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Abstract

Inference and prediction under partial knowledge of a physical system is challenging, particularly when multiple
confounding sources influence the measured response. Explicitly accounting for these influences in physics-based
models is often infeasible due to epistemic uncertainty, cost, or time constraints, resulting in models that fail to
accurately describe the behavior of the system. On the other hand, data-driven machine learning models such as
variational autoencoders are not guaranteed to identify a parsimonious representation. As a result, they can suffer
from poor generalization performance and reconstruction accuracy in the regime of limited and noisy data. We
propose a physics-informed variational autoencoder architecture that combines the interpretability of physics-based
models with the flexibility of data-driven models. To promote disentanglement of the known physics and confound-
ing influences, the latent space is partitioned into physically meaningful variables that parametrize a physics-based
model, and data-driven variables that capture variability in the domain and class of the physical system. The encoder
is coupled with a decoder that integrates physics-based and data-driven components, and constrained by an
adversarial training objective that prevents the data-driven components from overriding the known physics, ensuring
that the physics-grounded latent variables remain interpretable. We demonstrate that the model is able to disentangle
features of the input signal and separate the known physics from confounding influences using supervision in the form
of class and domain observables. The model is evaluated on a series of synthetic case studies relevant to engineering
structures, demonstrating the feasibility of the proposed approach.

Impact Statement

Models of complex physical systems, such as those encountered in structural health monitoring, typically fall
under either the physics-based or data-driven paradigms. The former are often constrained by limited domain
knowledge, while the latter can produce unrealistic predictions that are inconsistent with the known physical laws
that govern the system. Hybrid approaches that integrate both physics-based and data-driven components face a
trade-off between interpretability and flexibility. In variational autoencoders, which is the main focus of this
paper, flexible data-driven components in the decoder can override the known physics, resulting in poor
performance and loss of the physical meaning of the latent variables. This work contributes to the integration
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of domain knowledge with machine learning for hybrid modeling of engineering systems, by proposing an
approach that aims to preserve the interpretability of physically meaningful latent variables while accounting for
confounding influences in a data-driven manner.

1. Introduction

The aim of this work is to propose and evaluate an approach for learning disentangled representations of
the underlying generative factors that characterize the behavior of an engineering system, of particular
relevance for the monitoring of civil and mechanical structures. The proposed approach aims to identify
and attribute variability observed in response measurements obtained from an engineering system to
variability stemming from the modeled physics, domain, and class influences. We define the domain as
the environmental and operational conditions that a system is exposed to, as well as other properties of the
system that may not be directly specified in the model of the known physics. The class is defined as the
characteristics of a structure related to the existence and extent of damage and degradation. Generally, we
assume that domain information is relatively cheap and easy to collect, compared to class information.
Such situations often arise when investigation by experts, costly equipment or elaborate experimental
procedures are required to obtainmeasurements of the class variables. It is important to note that, although
we view this problem from the perspective of civil and mechanical structural engineering systems, the
approach described in this work can be adapted to other settings.

Our objective is to accurately infer a posterior distribution over physically meaningful latent variables,
to reconstruct the structural response, quantify the associated uncertainty, and predict the damage and
degradation condition of the system in previously unseen conditions. This is achieved using a limited
number of noisy measurements of the structural response, domain and class variables. Due to the
influence of the domain, class, and other unknown confounding factors, this will generally be an ill-
posed inverse problem that requires learning a disentangled representation (Bengio et al., 2014) of the
different generative factors. This task is further complicated by the limitations of physics-based models,
which often represent structures under idealized nominal conditions and disregard the influence of
environmental and operational variability, damage, and degradation. Most computational models of
physical systems will contain simplifications and approximations due to lack of knowledge about certain
aspects of the underlying physical process and to ensure computational tractability. Reducing this
epistemic uncertainty is often infeasible due to cost or time constraints. As a result, only a partial
description of the physical system is available in practical applications.

Generative probabilistic models such as variational autoencoders (VAE) (Kingma andWelling, 2022),
normalizing flows (Rezende and Mohamed, 2016), and generative adversarial networks (GANs)
(Goodfellow et al., 2014), are a class of models that employ deep learning architectures to approximate
the distribution of a given set of data and generate samples from the learned distribution. Generative
probabilistic models have recently seen broader use in structural health monitoring (SHM), and for
constructing digital twins of structures (Bacsa et al., 2025; Coraça et al., 2023; Mao and Wang, 2021;
Tsialiamanis et al., 2021).We propose aVAE architecture for approximating the joint distribution between
the structural response and a set of physics-grounded latent variables, while accounting and correcting for
the confounding influence of the domain and class of the structure, by leveraging observed domain and
class variables. To achieve this, the VAE components are split into physics-based and data-driven
branches, trained simultaneously in an end-to-end fashion. The data-driven branches are tasked with
extracting features of the response that are informative about the domain and class variables, encoding
them into the corresponding latent space, and using the latent code to augment the physics-based model
predictions. Formulating the VAE as a combination of physics-based and data-driven components is not a
straightforward task. The flexibility and learning capacity of feed-forward neural networks (NNs) that
enables them to accurately model physical processes from data can be problematic when combining them
with physics-based models, as the flexible NN components tend to override the known physics (Takeishi
and Kalousis, 2021), resulting in inaccurate inference and overconfident or unrealistic predictions. To
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address this issue we propose an adversarial training objective that encourages an interpretable and
parsimonious representation of the physical system by constraining the data-driven components of the
VAE. Once trained, the model can be used to simultaneously perform inference over physically
meaningful latent variables for new measurements as they become available, and generate samples from
the predictive distribution of the response. Given a set of response measurements, the trained model can
also be used to predict the corresponding domain and class variables. The proposed approach aims to:

• Constrain the data-driven components of the model to avoid overriding the known physics and
ground a subset of the latent variables to physically meaningful and interpretable quantities;

• Promote the learning of disentangled representations of the physics, domain and class generative
factors, that are maximally informative about their corresponding modality while being minimally
informative about other modalities.

• Infer unknown non-linear relationships between features in the response measurements and add-
itional domain and class observables that can not be directly included in the physics-based model.

• Improve uncertainty quantification by preventing the data-driven components of the decoder from
compensating for all discrepancies between the physics-based model prediction and the measured
response.

To achieve these goals we investigate disentangled and invariant representation learning as a tool for
regularizing machine learning components in VAE and properly utilizing the known physics, specified in
terms of a nominal physics-based model. Additionally, we qualitatively and quantitatively evaluate the
accuracy of the predictions and the complexity of the learned representation. The proposed model is
assessed on three synthetic case studies and compared with fully data-driven approaches in a damage
identification task.

2. Background

This section aims to clarify the terminology and notation used throughout this text, summarize the
necessary background, and illustrate the challenges that the proposed approach aims to address. In what
follows, bold capital and lower case symbols denote matrix and vector quantities respectively. Light
symbols denote scalars. Latent variables that are not directly observed and must be inferred from data are
denoted as z, while ϕ, θ and ψ denote encoder, decoder and auxiliary regressor/classifier parameters,
respectively. The symbols x, c and y denote the response, domain, and class observables, jointly referred to
as the modalities of a given physical system. When used as a subscript these symbols denote quantities
that belong to a particular modality. As an example, zy denotes a set of latent variables that encode
information about the class of a physical system. Throughout this text, N denotes the univariate or
multivariate normal distribution parametrized by the mean and a scalar variance or matrix covariance
respectively, and U denotes the uniform distribution parametrized by the lower and upper bound. The
expectation of a function f �ð Þ over a distribution p �ð Þ is denoted asEp �ð Þ f �ð Þ½ �. Finally, a distinction ismade
between the underlying generative factors s that determine the characteristics of the observed data, and the
latent variables z, i.e. the learned representation of the generative factors.

2.1. Problem setting

Suppose that a nominal physics-based model and a datasetD¼ xi,yi,cið Þf gNi¼1, composed ofN triplets of
response measurements xi, domain variables ci and class variables yi are available for a given system
under investigation. In structural and mechanical engineering applications, the response measurements
will often be displacements, strains or accelerations, measured under operating conditions, that describe
the static or dynamic performance of the system. The domain variables ci can be measurements of
environmental and operational parameters, such as the location, temperature, humidity or other properties
of a structure or sensor. The class variables yi describe properties of the system that are cumbersome to
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obtain, such as assessments of the health condition of one or more structural components performed by
experts or extracted from inspection reports. It is assumed that y is a quantity of interest to be predicted for
new incoming observations of x and c. Our goal is to simultaneously perform reconstruction of x and
regression or classification on y, and furthermore to utilize the observed domain and class variables to
account for the impact of the domain and class influences on the measured response.

To highlight the intended application setting, three examples are presented in Figure 1 consisting of a
beam, an oscillator, and population of bridges. In each example the available physics-based model fails to
account for domain and class influences that are present in the measured response signals. In all three
examples, the domain and class observables provide valuable information about the system that is
necessary for accurately inferring a distribution over parameters of the physics-based model and
reconstructing the response of the physical system. Furthermore, the class observables are significantly
harder to measure and will not be available for future experiments. The oscillator and bridge examples
also include unknown confounding influences, for which neither observations nor a physical description
are available. The three examples are summarized below:

(a) Beam: In this example, the available physics-based model of a beam assumes simply supported
boundary conditions and a point load acting on an unknown position. Noisy measurements of the
displacement field are obtained from a set of sensors, equally spaced along the length of the beam. The
domain influence is introduced as a dependence of the rotational stiffness of the right support on
the temperature, and the class influence is taken as damage causing a reduction in the vertical stiffness
of the right support that varies between experiments.

(b)Oscillator:Noisy displacement time-series are obtained frommultiple experiments, where a mass-
spring-dashpot system is deflected from the equilibrium position and released to perform a harmonic
oscillation. The impact of damping on the motion is neglected in the physics-based model and must be
inferred from additional observations of properties of the medium. The spring stiffness is taken to depend
on the ambient temperature, and there is unknown variability in the initial displaced position. The
damping, temperature and variability in initial position are taken as class, domain and unknown
confounding influences, respectively.

(c)Population of bridges:Avehicle is used to excite the response of a large set of bridges belonging to
a homogeneous population, with uncertain vertical stiffness of the supports and varying position of the
central pier. Each bridge is monitored by a point strain gauge that yields an influence line for the moving
load. The strain gauge measurements are supplemented by qualitative assessments of the condition of the
deck, obtained during inspections performed by experts and considered as class variables. The variability

Figure 1. Illustrative examples of the problem setting: a) Beam, b) Oscillator, and c) One member of a
population of bridges. The objective is to learn components of the measured response (bottom row) that
are not explicitly included in the nominal physics-based model (top row) using observations of related

quantities.
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in the vehicle velocity and the existence of deterioration in the deck have an influence on the measured
strain but are deemed too complicated to model, while the position of the pier is a known domain
parameter and can be included in the physics-based model. Avariability in the vehicle load is considered
as an unknown confounding influence.

