,· · ., 2K - 2}, and Jm =

mK + J. For 1~j ~ K - 2 let G~ be the event that ~¥,j+l} contains a pair of sites in JI

and a pair in J-I. Let

¢JT(A) = inf P(G~ ).
sst ex>:

An argument similar to the proof of Lemma 1 shows that

(8) if ¢JT(A) ~ 0.819 for some T> 0 then A> Ac •

Using this result gives the bounds shown in Table 3.

TABLE 3

Sites Flips Bound

6 108 32
8 230 23

10 380 15.1
12 625 13.7

As in the two previous cases we saved work by only computing P( G}). To verify the
bound for 12 sites we have computed the probabilities for the other cases:

1
0.82053

2
0.84606

3
0.85298

4
0.85521

The sexual reproduction process has not been studied in the physics literature, so we
are left on our own to determine the critical value. Let ~t denote the process starting
from ~o = {O, - 1, - 2,· · .} and let r t = sup ~t. As explained in Section 4, if Er, < 0
then A< Ac • To investigate Er, we simulated et, a modification of ~t in which all sites
~ - 500 were always occupied. When A = 3.6, the average value of sup esoo for 100 runs
was - 25.52 indicating that Ac > 3.6. For a 'bound' in the other direction we simulated
the process with A = 3.8 on an interval of length 10000 with periodic boundary
conditions starting from all sites occupied. Figure 2 shows the fraction of occupied sites
plotted against time. The graph suggests that the density is converging exponentially fast
to a limiting value about 0.55. Combining the last two observations suggests that
Ac~3.7.

2. Proof of Lemma 1

We begin by recalling some definitions from the introduction. Let fR =

{(m, n)EI: m + n is even} and let fR' be a copy of fR. Let B = (- 1, 2K - 1) X [0, T]
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Figure 2. Sexual reproduction, A. = 3.8

17

where T is even and tile the plane with translates of B: let Bm,n = (Km, Tn) + B for
(m, n)E!R'. We call (m, n)E!R' open and set n'tm, n) = 1 if a certain good event occurs
in Bm,n. Let H, = {(i,j):j ~ k}. The good event for Bm,n will depend on the state of the
sites (i, j) E H nTbut will be defined in such a way that

if we condition on ~T = the a-field generated by {fI(i,j): (i,j)EHnT}, then
(9) n'(m, n), m E27L - n are independent and are 1 with probability ~ ¢JT(P).

We define points im,n, (m, n)E!R' inductively, starting with io,o = 2. The definitions
guarantee that

(10) if im,n < 00 then (im,n, nT) can be reached by a path from (2, 0).

We begin with an informal description. When im,n < 00, we set n'tm, n) = 1 if Im+l,n+1
and Im-l,n+1 can be reached from (im,n, nT) inside Bm,n. When im,n = 00 our con
struction has failed to produce a path from (2,0) to Im,n. To have n'im, n) defined in
this case, we check to see if there are paths from (2,0) + (Km, Tn) to Im+l,n+1 and
to Im-l,n+l.

To give formal definitions now, let io,o = 2. We proceed inductively assuming
n ~ 0 and that the im,n have been defined for (m, n)E!R' with - n ~ m ~ n. (We
only need n'tm, n) for - n ~ m ~ n to compute f€o, so we do not worry about the
other fI'.)

Case 1. im,n-< 00. Let Jm = Km + J and let Wm,n = {j: U, (n + I)T) that can be
reached from (im,n, nT) inside Bm,n}. If Wm,n n Jm+1 =F 0 and Wm,n n Jm- I =F 0 then
we set n'im, n) = 1,

j~-I,n+1 = inf(Wm,n n Jm- I) and j~+I,n+1 = inf(Wm,n n Jm+I).

Otherwise we set n'tm, n) = 0, j~-I,n+1 = 00, and j;;+I,n+1 = 00. Here j:-I,n+1 is the
contribution to 1m -I,n + I from 1m , the + indicating that (m - 1) + 1 = m.

Case 2. im,n = 00. We set n'im, n) = 1 if Im-l,n+1 and Im+l,n+1 can be reached from
(2,0) + (Km, Tn) inside Bm,n, and n'tm, n) = 0 otherwise. In either case we set
i;-I,n + I = 00, andj;+ I,n + I = 00 to remind us that there is no guarantee that these points
can be reached from (2, 0).
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18 R. DURRETT

Finally letj':n-l,n+l = 00, andjn++l,n+l = 00 (these variables are undefined) and set

im,n = min{j~,n+l,j;,n+l}.