2.2. Epistemic uncertainty in Bayesian model updating

Uncertainty in the modeling of physical systems can generally be classified as either aleatoric or
epistemic. Aleatoric uncertainty is the component of the uncertainty due to the inherent randomness of
a physical process that can not be reduced, while epistemic uncertainty stems from lack of knowledge
regarding the physical process (Kiureghian and Ditlevsen, 2009). Epistemic uncertainty is always present
to some degree in practical applications, either due to lack of knowledge or due to simplifications and
approximations used to make the evaluation of the physics-based model computationally tractable. The
reader is referred to Kamariotis et al., 2024 for an extended overview on classification and treatment of
uncertainties in SHM applications.

Suppose that an analytical or numerical physics-based model of a structure, defined as a function f zxð Þ
is available. The response measurements x can then be expressed as x¼ f zxð Þþ ϵ, where ϵ is a realization
of a random variable quantifying the discrepancy between f zxð Þ and x due to the combined influence of
aleatoric and epistemic uncertainties. In the Bayesian model updating framework, the measured response
of a physical system is used to update the prior knowledge, expressed in terms of a prior distribution p zxð Þ
over physically meaningful latent variables zx. This is achieved by approximating the data generating
process (i.e. the real-world process that generated the observations) as a combination of a deterministic
physics-based model and a probabilistic model (Kennedy and O’Hagan, 2001), where the latter accounts
for the combined influence of epistemic and aleatoric uncertainty. In this work, it is assumed that the
epistemic uncertainty stems from the confounding influence of the domain and class of a structure, and our
inability (e.g. due to cost or time constraints) to account for these influences in the form and parameters of
the physics-based model.

2.3. The variational autoencoder

In practical applications, the available domain knowledge is often not sufficient to guarantee that the
coupled probabilistic-physical model is an accurate description of the data generating process, limiting the
applicability of physics-based modeling. To remedy the lack of domain knowledge, data-driven models
based on machine learning techniques have emerged as an alternative to physics-based models, where the
unknown physical process is learned from measurements using flexible parametrized approximations.
VAE (Kingma and Welling, 2019, 2022) are a popular data-driven approach for learning a joint
distribution of data and the latent variables that are assumed to have generated the data using amortized
variational inference (VI) (Blei et al., 2017). In VAE, the per-datapoint posterior distribution is approxi-
mated using a parametrized family of distributions, where the optimal parameters are obtained by
minimizing the Kullback–Leibler divergence (KLD) between the true and approximate posteriors. The
VAE is composed of an encoder network qϕ zjxð Þ and a decoder network pθ xjzð Þ, parametrized by ϕ and θ,
respectively, where z denotes latent variables that can not be observed directly and must be inferred from
measurements. The encoder is typically implemented as a feed-forward NN that maps the inputs x to a
conditional density over latent variables z. The decoder network pθ xjzð Þworks in the opposite direction by
approximating the density of x conditioned on z. The training process for VAE consists of simultaneously
optimizing the parameters of the decoder that reconstructs the observations given samples of the latent
variables, and the encoder that maps inputs to a posterior distribution over these latent variables.
Optimization is performed by maximizing a lower bound on the marginal likelihood of the data known
as the Evidence Lower BOund (ELBO), denoted as LVAE in Equation (2.1). Sampling z� qϕ zjxð Þ and
evaluating the decoder yields samples from the learned distribution of the data, which in the context of
civil and mechanical structural systems can be used for downstream tasks such as remaining useful life
assessment.
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LVAE θ,ϕ;xð Þ¼Eqϕ zjxð Þ logpθ xjzð Þ½ ��DKL qϕ zjxð Þkpθ zð Þ� �
¼ logpθ xð Þ�DKL qϕ zjxð Þkpθ zjxð Þ� �
≤ logpθ xð Þ

(2.1)

While data-driven approaches might excel in accurately predicting the response of a physical system
for a given set of input parameters when sufficient training data is available, the resulting models are
typically black boxes that lack interpretability and yield no useful insights about the underlying physical
process that generated the measurements. In cases where both the domain knowledge and the available
data are limited, purely physics-based or data-driven approaches become infeasible, necessitating a
compromise between the two extremes. Physics-enhanced machine learning (PEML) encompasses a
wide range of approaches that combine machine learning with domain knowledge (Cicirello, 2024; Cross
et al., 2022; Haywood-AIexander et al., 2024; von Rueden et al., 2023). In this paradigm, the available
domain knowledge can be supplemented with data, resulting in more accurate and interpretable models
than would be possible with either domain knowledge or data alone. PEML approaches have the potential
to reduce the required amount of data, improve accuracy and generalization performance and ensure that
model predictions are consistent with the known physics. Importantly, incorporating the known physics
can yield interpretable representations of physically meaningful quantities, andmodels that are robust and
explainable.

2.4. Challenges in combining physics-based and data-driven components in VAE

A straightforward approach to account for epistemic uncertainty in a data-driven manner would be to
approximate the measured response x as the sum of the physics-based model f zxð Þ and a trainable
NN-based function gθ �ð Þ, where the latter corrects the discrepancies between the physics-based model
predictions and measurements. It is assumed that the gradients of the physics-based model with respect to
the inputs can be evaluated efficiently to obtain a computationally tractable optimization problem. This
type of hybrid model is referred to as a residual model. Parametrizing the data driven component of the
residual model as gθ zxð Þ is not feasible when it is required that zx is interpretable: The resulting hybrid
generative model has a posterior distribution pθ zxjxð Þ, where the latent variables zx are the input to a
coupled physics-based and data-driven model, and thus no longer physically meaningful. Instead, the
latent space can be partitioned as zx,zc,zy

� �
∈ z and the data driven component parametrized as gθ zc,zy

� �
,

where zc and zy are physically meaningless latent variables intended to capture variability in the measured
response due to the influence of the domain and the class. Assuming that the remaining aleatory
uncertainties (e.g., caused by measurement noise) are independent of the signal being measured and
can be sufficiently modeled as independent and identically distributed (i.i.d.) samples of Gaussian white
noise with standard deviation σx, the response measurements can be expressed as:

x¼ f zxð Þþgθ zc,zy
� �þ ϵx, (2.2)

where ϵx �N 0,σ2xI
� �

and I is the identity matrix. Substituting x̂p ¼ f zxð Þ and x̂d ¼ gθ zc,zy
� �

for clarity,
the resulting generative model is defined as:

pθ xjzx,zc,zy
� �

≔N x̂pþ x̂d,σ
2
xI

� �
(2.3)

The observables c and y can be used to ensure that the latent variables zc and zy encode information
about the domain and class of the structure by simultaneously training auxiliary tasks rc cjzcð Þ and
ry yjzy
� �

. The resulting hybrid generative model pθ xjzx,zc,zy
� �

can be coupled with variational posteriors
qϕx zxjxð Þqϕc zcjxð Þqϕy zyjx

� �
to yield an architecture similar to VAE. This is the architecture derived in

Section 3, without the additional constraints. It should be noted that the assumption of an additive
structure for the discrepancy term gθ zc,zy

� �
and the uncertainty term ϵx presented in Equation (2.2) is

suitable for many physical systems and is commonly employed in hybrid models (Cross et al., 2022). We
use it without loss of generality with the aim of promoting clarity and interpretability. Depending on
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domain knowledge regarding the problem at hand, a multiplicative or other form can also be specified.
The implications of the additivity assumption are further discussed in Sections 3.2.3 and 6.2.

Neither the additive structure of the hybrid physics-based and data-driven model, nor the specified
parametrization of the residual term gθ zc,zy

� �
ensure that the known physics will be utilized by themodel,

or that zx will be physically meaningful. Without further constraints, the model can learn combinations of
arbitrary predictions from the physics-based and data-driven components f zxð Þ and gθ zc,zy

� �
that sum to

an accurate prediction. To see why, it is sufficient to consider the form of the objective given in
Equation (2.1). Both the encoder and decoder are aligned in the task of maximizing the reconstruction
term Eqϕ zjxð Þ logpθ xjzð Þ½ �, and the data-driven components of the model will account for discrepancies
between the physics-based model prediction and measurements up to some level of noise. This results in
an entangled representation, where the data-driven components override the known physics and the
physics-grounded latent variables loose their physical meaning.

This issue is illustrated in Figure 2 using the beam case study shown in Figure 1(a). Further details of
the case study are provided in Section 5.1. In this example, a VAE trained on a datasetD¼ xi,ci,yið Þf gNi¼1
is evaluated on a new set of input measurements x, generated from the ground truth data generating
process by linearly varying the position of the load xF. It can be seen that the effect of this variation on the
measured response is largely captured by the data-driven component of the decoder, which overrides the
known physics, despite the fact that the physics-based model includes the load position as an input
parameter. The extent to which the data-driven components override the known physics can be incon-
sistent and hard to predict, and will depend on the neural network architectures and the physics of the
problem at hand.

The results presented in Figure 2 are obtained under the assumption of a factorized variational
posterior. Ideally, a single encoder with shared parameters qϕ zx,zc,zyjx

� �
would be used for the three

subsets of the latent space zx,zc and zy. However, using a shared encoder leads to further degradation of the
performance as noted by Ilse et al., 2020. This example demonstrates how the interaction between the
physics-based and data-driven components, which determines the resulting learned representation,
depends on the capacity and flexibility of the individual machine learning components. Standard VAE
offer no mechanism to control this interaction, and are therefore unable to guarantee that the physics will
be utilized correctly in the presence of flexible NN-based decoder components.

3. Proposed approach

To address the issues presented in Section 2.4, we propose an approach that takes advantage of the domain
and class observables to constrain the approximate posterior distribution. Our approach ensures that each

Figure 2. Demonstration of the data-driven component of the decoder gθ zc,zy
� �

overriding the physics-
based model f zxð Þ. The effect of varying the position of the load xF should be described by the known

physics, but is instead captured by the data-driven components.
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subset of the latent variables only encodes information that is relevant to the correspondingmodality. This
constraint in turn limits the amount of information available to the data-driven components of the decoder,
preventing them from correcting every discrepancy between the physics-based model andmeasurements,
and from overriding the known physics. This is achieved by imposing a latent bottleneck structure to the
model, combined with an adversarial training objective. A detailed description of the model architecture
and derivation of the training objective are provided in Section 3.1, followed by a brief discussion in
Section 3.2. A method for quantitatively assessing the information encoded in subsets of the latent
variables is presented in Section 3.3.

3.1. Detailed description of the model

It is assumed that three generative factors, the underlying physics of the structure, the domain, and the
class, contribute to the measured response x. Conversely, the latent variables are partitioned into subsets
zx,zc,zy
� �

∈ z. It is emphasized that the separation of the latent variables is only semantic and used for
clarity. In practice, they can be the output of a single encoder with shared parameters. The latent variables
are the input to the hybrid probabilistic decoder pθ xjzð Þ, wherein a NN-based function gθ zc,zy

� �
accounts

for discrepancies between the measured response x and physics-based model prediction f zxð Þ. To ensure
that information relevant to the domain and class is encoded in the corresponding subsets zc and zy, we
utilize two auxiliary decoders rψc

cjzcð Þ and rψy
yjzy
� �

. The latent variables zc and zy are assigned
conditional prior distributions pθc zcjcð Þ and pθy zyjy

� �
respectively, while the physics-grounded latent

variables zx are assigned a distribution p zxð Þ based on the available prior knowledge. A schematic
illustration of the architecture is provided in Figure 3(a).

To minimize the reconstruction error, the encoder tends to maximize the information in the posterior
distribution over z that can be used to predict x, c and y, subject to the regularization imposed by the prior
distribution. For zc and zy, this information includes features from the input signal x that are predictive of c
and y, but also irrelevant features that are only predictive of x. These features can include systematic errors
stemming from partial knowledge of the physics, and the influence of unknown confounding factors in the
measurements. This superfluous information (Federici et al., 2020), i.e. information in zc and zy that is not
predictive of c and y, can enable the data-driven component of the decoder to override the known physics.
Motivated by this observation we aim to simultaneously maximize the information in zc and zy that is
predictive of c and y, while minimizing the information that is predictive of x. This trade-off can be
formalized in terms of the mutual information (MI), a measure of the dependence between two random
variables (Cover and Thomas, 2006). Denoting the MI between x and z for an encoder parametrized by ϕ

Figure 3. a) Schematic diagram illustrating the components of the model and the encoder-decoder
architecture, and b) Detailed structure of the dependencies in the generative and inference models.
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as Iϕ x;zð Þ, and introducing the trade-off parameters λc,λy, we define the following relaxed Lagrangian
objectives:

Ly ϕ;λy
� �¼ Iϕ y;zy

� �� λyIϕ x;zy
� �

Lc ϕ;λcð Þ¼ Iϕ c;zcð Þ� λcIϕ x;zcð Þ (3.1)

The quantities described in Equation (3.1) are optimized indirectly through a latent bottleneck structure
(Alemi et al., 2019; Fischer, 2020; Moyer et al., 2018; Tishby et al., 2000) combined with adversarial
training, as described in the following informal sketch. Note that in the inferencemodel shown in Figure 3(b),
the latent variables zy do not depend directly on y (and analogously for c). This is the conditional
independence assumption typically used in the Information Bottleneck framework. Intuitively, the encoder
is forced to distill the relevant information in x that is necessary for reconstructing c and y into the latent
variables zc and zy. This results in the maximization of the Iϕ c;zcð Þ and Iϕ y;zy

� �
terms in Equation (3.1)

during training. The additional requirement of minimizing Iϕ x;zcð Þ and Iϕ x;zy
� �

can be satisfied by
introducing a Gradient Reversal Layer (GRL) (Ganin and Lempitsky, 2015) at the input of the data-driven
decoder component gθ zc,zy

� �
. During optimization, the gradient signal propagated backwards from

gθ zc,zy
� �

to the encoder is scaled by �λ, while the forward pass remains unchanged. Therefore, the GRL
can be thought of as a pseudo function Rλ zð Þ such that Rλ zð Þ¼ z and dRλ

dz ¼�λI . Positive values of λ
correspond to adversarial training. Conversely, negative values make the training “collaborative”. The
absolute value of λ determines the strength of the adversarial or collaborative objective, with larger values
corresponding to a stronger regularization effect. By turning the decoder pθ xjzx,zc,zy

� �
into an adversary, the

GRLpenalizes information in zc and zy that contributes to the reconstruction of x, biasing the encoder towards
representations that are minimally informative about x.

The full structure of the model is shown in Figure 3(b). The variational lower bound can be obtained by
considering the marginal likelihood over observed variables as shown in Equation (3.2).

L θ,ϕ;x,c,yð Þ¼Eqϕ zx,zc,zyjxð Þ log
pθ x,c,y,zx,zc,zy
� �
qϕ zx,zc,zyjx
� �

" #

≤ logpθ x,c,yð Þ
(3.2)

Rearranging the terms in Equation (3.2), noting that the generative model factorizes as
p x,c,y,zx,zc,zy
� �¼ pθ xjzx,zc,zy

� �
p zxð Þpθc zcjcð Þpθy zyjy

� �
p cð Þp yð Þ, yields the following expression for

the lower bound:

L θ,ϕ;x,c,yð Þ¼Eqϕ zx,zc,zyjxð Þ logpθ xjzx,zc,zy
� �� �

�DKL qϕ zx,zc,zyjx
� �kp zxð Þpθc zcð jcÞpθy zyjyÞ

�� � (3.3)

Including the auxiliary tasks and additional regularization hyperparameters commonly used in
representation learning, we rewrite the loss function as:

L θ,ϕ,ψ;x,c,yð Þ¼Eqϕ zx ,zc ,zy jxð Þ αx logpθ xjzx,zc,zy
� �þαc logrψc

cð jzcÞþαy logrψy
yjzyÞ
�h i

�βDKL qϕ zx,zc,zyjx
� �kp zxð Þpθc zcð jcÞpθy zyjyÞ

�� � (3.4)

The loss function described in Equation (3.4)) includes additional regularization hyperparameters that
can be used to balance the contribution of different terms. These are included for completeness, and are not
used in the experiments described in Section 5. A scaling factor β > 0 on theKLD is commonly included in
the ELBO as a means of adjusting the strength of the regularization imposed by the KLD term, and to
control the capacity of the probabilistic encoder. It is often beneficial to begin training with β¼ 0 and
gradually increase it to β¼ 1 using an annealing scheme such as the one proposed byBowman et al., 2016.
Annealing β can prevent the model from getting stuck in local minima of the KLD, and the posterior
distribution from degenerating to the prior distribution. Conversely, setting β > 1 can promote
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unsupervised disentanglement (Higgins et al., 2016). The impact of β is extensively discussed in the
relevant literature, provided in Section 4. Additionally, the log-likelihood function logpθ xjzx,zc,zy

� �
, and

auxiliary decoders logrψc
cjzcð Þ and logrψy

yjzy
� �

are assigned weights αx, αc and αy respectively to allow
for balancing the relative strength of these terms (see e.g. (Ilse et al., 2020; Joy et al., 2022; Sun et al.,
2022). It is important to note that using values other than unity for αx,αc,αy and β can have a significant
impact on the interpretation of the ELBO and the inferred posterior distribution. Details of the imple-
mentation can be found in Appendix A.

3.2. Discussion of the approach

The latent bottleneck structure and GRL have several important implications for inference, conditional
generation, and uncertainty quantification. These are discussed here, and demonstrated through the case
studies presented in Section 5.

3.2.1. Interpretability
The main objective of the approach is to ensure that the known physics are properly utilized, which we
interpret as variability in the generative factors being preferentially captured by the physics-grounded
subset of the latent variables. As a result, the posterior distribution of the physics-grounded latent
variables will be influenced by the domain and class contributions to the measured response, allowing
for domain and class influences to be interpreted in terms of their effect on the physics-grounded latent
variables. Therefore, the posterior over physics-grounded latent variables might not necessarily be
accurate in the sense of a point estimate of a physical quantity obtained from the posterior being close
to the underlying “true value”. This is also in part due to the data-driven component of the decoder, which
can yield a constant but not necessarily zero prediction when domain or class influences are not present in
the measured response.

3.2.2. Conditional generation
The use of conditional prior networks and separate branches for the domain and class modalities makes it
possible to perform data imputation and conditional generation. When conditioning on domain or class
variables, the accuracy of the generated response will depend on the degree to which the corresponding
influence is accounted for by the known physics. If the influence is primarily accounted for by the physics,
the predicted response might become insensitive to changes in the domain or class latent variables. In this
case, more accurate conditional generationmight be possible by fixing the values of the physics-grounded
latent variables based on domain knowledge. Another implication of the architecture is that only
measurements of the response are needed to evaluate the model. Throughout this work, the model is
evaluated only on response measurements, without using the domain observables. This did not result in
any noticeable difference in accuracy, compared to using the domain observables.

3.2.3. Uncertainty quantification
The uncertainty associated with the predicted response stems from the approximate posterior distribution
and the probabilistic decoder, and represents the combined influence of aleatoric and epistemic uncer-
tainties. Without the GRL, and given sufficient data, the model would compensate for systematic
discrepancies between the physics-based model and response measurements in a data-driven manner.
In this case, the uncertainty in the reconstructed response would only represent aleatoric uncertainty. In
contrast, if no data-driven component is used in the decoder, the uncertainty would also include epistemic
uncertainty due to domain and class influences that are not included in the physics-based model. In our
approach, part of this epistemic uncertainty is accounted for in a data-driven manner. Therefore, the
proposed approach is expected to yield uncertainty bounds somewhere in-between these two extremes.
We emphasize that the estimated uncertainty does not include the uncertainty over model parameters θ, ϕ
and ψ. Finally, it is important to consider that the additivity assumption in Equation (2.3) is unlikely to
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hold for many physical systems. The model is expected to perform sub-optimally in such cases, resulting
in inaccurate uncertainty estimates. None of the case studies presented in 5 satisfy the additivity
assumption, demonstrating that the model can still be feasibly applied in such cases.