Since the Bm,n are disjoint, it is easy to see that (9) holds. The definitions guarantee (10),
and Lemma 1 follows.

3. Continuous-time methodology

When dealing with a continuous-time process, we look at a corresponding discrete
time chain. For example, to simulate the contact process on I = {O, 1,· · ., K - I} we
use the following algorithm (which assumes A> 1/2):

(i) Pick a site i E I at random.
(ii) If i is occupied we generate a random number r uniform on (0, 1) and kill the

particle if r < 1/2A.
(iii) If i is vacant, we pick a neighbor (i - 1 or i + 1) at random. If the neighbor is

occupied then i becomes occupied.

Note. In the actual computer program one has to make sure that if i is made vacant
in step (ii) then (iii) will be skipped.

Rules (i)-(iii) define a transition probability q for a discrete-time chain on the set of
subsets of I. We compute the iterates of q and then recover the transition probability for
the contact process by

p,(r;, 0 = ~ exp( - 2A.Kt) (2A.Kt)" q"(r;, O.
n-O n!

For even moderate values of K, e.g. K = 12, the events of interest occur when the
expected number of flips, 2A.Kt, is fairly large, about 625 in the example cited. To
compute 1Ck = e-625(625)klk ! we start by observing

(

625 )
1C625 = exp .L - 1 + log(625) -logj

J-l

and then use the recursion 1Ck = 1Ck-l(625)lk to compute the probabilities within five
standard deviations of the mean.

4. Bounds for sexual reproduction

In this section we prove the bounds (6) and (7) given in the introduction.

Proof of (6). Let ~t denote the system starting from ~o = {O, - 1, - 2,· · .}. Let
rt = sup ~t. It follows from results in Durrett (1980) that limt _ oo rtlt = in~,=o Er.Is
almost surely, and if a(A) < 0 then p;.(Qoo) = O. To get an upper bound on r, we define a
comparison process (St, at) with state space 7L X {O, I} so that

(11)

and

(12)
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Intuitively (St, at) is a version ofet in which only the particles at r,ot r, - 1 are allowed to
die, and at = 1 when there is a particle at r, - 1.

To define the comparison formally we construct et in a special way. Let {T; , n ~ I},
{U;, n ~ I}, and {V;, n ~ I} be independent Poisson processes with rates 1, A, and A
respectively. At times T; the particle at x is killed, at times U; (or V;) a birth occurs at x
if x - 2 and x-I (or x + 1 and x + 2) are occupied. The comparison process makes
transitions as shown in Table 4.

TABLE 4

Time

(y, I)
(y,O)

r',-1n

(y,O)
(y,O)

U',+1n

(y+I,I)
(y,O)

V',-1n

(y, I)
(y, I)

T',n

(y - I, I)
(y-2,1)

By examining the effect of each event it is easy to check that (11) and (12) hold.
Since at changes 1 --+ 0 at rate 1 and 0 --+ 1 at rate A + 1, the asymptotic fraction of the

time at = 1 is (A + 1)/(A + 2). The infinitesimal drift in the first component is A-I
when at = 1 and - 2 when at = 0 so

A + 1 1
s.lt --+ (A - 1) A + 2 + (- 2) A + 2

which is < 0 if A< )3.

as t --+ 00

Note. By considering an approximation in which only particles at r.,», - 1,···,
r, - k can die one can improve the last bound. Ziezold and Grillenberger (1988) have
done this for the contact process.

Proofof(7). The proof is similar to the proof of (3) given on pp. 87-89 of Durrett
(1988). Let ~ > 0 and call a site in!R = {(m, n)E7L2

: m + n is even} open if
(i) there are arrivals in 11m or 11m + 1 during «n - 1)~, (n + 1)~);

(ii) there are births n~ < ~2m+2 < u~m+3 < (n + 1)~;

(iii) there are births n~ < v]m-l < v~m-2 < (n + 1)~.

To see the reason for the definition notice that when (0, 0) and (1, 1) are open,
eJO,l} ::) {2, 3}, "and the states of different sites in !R are independent. By now familiar
reasoning, if the probability sites are open is at least 0.819 then P(C;{O,l} =1= 0 for all
t) > O. The probability a site is closed is smaller than

(1 - exp( - 4~» + 2(1 + A~)exp( - A~) < 0.18052

if ~ = 1/24 and A = 151.
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