3.2.4. Formulation of the latent space
The choice of a continuous latent representation for the domain and class variables provides a number of
advantages over directly representing the variables themselves, i.e. using the same number and type (e.g.,
categorical) of latent variables as the domain and class variables. The mapping to a low-dimensional
continuous latent space enables the model to deal with high-dimensional domain and class variables, and
can improve generalization by promoting the encoding of richer representations of the domain and class
(Joy et al., 2022). From an implementation perspective, it is convenient if the decoder inputs are not
dependent on the type and dimensionality of the domain and class variables. Furthermore, for discrete and
categorical domain and class variables, the latent space enables the model to make a continuous
approximation by interpolating over the continuous latent space. Broadly speaking, the continuous latent
space allows for more flexibility in the representation of the domain and class variables. Finally, the lack
of an independence assumption facilitates the use of a single probabilistic encoder, potentially reducing
the amount of trainable parameters in the model and allowing for more complex and expressive encoder
formulations. In our experiments we did not observe a decrease in performance when using a single
encoder for all latent variables, compared to using separate encoders for each subset of the latent space,
when combined with adversarial training.

3.3. Description of the quantitative assessment approach

Quantitatively assessing disentanglement is a challenging problem and several metrics have been proposed
(Chen et al., 2018; Higgins et al., 2016; Kim andMnih, 2018). This difficulty can be partially attributed to the
lack of a consistent definition of disentanglement (Locatello et al., 2019). In practice, the degree of
disentanglement achieved by a model is often evaluated based on subjective expectations stemming from
domain knowledge (Vowels et al., 2019). Our proposed approach aims to achieve “one-way” disentangle-
ment and is conceptually more akin to techniques that temper the influence of misspecified model
components (Carmona and Nicholls, 2020; Yu et al., 2022). Intuitively, variations in generative factors that
are described by the known physics should not affect the data-driven subsets of the latent variables zc and zy,
while variations in generative factors not included in the known physics should still be preferentially captured
by the physics-grounded subset of the latent variables. The degree to which this is achieved can be evaluated
by comparing the amount of information captured by each subset zx, zc and zy about a specified generative
factor. When a subset of the latent variables is informative about a generative factor, it should be possible to
train a regressor to predict the value of the generative factor from samples drawn from this subset of the latent
variables. Based on this, we propose the following procedure to assess the amount of information about a
given generative factor that is encoded in a subset of the latent variables for the trained model:

1. Draw two sets of samples of generative factors s ið Þ
x ,s ið Þ

c ,s ið Þ
y

� �n oN train

i¼1
and s0 ið Þx ,s0 ið Þc ,s0 ið Þy

� �n oN test

i¼1

from pgt sx,sc,sy
� �

and generate two datasets D¼ xif gNtrain
i¼1 and D0 ¼ x0i

� 	Ntest

i¼1 of response measure-
ments from the ground truth generative process.

2. Draw a single sample from each of the approximate posterior distributions zi � qϕ zijxið Þ and
z0i � qϕ z0ijx0i

� �
for each xi ∈D and x0i ∈D0 respectively, using the trained model. This yields two

sets of samples from the latent variables z ið Þ
x ,z ið Þ

c ,z ið Þ
y

� �n oN train

i¼1
, and z0 ið Þx ,z0 ið Þc ,z0 ið Þy

� �n oN test

i¼1
.

3. Train a regressor to predict the value of each set of generative factors s ið Þ
j

n oN train

i¼1
from each subset

z ið Þ
x

n oNtrain

i¼1
, z ið Þ

c

n oNtrain

i¼1
and z ið Þ

y

n oNtrain

i¼1
, for j¼ 1,…,Nf , whereNf is the number of generative factors.

This process yields 3 ×Nf regressors.
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4. Compute the R2 value between each subset z0 ið Þx
n oN test

i¼1
, z0 ið Þc
n oN test

i¼1
and z0 ið Þy

n oN test

i¼1
and each set of

generative factors s0 ið Þj
n oN test

i¼1
using the corresponding trained regression model.

This procedure yields Nf sets of pair-wise R2 values R2
zx!sj ,R

2
zc!sj ,R

2
zy!sj

n oNf

j¼1
with each of the Nf sets

corresponding to a single generative factor. Amore informative subset of the latent variables should yield
a more accurate regressor than an uninformative subset, and therefore also a higher R2 value. It is
emphasized that the metric described here is only intended to be a surrogate quantity for the amount of
information encoded in each subset of the latent variables, and not a metric of disentanglement.
Furthermore, this metric requires access to the ground truth distribution and data generating process,
and is therefore not generally applicable.

4. Previous work

Deep generative models such as VAE describe a mapping between a high-dimensional data manifold, and
a low dimensional latent representation. Generative factors in the data are not generally controlled by
individual dimensions of the latent variables, nor are they amenable to human interpretation or seman-
tically meaningful. Disentangled representation learning is aimed at learning representations where
perturbations of individual dimensions of the latent space correspond to interpretable perturbations of
the data (Esmaeili et al., 2019). Approaches for disentangled representation learning can be broadly
classified as either unsupervised, where disentanglement is achieved through the use of additional
regularization terms on the ELBO, or supervised, semi-supervised, and weakly supervised methods that
utilize additional observables or other information. For a comprehensive review of representation learning
and of the different approaches, focusing on VAE, the reader is referred to Bengio et al., 2014 and
Tschannen et al., 2018 respectively.

Unsupervised disentanglement necessarily relies on inductive bias and implicit supervision (Locatello
et al., 2019). A common approach is to adjust the relative importance of the KLD and reconstruction error
terms. In the β-VAE architecture (Higgins et al., 2016), the KLD is scaled by a factor β≥ 1 that determines
how much the approximate posterior is penalized for deviating from the prior distribution, limiting the
capacity of the latent distribution and encouraging the latent variables to be factorized, at the expense of
reconstruction quality (Burgess et al., 2018). Other approaches involve weighting the importance of the
total correlation term (Watanabe, 1960), a component of the KLD that quantifies and penalizes
dependence between the dimensions of the aggregated posterior distribution (i.e. the posterior distribution
marginalized over the entire dataset). These approaches avoid the high computational cost associated with
estimating the total correlation by utilizing stochastic approximations based on mini-batches (Chen et al.,
2018) and adversarial density-ratio estimation (Kim andMnih, 2018). The InfoVAE approach proposed by
Zhao et al., 2018 involves scaling specific terms in the ELBO, coupled with an additional term that
promotes maximization of the MI between the inputs and latent variables. Other approaches for
unsupervised disentanglement have been proposed in the literature, such as enforcing independence
between and within groups of latent variables (Esmaeili et al., 2019), extending the standard architecture
with adversarial components (Larsen et al., 2016) and additional decoders (Ding et al., 2020) and using
sparsity inducing priors (Tonolini et al., 2020). Several works utilize additional observables in a fully
supervised (Debbagh, 2023; Hadad et al., 2018; Sun et al., 2022, or semi-supervised (Louizos et al., 2017)
manner, combined with inductive biases in the form of structured models (N et al., 2017) and penalties on
dependence (Lopez et al., 2018) to promote disentanglement or invariance to nuisance factors. It has also
been shown (Achille and Soatto, 2017) that disentanglement is closely related to the information
bottleneck theory introduced by Tishby et al., 2000, and later extended to the variational setting by
Alemi et al., 2019. Finally, the more general notion of decomposition, that admits disentanglement as a
special case, was introduced by Mathieu et al., 2019.
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It has been hypothesized that representation learning approaches can be particularly useful in domain
adaptation and transfer learning tasks due to their ability to capture underlying generative factors in data
that are shared between tasks (Bengio et al., 2014). The gradient reversal approach utilized in this work
was originally proposed to tackle domain adaptation for image classification (Ganin and Lempitsky,
2015; Ganin et al., 2016). Similar approaches have been extended to the setting of multi-view and multi-
modal learning (Aguerri and Zaidi, 2019; Federici et al., 2020; Hwang et al., 2020; Mondal et al., 2023).
Recent work has also explored the application of adversarial domain adaptation techniques to structural
damage identification (Wang andXia, 2022). Finally, it is important to note that our proposed architecture
is similar to the domain invariant variational autoencoder (DIVA) proposed by Ilse et al., 2020, from
which we adopt part of our terminology. DIVA is targeted towards invariant representation learning and
domain generalization in a purely data-driven setting and does not utilize adversarial training, instead
explicitly imposing an independence assumption between subsets of the latent variables.

VI offers a balance between accuracy and computational tractability. Combined with the inherent
regularization of the Bayesian framework, these properties are particularly advantageous in the modeling
of physical systems (Glyn-Davies et al., 2025). As a result, incorporating physical knowledge in VAE has
received significant attention, and various physics-informed formulations have been proposed depending
on the task of interest. Notably, Walker et al., 2024 present an approach for utilizing known physics to
discover shared information in multi-modal data. The UQ-VAE (Goh et al., 2022) combines known
governing equations and prior distributions over parameters of interest with paired input-output meas-
urements to achieve computationally efficient uncertainty quantification for systems described by partial
differential equations. Formulations of VAE that take advantage of known governing equations have also
been proposed for solving forward and inverse problems in stochastic differential equations (Shin and
Choi, 2023; Zhong andMeidani, 2023). In the context of surrogate modeling, Rixner andKoutsourelakis,
2021 introduce the notion of virtual observables as a means of encoding physical knowledge into
probabilistic generative models. Despite these advances, the issue of balancing physics-based and
data-driven components in VAE has received relatively limited attention. This issue is addressed by
Takeishi and Kalousis, 2021 for systems described by ordinary differential equations. A similar setting is
investigated in Linial et al., 2021 and Yildiz et al., 2019, with the latter introducing a regularized objective
to ensure consistency of the latent space with the known physics.

5. Synthetic case studies

Three synthetic case studies of different complexity, illustrated in Figure 1, are discussed in detail
throughout this section. The case study objectives, the definition of the physics-based models, the
procedure used to generate the synthetic data, and details of the model implementation and visualization
are provided below. For the purposes of reproducibility, the code needed to replicate the examples is made
available on GitHub (Koune and Cicirello 2025). Additional information regarding the architecture,
variable transformations, data, optimization, and visualization is provided in Appendix A.

Case study objectives

Each case study addresses a different set of challenges. The beam case study demonstrates that the
proposed approach preferentially utilizes the known physics, yielding an interpretable and parsimonious
representation of the physical system. The oscillator case study highlights how the adversarial training can
prevent the model from learning arbitrary components of the response in a data-driven manner, and
investigates the impact of the GRL hyperparameter. Finally, the bridge case study demonstrates the
feasibility of using the model for damage detection in a more complex synthetic case, and compares the
performance to that of existing data-driven approaches. It is noted that the case studies are only meant as
didactic examples, intended to elaborate the issues with combining physics-based and data-driven
components in VAE, provide intuition about the interaction between these components, and demonstrate
the behavior of the model. Therefore, emphasis is placed on clarity rather than realism.
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Physics-based models

Three separate physics-based models are considered for every case study: A high-fidelity simulator, a full
model, and a nominalmodel. The simulator is an accurate but generally computationally expensivemodel
of the physical system, typically in the form of a finite element (FE) model, used to train the full and
nominal models for each case study. The full model is a computationally efficient surrogate model of the
ground truth data generating process: one or more structures with varying physical characteristics, subject
to operational and environmental conditions, damage and degradation. To produce the training dataset for

the full model, the simulator is evaluated on a set of generative factors s ið Þ
x ,s ið Þ

c ,s ið Þ
y

� �n oNfull

i¼1
, sampled

uniformly and independently from prescribed ranges of values. The ranges are chosen to provide
sufficient coverage over the support of the corresponding ground truth distribution pgt sx,sc,sy

� �
. The

full model is then obtained by fitting a NN-based surrogate to the dataset composed of Nfull input-output

pairs Dfull ¼ s ið Þ
x ,s ið Þ

c ,s ið Þ
y ,x ið Þ

� �n oNfull

i¼1
obtained from the simulator. Using a NN as the forward model for

the data generating process enables the efficient visualization of the latent space and the reconstructions
generated by the VAE for different inputs, simplifies the generation of test data to evaluate the
performance of the VAE, and makes it possible to account for randomness in the hyperparameter
initialization and data generation by averaging results over multiple runs with i.i.d. datasets. The nominal
model corresponds to the available incomplete representation of the physics of the system under
investigation. When an analytical expression describing the partially known physics is available, this
is used as the nominal model. Alternatively, the nominal model is built by training a NN-based surrogate

on a limited dataset Dnom ¼ s ið Þ
x ,x ið Þ

� �n oNnom

i¼1
, obtained by evaluating the simulator only on the physics-

based subset of the generative factors s ið Þ
x

n oNnom

i¼1
, while sc and sy are set to a constant reference value

corresponding to the nominal condition of the structure.

Synthetic data generation

The VAE is trained and validated on a dataset composed of N total ¼N trainþNval triplets of observables

D¼ xi,ci,yið Þf gN total
i¼1 . This dataset is generated by first drawing samples of the generative factors from the

ground truth distribution s ið Þ
x ,s ið Þ

c ,s ið Þ
y

� �
� pgt sx,sc,sy

� �
for i¼ 1,…,N total, applying a set of deterministic

transformations, and subsequently adding i.i.d. samples of zero-mean Gaussian white noise

ϵx �N 0,σ2xI
� �

, ϵc �N 0,σ2cI
� �

and ϵy �N 0,σ2yI
� �

. Denoting the full model as hx �ð Þ, the response

observables are obtained as xi ¼ hx s ið Þ
x ,s ið Þ

c ,s ið Þ
y

� �
þ ϵx. The domain and class observables are obtained as

ci ¼ hc s ið Þ
c

� �
þ ϵc and yi ¼ hy s ið Þ

y

� �
þ ϵy respectively. This procedure is illustrated in Figure 4.

Implementation details

For all the case studies presented in this section, hc and hy are taken as the identity function for simplicity.
Furthermore we use N train ¼ 1024 and Nval ¼ 512, and consider no other regularization except for the
GRL, i.e. β¼ αx ¼ αc ¼ αy ¼ 1:0. Unless stated otherwise, the number of the domain and class latent
variables are taken to be twice the number of domain and class generative factors. The intention behind
this choice is to avoid biasing themodel towards a disentangled representation bymatching the number of
latent variables to the ground truth generative factors, ensuring that any disentanglement in the learned
representation is not a consequence of limited latent space capacity. To enable the formulation of problems
with bounded latent variables and to ensure a stable optimization procedure, the physics-grounded latent
variables are obtained through a sequence of invertible transformations applied to the encoder output,
mapping samples from an unbounded base latent space to the target latent space. All physics-grounded
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latent variables are constrained to lie within ranges that ensure consistency with the underlying physics of
each system.

Visualization

A particularly useful tool for assessing the learned representation is to “traverse” the latent space and the
space of reconstructions of the VAE (Higgins et al., 2016; Kim andMnih, 2018). This can be achieved by
generating synthetic data while interpolating over a specified generative factor, and setting the remaining
generative factors to a constant reference value. The VAE is then evaluated on the generated data, yielding
samples from the latent space, realizations of the reconstructed input x̂, and the mean physics-based and
data-driven components x̂p and x̂d. Each generative factor is linearly interpolated within the 1st and 99th

percentiles of the corresponding ground truth distribution.

5.1. Beam case study

5.1.1. Case study description
The case study consists of a beam with fixed length L¼ 1:0m and a point load with magnitude F¼ 1:0N
acting on an uncertain position xF along the length of the beam. Thematerial is linear elastic with uncertain
Young’s modulus E, Poisson ratio ν¼ 0:3, area moment of inertia I¼ 2 �10�6 m4 and cross-sectional area
A¼ 2:4 �10�3 m2. The rotational stiffness of the right-hand side support is temperature dependent, with
the dependencemodeled as an increase in the rotational stiffness of the support at lower temperatures. The
relationship between the temperature and the support rotational stiffness is formulated as
logkr ¼ 8� 10

1þe�T=2. The beam is subject to variability in the vertical stiffness of the right-hand side
support, e.g. due to damage or a deficiency of the support, simulated as a translational spring boundary
condition with stiffness kv. This quantity can span several orders of magnitude, and therefore we
parametrize the model using logkv instead. The beam is equipped with dx ¼ 32 sensors measuring the
vertical displacement, equally spaced along the length as shown in Figure 1(a).

Figure 4. Illustration of the procedure used to obtain the full and nominal physics-based models (left),
and to generate the datasets used in the case studies (right).
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The Young’s modulus E and the position of the point load xF are considered as uncertain latent
variables, such that zx ¼ E,xFð Þ. It is assumed that the temperature is an observed domain variable such
that c¼ Tð Þ, and that the vertical spring log-stiffness logkv is taken as a class variable representing
damage in the structure, such that y¼ logkvð Þ. Since the class variable y represents damage in the structure
it will not be quantitatively measurable. In a realistic scenario, observations of the condition of the support
on a qualitative scale (e.g. from 0 representing no damage to 5 denoting a fully damaged support) might be
available. In this example we simplistically consider y as the ground truth value of logkv with some added
noise. The variable symbols, units, types, as well as the prior distributions over the physics-grounded
latent variables and the ground truth distributions of the generative factors used to generate the training
data are summarized in Table 1. We additionally provide a reference value which is used to produce
the figures as discussed in Section 5. To ensure physical consistency and to avoid numerical issues, the
Young’s modulus is truncated below a small positive value, and the load position xF is restricted to
the range 0,1ð Þ.

A partial description of the physics is available, in the form of an analytical expression for the vertical
deflection of a simply supported Euler-Bernoulli beam with a point load acting at xF:

w xð Þ¼
Pbx L2�b2� x2
� �

6LEI
, 0≤ x≤ xF

Pbx L2�b2� x2
� �

6LEI
þP x� xFð Þ3

6EI
, xF < x≤L

8>><
>>: (5.1)

where b¼ L� xF, and the non-bold x refers to the position along the beam. This nominal model represents
the beam in the undamaged condition at a reference temperature, and is directly incorporated in the
physics-based branch of the VAE decoder.

Following the procedure described in Section 5, the full model (trained on input-output pairs from an
FE-based simulator) is used to produce synthetic data by first drawing samples of the input parameters
from the ground truth distribution, and subsequently contaminating the resulting model predictions with
zero-meanGaussian white noise with standard deviation σx ¼ 0:02m. The dataset used to train the VAE is

composed ofN train measurements of the beam displacement x¼ xif gN train
i¼1 where each element xi is a vector

of length dx ¼ 32. The domain and class observables c¼ cif gNtrain
i¼1 and y¼ yif gN train

i¼1 are obtained as the
ground truth values used to generate the dataset, with the addition of i.i.d. samples of Gaussianwhite noise
with standard deviations of σc ¼ σy ¼ 0:02, respectively. The dimensionality of the domain and class latent
variables is taken as dzc ¼ dzy ¼ 2.

5.1.2. Qualitative assessment of disentanglement
After training, the disentanglement between physics-grounded and data-driven components is qualita-
tively assessed by examining the latent space and samples of the reconstructed response of the beam. The
predicted physics-based x̂p and data-driven x̂d components, as well as the combined prediction x̂ are
shown in Figure 5. It can be observed that the data-driven component of the reconstruction x̂d (middle

Table 1. Summary of generative factors and the corresponding ground truth and prior distributions

Variable Unit Type Prior distribution Ground truth Reference value

E MPa Physical N 4:0,1:0ð Þ U 2:5,4:5ð Þ 3.0
xF m Physical N 0:5,0:04ð Þ U 0:3,0:7ð Þ 0.5
logkv N/m Class - U 6:0,8:0ð Þ 8.0
T Co Domain - U �11:0,5:0ð Þ 5.0
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row) is invariant to changes in E and xF contributing only a constant deformed shape to the total predicted
response. On the other hand, the physics-based model captures variability in both the physics-grounded
generative factors sx ¼ E,xFð Þ, but also domain and class generative factors sc ¼ Tð Þ and sy ¼ logkvð Þ. In
contrast to the behavior of the unconstrained VAE, presented in Section 2.4, here the model preferentially
utilizes the known physics. Only the variability in the measured response due to logkv and T that can not
be captured by the physics-based model is accounted for by the data-driven part of the decoder, indicating
that the model can disentangle components of the response that can be attributed to the known physics
from those that cannot. A key aspect of the adversarial training is the degree to which it allows interaction
between the physics-based and data-driven components of the prediction. In this case study, the additional
displacement of the beam due to the reduced vertical stiffness of the right-hand side support will also
depend on the load position xF. More positive values of λ tend to prevent the model from capturing this
interaction, whereas more negative values enable it but may result in the data-driven components
overriding the known physics.

To further highlight the impact of the GRL, the latent space traversals of the unconstrainedmodel and
the model trained adversarially are compared in Figure 6. Without adversarial training, the domain
latent variables zc encode the variability in the load position xF as shown in Figure 6(a), providing the
data-driven decoder components with the information needed to reconstruct this component of the
measured response and resulting in an entangled representation, as discussed in Section 2.4. In contrast,
when λ¼ 1=256 the adversarial training results in a posterior distribution over zc that is invariant to
changes in xF. Instead, the variability is captured by the corresponding physics-grounded latent
variable, as shown in Figure 6(b), indicating disentanglement of the physics-grounded and domain
generative factors. The results shown previously suggest that the latent bottleneck architecture and
GRL regularization result in a sparse and parsimonious representation of the physical system, and can
yield domain and class latent variables that are invariant to changes in the underlying physics. The
influence of the GRL hyperparameter λ is further investigated in the oscillator case study presented
below.

Figure 5. Mean prediction and ± 2σ uncertainty bounds for the physics-based x̂p and data-driven x̂d
components, and combined prediction x̂ while traversing the generative factors. The input response

measurements are denoted as dots in the bottom row.
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5.2. Oscillator case study

5.2.1. Case study description
This example demonstrates how the adversarial training prevents the model from compensating for all
discrepancies between the physics-based model predictions and measurements. Suppose that a mass-
spring-dashpot system undergoes damped harmonic motion, starting from an initial displaced position x0,
with no external excitation. It is assumed that each experiment is performed under varying temperature T ,
which is taken as the domain variable. The temperature affects the spring stiffness through the relationship
k Tð Þ¼ kref þαT T ref �Tð Þ, with T ref ¼ 20:0 Co and αT ¼ 0:01. The reference spring stiffness at
T ref ¼ 20:0 Co is assumed known and equal to kref ¼ 1:0 N/m. The mass m is considered unknown and
treated as a physics-grounded latent variable to be inferred from data. The viscous damping coefficient cd
is taken to define the class of the system. Finally, it is assumed that the observations are subject to an
unknown confounding influence in the form of small random perturbations of the initial displacement x0.
A summary of the generative factors, the prior distribution and the ground truth distribution is provided in
Table 2.

The equation of motion describing the system can be written as:

m
d2x tð Þ
dt2

þ cd
dx tð Þ
dt

þ k Tð Þx tð Þ¼ 0 (5.2)

A partial description of the physics is available in the form of an analytical solution under the
assumption that the initial displacement is x0 ¼ 1:0 m, and the initial velocity is _x0 ¼ 0:0 m/s for all

Table 2. Summary of generative factors and the corresponding ground truth and prior distributions

Variable Unit Type Prior distribution Ground truth Reference value

m kg Physical U 1:0,2:0ð Þ U 1:2,1:8ð Þ 1.5
cd kg / s Class - U 0:0,2:0ð Þ 0.0
T Co Domain - U 0:0,40:0ð Þ 20.0
x0 m Unknown - U 0:9,1:1ð Þ 1.0

Figure 6. Visualizations of the VAE latent space during traversal of the generative factors xF and logkv.
Each column corresponds to variation of a single generative factor, and each row shows the marginal

approximate posterior distribution of a single latent variable.
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experiments, and that there is no damping affecting themotion of the oscillator. Furthermore, it is assumed
that the relationship between temperature and stiffness is not known, and the temperature effect is
therefore not included in the nominal physics-based model. Under the assumptions described previously,
the displacement of the oscillator at time t can be expressed as:

x tð Þ¼ cos

ffiffiffiffiffiffiffi
kref
m

r
t

 !
(5.3)

Each triplet of observations is composed of a noisy displacement time series, and noisy measurements
of the viscous damping coefficient cd and temperature T , which are considered as class and domain
variables respectively such that c¼ Tð Þ and y¼ cdð Þ. Training and validation datasets are generated by
drawing samples from the ground truth distribution and generating the oscillator displacement time-series
using the full model, trained on input-output pairs simulated using the equation of motion shown in
Equation (5.2). Each of the measured time-series is a vector of 64measurements, equally spaced within a
time interval t∈ 0,10½ � s. The synthetic response measurements are subsequently contaminated with
i.i.d. realizations of Gaussian white noise with standard deviation σx ¼ 0:01m. The standard deviation of
the measurement uncertainty of the domain and class observables are taken as σc¼ 0:01 and σy ¼ 0:01
respectively. To ensure that the model has sufficient capacity to learn the unknown confounding influence
if the adversarial training were not present, the dimensionality of the latent space is specified to be
significantly larger than the number of ground truth generative factors. The domain and class latent space
dimensions are taken as dzc ¼ dzy ¼ 4.

5.2.2. Model behavior in the presence of unknown confounders
The proposed model with no adversarial training (λ¼�1) is trained and evaluated on the synthetic
example. The reconstructed response obtained from a traversal of the initial displacement x0, shown in
Figure 7a, highlights another issue that occurs when combining physics-based and data-driven compo-
nents in VAE: Although the variability in x0 can not be accounted for by the physics-based model, and
there is no information in the domain or class variables regarding the value of x0, the lack of regularization
results in a model that is free to capture the components of the measured displacement stemming from the
variability in the initial displacement x0. Although in this case the effect is benign, in more complex
physical systems it can result in the model learning unknown confounding influences in a non-
interpretable black-box manner. When the GRL regularization is utilized (Figure 7b), the data-driven
encoder is unable to capture the variability in x0, depriving the data-driven decoder from the information
needed to reconstruct this component of the input measurements.

The results shown in Figure 7 demonstrate how the unconstrained VAE will compensate for discrep-
ancies between the physics-based model prediction and the measurements caused by unknown con-
founding influences. The reason why this can be detrimental for the learning task is illustrated in
Figure 8a. The unconstrained VAE accounts for the learned confounding influence of x0, which can lead
to underestimation of the uncertainty over the latent variables and predictions. In contrast, when themodel
is trained with the adversarial objective, the encoder is prevented from learning a representation of x0. The
uncertainty stemming from the partial knowledge of the physics, including the unknown influence of the
viscous damping and the variability in x0, is more accurately accounted for in the reconstructed response,
as shown in (Figure 8b). The additional uncertainty can also be attributed to the fact that the mass-spring-
dashpot system does not satisfy the additivity assumption described in Section 2.4.

5.2.3. Quantitative assessment of disentanglement
The trade-off between invariance of the domain and class latent variables to non-domain or class
influences and prediction accuracy can be adapted by tuning the GRL hyperparameter λ. A parameter
study is performed to assess the impact of different choices for λ on the learned representation. The model
is trained for varying values of λ¼ �1,�1=10,�1=100,�1=1000,0,1=1000,1=100,1=10,1f g, and the
metric described in Section 3.3 is computed for each trained model using linear regression. The training
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and testing datasets D and D0 are composed of 2048 samples each. To account for the impact of
randomness in the synthetic dataset, neural network parameter initialization, and training procedure,
the results for each value of λ are averaged over multiple runs. The values of the metric for each generative
factor and subset of the latent space, as a function of λ, are shown in Figure 9.

It can be seen that the sign of λ determines the nature of the training procedure, with positive values
resulting in adversarial training. For negative values of λ the training becomes collaborative, in the sense
that the encoder attempts to find approximate posterior distributions over zc and zy that are jointly
informative about their respective modality as well as the response measurements x. The magnitude of λ
determines the strength of the adversarial or collaborative training. To aid in the interpretation of
the results, the behavior of the model is classified into four regimes. When λ approaches�1 from above,
the training is strongly collaborative, and the tasks of minimizing the error in the reconstruction of x and
the prediction of the domain and class variables c and y are jointly prioritized. This is reflected by the
relatively high scores obtained by the subsets zc and zy for the generative factorsm and x0. For λ! 0�, the
auxiliary tasks are prioritized over the main task, and the amount of information about m and x0 that is
encoded in zc and zy is limited. In this regime the behavior can be characterized as weakly collaborative.
Conversely, for small positive values of λ the training becomes weakly adversarial. In this regime the
encoder will seek latent codes over zc and zy that are uninformative about x. Further increasing the GRL
coefficient such that λ! 1 yields a strongly adversarial model, and any information that can be used to
reconstruct the domain and class variables is heavily weighted against the potential improvement in the
reconstruction of x. In this case the encoder fails to capture the variation in any of the generative factors.

Figure 7. Physics-based model prediction x̂p, data-driven model prediction x̂d, and combined prediction
x̂ for varying initial displacement x0. With λ¼�1:0 (top) the data-driven components in the VAE are free
to account for the variability in the initial position. For λ¼ 1=128 (bottom) the model does not learn this

component of the response.
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5.3. Bridge case study

5.3.1. Case study description
The final synthetic case study utilizes the two-span bridge benchmark presented in Tatsis and Chatzi,
2019, illustrated in Figure 1(c). Members of a homogeneous population (Bull et al., 2021) of bridges are
subjected to controlled loading tests, where a vehicle with known mass and moving at a constant velocity
is used to excite the bridge response. The response is obtained as a strain influence line, expressed in parts
per thousand (‰), measured by a point strain gauge placed at a distance of 5:625 m from the start of the
bridge, and at a height of 0:1m from the bottom of the cross section. Each time-series is composed of 64
measurements, equally spaced in time t∈ 1,21½ � s, where t¼ 0 s is the moment the vehicle enters the
bridge.

The behavior of each bridge is partially determined by the unknown vertical stiffnesses of the supports
kv,1, kv,2 and kv,3, which are taken to vary between different bridges due to variability in the design,
construction and soil conditions. The boundary conditions are known to be symmetric such that
kv,1 ¼ kv,3. The base-10 logarithms of the vertical stiffnesses are considered as physics-grounded latent
variables. In the horizontal direction, only the left support has a large stiffness, while the rest are
unconstrained. It is assumed that the position of the central pier can vary between members of the
population by up to ± 1:0 m from L=2. Furthermore, fluctuations from the prescribed reference vehicle
velocity vref ¼ 1m/s were observed during the tests that can not be accounted for in the nominal physics-
based model. These fluctuations are modeled as a multiplicative term δv such that v¼ δv � vref . Noisy
measurements of the vehicle velocity, and the known pier offsets δs are included as domain variables. It is

Figure 8. Physics-based model prediction x̂p, data-driven model prediction x̂d, and combined prediction
x̂ for varying viscous damping coefficient cd. The data-driven decoder components are prevented from
fully accounting for the discrepancies between the physics-based model and measurements, resulting in

wider uncertainty bounds for the proposed model.
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assumed that the bridge decks are prone to deterioration in a region around the supports. During
inspections performed by experts, each bridge is assigned scores y¼ y1,y2ð Þ, quantifying the deterioration
of the structure near the left and middle supports respectively. Each yi takes values between zero and one,
where zero represents pristine condition and unity corresponds to severe damage of the cross-section at
that position. These scores are considered as class observables. Finally, a small variability is considered in
the vehicle load such that F¼ δF �Fref , where Fref ¼ 100 kN is the reference load. This variability is
caused by deviation in the transverse position of the vehicle, and is considered as an unknown
confounding influence. The quantities involved in the case study along with their prior and ground truth
distributions are summarized in Table 3.

Training data for the full and nominal physical models is generated using the FE model of Tatsis and
Chatzi, 2019 as a simulator. The FE model is composed of quadrilateral isoparametric plane stress
elements with 9 nodes each, arranged in a 200× 6 grid. The length, width and height are assumed constant
and equal to L¼ 25:0m,w¼ 0:1m and h¼ 0:6m for all of the bridges. The material is linear elastic, with
Young’s modulus E¼ 200 GPa, density ρ¼ 7850 kg/m3 and Poisson’s ratio ν¼ 0:3. All supports are
modeled as linear springs in the vertical direction. The equations of motion are integrated from t0 ¼ 0
seconds to t1 ¼ 25 seconds with a timestep of dt¼ 0:00025 seconds, using an implicit Newmark scheme
with parameters γ¼ 1=2 and β¼ 1=6. The deterioration is modeled as a reduction of the cross
section width, ranging from 0% (for yi ¼ 0:0) to 90% (for yi ¼ 1:0) in the region spanning L=20 around
the corresponding support. It is noted that the deterioration is intentionally exaggerated to a large extent
to ensure that it can be observed in the strain influence lines. The damaged regions are illustrated in
Figure 1(c).

The nominal physics-based model is assumed to be a simplistic but representative model for the
behavior of the bridges in the population under study in their nominal condition, obtained through the
procedure described in Section 5. In addition to the physics-grounded latent variables, the nominal model
also includes the parameter δs as an input, describing the offset of the pier relative to the center of the

Figure 9. R2 value per subset of the latent variables and generative factor as a function of λ, averaged
over 6 runs. The shaded intervals correspond to two standard deviations.
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bridge in the longitudinal direction. Given the vertical stiffness of the abutments and support and the offset
of the central pier, the nominal model returns a time-series of strains.

The response, domain and class observables are contaminated with i.i.d. samples of Gaussian white
noise with standard deviations σx ¼ σc ¼ σy ¼ 10�4. It is important to note that this case study is not
intended to be a realistic representation of system identification and SHM for bridges, since it circumvents
several important practical difficulties such as ensuring the consistency and alignment of data collected
over long time-scales from a large number of structures. Furthermore, it is assumed for simplicity that the
degradation condition of the bridges does not change significantly within the amount of time required to
obtain the dataset.

5.3.2. Qualitative assessment of disentanglement
The model is trained with λ¼ 1=1024 and dzc ¼ dzy ¼ 4. The predictions generated by the model while
traversing each of the generative factors are shown in Figure 10. It can be seen that the data-driven
component of the decoder is prevented from capturing variability in the reconstructed response when
varying log10kv,1, log10kv,2 and δF, but is able to contribute to the components caused by the variation of
the domain and class generative factors. Furthermore, the figure illustrates that the unknown confounder
δF can be partially accounted for by the physics-based model. This is in contrast to the oscillator example
(Section 5.2) where the influence of the unknown confounder could not be accounted for by the known
physics.

The previous conclusions are further supported by the traversal of the latent space, shown in Figure 11,
which indicates that the domain and class subsets of the latent variables encode information that enables
the auxiliary decoders to predict the domain and class labels, and the response decoder to correct the
physics-based model prediction. It can be seen that the influence of the unknown confounder δF is partly
captured as variability in the physics-based subset zx, indicating that model form uncertainty is compen-
sated by inferring an “effective” value of the physics-grounded latent variables. Figure 11 also suggests
that the domain and class latent variables only capture variability in the corresponding generative factors,
whereas the physics-grounded latent variables are always active, providing additional evidence for the
claim that the adversarial objective induces a disentangled representation while prioritizing the use of the
known physics. Importantly, Figures 10 and 11 illustrate that the adversarial training can feasibly
constrain gθ zc,zy

� �
, such that it only contributes to the prediction when justified by additional domain

and class observables.

5.3.3. Application to damage identification
As discussed in Section 3, the model is trained in a fully supervised manner to simultaneously reconstruct
the domain and class variables from the input measurements, making it possible to handle tasks such as
damage detection, where predicting the class labels y from input measurements x is of interest. Given a
trained model, the condition labels of a similar bridge can be predicted from response measurements. The

Table 3. Summary of physics-based, class and domain variables for the two-span bridge case study

Variable Unit Type Prior distribution Ground truth Reference value

log10kv,1 N/m Physical U 9:0,12:0ð Þ U 9:5,11:5ð Þ 11.5
log10kv,2 N/m Physical U 9:0,12:0ð Þ U 9:5,11:5ð Þ 11.5
y1 - Class - U 0:0,1:0ð Þ 0.1
y2 - Class - U 0:0,1:0ð Þ 0.1
δv - Domain - U 0:9,1:1ð Þ 1.0
δs m Domain - U �1:0,1:0ð Þ 0.0
δF - Unknown - U 0:9,1:1ð Þ 1.0
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performance is evaluated in two different cases, illustrated in Figure 12, referred to as “interpolation” and
“extrapolation,” respectively. For each case, the space of physics-grounded generative factors is subdiv-
ided into four quarters. In the interpolation case, the model is trained on N train ¼ 1024 samples from three
quarters and evaluated on N test ¼ 512 samples from the fourth. In the extrapolation case, the model is

Figure 10. Mean prediction and ± 2σ uncertainty bounds for the physics-based x̂p and data-driven x̂d
components, and combined prediction x̂ while traversing the generative factors. The input response

measurements are denoted as dots in the bottom row.

Figure 11. Visualization of the VAE latent space during traversal of the generative factors. Each column
corresponds to variation of a single generative factor, and each row shows the marginal approximate

posterior distribution of a single latent variable.
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trained on data from a single quarter and evaluated on the remaining three, using the same train and test set
sizes. All other generative factors are sampled from the ground truth distributions presented in Table 3. To
obtain a more comprehensive evaluation, each of the two cases is divided into four sub-cases, over which
the results are averaged.

The proposed disentangled physics-informed variational autoencoder (DPIVAE), using two different
hyperparameter settings denoted as DPIVAE-A and DPIVAE-B, is compared with linear regression
(LIN), Gaussian process regression (GPR) and a multi-layer perceptron (MLP). For DPIVAE-A the GRL
is not utilized, i.e., λ¼�1, and separate encoders are used for each subset of the latent variables. For
DPIVAE-B the GRL hyperparameter is taken as λ¼ 1=1024. The GPR is implemented with a radial basis
function kernel and additive Gaussian white noise. The MLP is formulated with two hidden layers, each
with a width of 64 units and a rectified linear unit (ReLU) activation function. Results in terms of
interpolation and extrapolation performance of each model is quantified in terms of the R2 and mean
squared error (MSE), shown in Table 4. These results are intended to highlight that the performance of the
different models is comparable, and that the proposed model can feasibly be used to predict the class

Figure 12. Samples of physics-grounded generative factors used for creating the synthetic training set
(blue) and test set (orange). Two cases are constructed in order to evaluate performance in interpolation

(top) and extrapolation (bottom).

Table 4. Mean and standard deviation of R2 and MSE for the task of predicting y, averaged over 6
runs

Interpolation Extrapolation

Model R2 ↑ð Þ MSE ↓ð Þ R2 ↑ð Þ MSE ↓ð Þ
DPIVAE-A 0.905 ± 0.023 0.008 ± 0.002 0.676 ± 0.153 0.027 ± 0.013
DPIVAE-B 0.943 ± 0.012 0.005 ± 0.001 0.809 ± 0.090 0.016 ± 0.008
GPR 0.957 ± 0.022 0.004 ± 0.002 0.820 ± 0.112 0.015 ± 0.009
LIN 0.863 ± 0.005 0.011 ± 0.000 0.617 ± 0.285 0.032 ± 0.024
MLP 0.839 ± 0.035 0.013 ± 0.003 0.365 ± 0.397 0.053 ± 0.033
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variables in a complex high-dimensional case study. Manual hyperparameter tuning is performed for the
models involved in the comparison.

The proposed approach using adversarial training doesn’t result in any improvement over existing
approaches for the specific interpolation and extrapolation tasks in the present case study. This can be
attributed to the adversarial training, which forces the encoder to weigh any information that is relevant to
the prediction of y against the potential improvement it provides towards the reconstruction of x. It can be
seen that the GPR outperforms all other models while only using a fraction of the parameters, possibly due
to the smoothness of the input influence line measurements. The results also indicate that the model
performs better when using a single encoder combined with adversarial training in both interpolation and
extrapolation. Despite this negative result, we speculate that the disentangled representation induced by
the architecture, the invariance of the class latent variables to unknown confounding influences, and the
incorporation of the known physics, might be beneficial in certain tasks. Future work will aim to
investigate the factors that affect the performance of the proposed approach, and the conditions under
which it can provide a benefit in class prediction tasks. This analysis indicates that the proposed model
performs on par with other commonly used data-driven models, but with the added benefit of ensuring the
proper use of the known physics and the additional interpretability of the physics-grounded latent space.

6. Discussion

6.1. Contributions and strengths

The results presented in Section 5 indicate that the proposed architecture and adversarial objective
effectively constrain the posterior distribution over domain and class latent variables, and by extension,
the flexibility of the data-driven decoder components. The constraint is controlled by an interpretable
hyperparameter that determines the strength of the gradient reversal. This allows for the main and
auxiliary decoders to be trained in a collaborative or adversarial manner. This hyperparameter effectively
controls the relative importance of the physics-based and data-driven components, and can be used to
encourage the model to preferentially utilize the known physics. When the training is adversarial, the
domain and class latent spaces encode features of the response measurements that can be related to the
observed domain or and class variables, and that cannot be accounted for by the known physics.
Simultaneously, the data-driven components of the model are constrained to avoid overriding the
physics-based model predictions. Because neither the domain or class observables are necessary during
model evaluation, the proposed approach has the potential to reduce the need for cumbersome and
expensive data collection methods, such as those involving elaborate experimental procedures or expert
assessments.

6.2. Assumptions and limitations

It is important to consider the assumptions and limitations of the proposed approach. One of the main
drawbacks of the model is the additivity assumption imposed on the physical, domain and class
components of the response. It is expected that the model will perform sub-optimally when this
assumption is violated. Furthermore, the accuracy of the inferred physics-grounded latent variables will
depend on the relative contribution of the physics, domain and class influences to the measured response.
Significant domain and class contributions to the response, or violating the additivity assumption of
Equation (2.3), can lead to inaccurate inference of physics-grounded latent variables and large uncertainty
in the predictions. Additionally, the model requires that multiple types of data are available, namely
measurements of the structural response and information on domain and class. In SHM applications, this
might necessitate data alignment procedures of response measurements, environmental conditions and
damage level descriptions, and could potentially limit the immediate applicability of the proposed
architecture. It is worth mentioning that the interaction between the encoder, decoders, the GRL, and
the known physics can be unintuitive in some applications, limiting the applicability of the approach and
potentially necessitating implicit supervision by a human expert.
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6.3. Practical considerations

Specifying an appropriate value of λ for a given learning problem is not straightforward. Schemes for
scheduling or adaptively tuning the strength of the GRL during training have been proposed (Ganin and
Lempitsky, 2015; Li et al., 2023; Qu et al., 2025), but have not been considered in this work. Instead, we
focus on providing intuition and clarity regarding the influence of λ through the qualitative and
quantitative results presented in Section 5. Furthermore, it is known that adversarial training can be
unstable (Wiatrak et al., 2020). Throughout this work, occasional instability and overfitting were
observed when using small datasets and large batch sizes. Depending on the case study and the value
of the λ hyperparameter, oscillatory behavior may also occur. We found that these issues could be
addressed by adjusting the λ hyperparameter, implementing early stopping based on the value of the
ELBO on a held-out validation set, and reducing the batch size.

The dimensionality of the latent space is an important design parameter in VAE, and excessively small
or large dimensionality can result in poor reconstruction quality (Doersch, 2021). Depending on the
available computational budget and problem complexity, approaches for determining an appropriate
dimensionality are often based on manual trial and error or grid search (Sejnova et al., 2024). More
sophisticated approaches include dynamically adjusting the number of latent variables during optimiza-
tion (De Boom C et al., 2021; Sejnova et al., 2024), automatic relevance determination (Saha et al., 2025)
and multi-stage models (Dai and Wipf, 2019). A key advantage of VAE in engineering, physical, and
scientific applications, is that domain knowledge can guide reasoning about the type and number of the
dominant generative factors in the data, informing the design of the latent space. VAE are generally
insensitive to over-specification of the latent space dimensionality, with superfluous dimensions becom-
ing inactive and ignored by the decoder (Asperti, 2019; Yeung et al., 2017). Choosing the dimensionality
of the domain and class latent space to be amultiple of the expected number of generative factors, based on
domain knowledge, and subsequently refining this choice by monitoring the number of inactive
dimensions after training can therefore be a viable approach.

It is not possible to provide a rule-of-thumb about the amount of data required for effective training.
This would be dependent on the specific problem, noise levels, physics-based model, and accuracy of the
domain and class information, and also on the particular architecture choices (e.g. the number and depth of
layers used in the feed-forward NNs in the encoder and decoder). In some applications, the incorporation
of the known physics might lead to a reduction in the data requirements. This has not been investigated in
the current paper since it is believed that it would be strongly dependent on the case study chosen, rather
than offering any general insight.

7. Conclusions

The present work contributes to the emerging applications of probabilistic generative models in engin-
eering, by investigating disentangled and invariant representation learning as a tool for grounding VAE to
the known physics. Specifically, a physics-enhanced machine learning strategy utilizing a VAE archi-
tecture is proposed, with the aim of learning a disentangled representation of physical, domain and class
confounding influences that are present in the response measurements of physical systems. This is
achieved by having the decoder and latent space of the VAE be semantically and functionally separated
into data-driven and physics-grounded branches. An easy to implement regularization method based on
the GRL is used to constrain the data-driven components, resulting in a model that preferentially utilizes
the known physics. An interpretable and intuitive hyperparameter is used to specify the strength of GRL,
and wether the model is trained in a collaborative or adversarial manner. Moreover, a strategy for
quantifying the type and relative amount of information encoded in different sets of latent variables is
proposed, yielding insights on the degree of disentanglement achieved by the model.

Three synthetic case studies involving a beam, an oscillator, and a population of bridges were
investigated. In these cases, a nominal model representing the partially known physics was available
or built from a simulator. For each case, noisy observations of the structural response and information on
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domain (the environmental and operational conditions that a system is exposed to) and class (the
characteristics of a structure related to the existence and extent of damage and degradation) are assumed
available. It was shown that the proposed architecture promotes the learning of disentangled represen-
tations, and mitigates the issues that occur when including physics-based components in standard VAE.
Furthermore, it was shown that the proposed approach is able to: (i) Preferentially utilize the known
physics, resulting in an interpretable and physically meaningful posterior distribution over physics-
grounded latent variables, (ii) Accurately reconstruct the structural response in the presence of domain
and class influences that are not described by the known physics, and (iii) Predict the class variables
associated with a structure under previously unseen conditions using noisymeasurements of the structural
response.

Although the results of the case studies do not indicate improvement in the prediction of class
variables, compared to commonly used data-driven approaches, it is likely that the invariance of the
learned domain and class representations with respect to unknown confounding influences can be
advantageous for certain problems. Future work will aim to investigate this, as well as the performance
of the approach inmore complex tasks and in real-world problems. Other possible avenues for futurework
include the extension of the approach to the semi-supervised setting, the application to dynamical systems
described by ordinary differential equations, and automating the tuning of the GRL hyperparameter.
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A. Implementation details
Encoder formulation.The encoder reduces the dimensionality of the input measurements andmaps them to vectors of mean values
μϕ xð Þ, standard deviations σϕ xð Þ and a lower triangular matrix L0

ϕ xð Þ. The lower triangular factor Lϕ xð Þ¼L0
ϕ xð Þþσϕ xð ÞI is the

Cholesky decomposition factor of the covariance matrix Σϕ xð Þ, i.e. Σϕ xð Þ¼Lϕ xð ÞLϕ xð ÞT , such that the posterior distribution
corresponding to each input is a multivariate Normal distribution. The encoder outputs the log of the standard deviations, which are
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then exponentiated to avoid negative values. The reparametrization trick (Kingma andWelling, 2022) is exploited to define the latent
variables z as a deterministic transformation of a noise variable ϵ� p ϵð Þ. This facilitates the computation of unbiased Monte Carlo
gradient estimates of the objective with respect to the variational parameters, using automatic differentiation. With the exception of
the introductory examples presented in Section 2.4, the encoder is everywhere formulated as a single feed-forward NN using a
shallow architecture with a single hidden layer. The input and hidden layer widths are dx,128½ �, where dx is the dimensionality of the
input. The output layer is composed of three heads, corresponding to themean, standard deviation and covariance outputs. Themean
and standard deviation heads have output sizes of dz, while the covariance head has an output size of d2z , where dz ¼ dzx þdzc þdzy ,
with dzi denoting the size of the i’th subset of the latent space. A ReLU activation function is applied on all layers except the final
output layer. For the introductory examples, an independent encoder network is used for each subset of the latent variables. The
hidden layer widths of each independent network are set to 64 units, and the output shapes are adjusted according to the
dimensionality of the corresponding subset of the latent variables. To further ensure numerical stability, the outputs of all encoder
NNs are clamped within ranges of values that are expected to be encountered for the case studies investigated in this work.

Decoders. The decoder of the response is formulated as a feed-forward NN with a single, 128-unit-wide hidden layer and a
ReLU nonlinearity at the output of the hidden layer. The size of the input is dzc þdzy and the output size is dx. A gradient reversal
layer is placed at the input of this network. For the structural response prediction, the standard deviation σx is included in the vector θ
and jointly optimizedwith theNNhyperparameters. The auxiliary networks are formulatedwith a single hidden layer with awidth of
64 units and a ReLU nonlinearity between the input and the hidden layer. The auxiliary decoders are composed of two prediction
heads, responsible for the mean prediction and standard deviation respectively. The input and output shapes are dzi and 2 �di, where i
denotes the corresponding domain or class modality.

Conditional prior networks. The conditional prior distributions are formulated as factorized Gaussian distributions. The
corresponding neural networks use a single hidden layer with a width of 64 units. The input and output shapes are also adjusted to di
and dzi respectively, where the subscript i∈ x,c,yf g denotes the corresponding modality and subset of the latent space.

Latent variable transformation. To facilitate the application of the model to cases involving physics-grounded latent variables
with bounded support, and to improve numerical stability, all parameters are transformed from an unbounded and normalized base
latent space to the target latent space in which they are defined. This is achieved by applying a sequence of deterministic
transformations to the samples and corresponding scaling of the log-densities. In the following, variables in the base space are
denoted as u. The samples at the output of the encoder are first bounded by applying the logistic transform u0 ¼ 1

1þe�u, and
subsequently scaled and shifted using an affine transform z¼ u0 � UB�LBð ÞþLB to bound the variables to their specified supports
defined by the lower and upper bound LB and UB. The samples and densities can also be mapped from the target latent space to the
base latent space by applying the corresponding inverse transforms in reverse order.

Optimization.Optimization is carried out using theAdam algorithm (Kingma andBa, 2017)withminibatch gradient estimation
(Kingma andWelling, 2022). The model is trained for up to 20,000 iterations with a batch size of 64. Early stopping is implemented
by monitoring the value of the ELBO, evaluated on a held-out validation set with size Nval ¼ 512. The training is terminated if no
improvement of the ELBO is observed over 2,000 iterations. Gradient and objective estimates are obtained using 16Monte Carlo
samples during training, 64 during validation, and 512 during evaluation, although in practice the training was found to be
insensitive to the number of samples. All learning rates are set to 0:001, except for the learning rate of the standard deviation
parameter for the response σx, which is set to 0:005. The α and β hyperparameters of the optimization objective are taken as
β¼ αx ¼ αc ¼ αy ¼ 1:0 for all the experiments presented in this work.

Visualization. Figures illustrating the traversal of the latent space and the space of reconstructions are provided for each case
study. Samples from the latent space and reconstructions are obtained as follows: Five linearly spaced values between the 1st and 99th

percentile of the ground truth distribution are computed for each generative factor in turn, while the remaining generative factors are
fixed to a constant value. For each combination of generative factors, 1000 realizations of response measurements are generated
using the procedure described in Section 5. Themodel is evaluated on the responsemeasurements, and a single sample is drawn from
the approximate posterior distribution for each response measurement. The decoder is then evaluated on each sample from the
posterior, yielding deterministic predictions x̂p and x̂d from the physics-based and data-driven components respectively. The
combined prediction is sampled from N x̂pþ x̂d,σ2xI

� �
. The visualizations of the latent space and reconstructions therefore also

include the randomness in the data generating process, in addition to the randomness in the approximate posterior distribution and
decoder.
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