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Combinatorial optimization

Combinatorial optimization problems are tasks where one seeks an optimal

solution among a finite set of possible candidates. In industrial settings, com-

binatorial optimization arises via scheduling, routing, resource allocation, sup-

ply chain management, and other logistics problems, where it can be difficult

to find optimal solutions that obey various desired constraints. The field of op-

erations research—which came to prominence after its application to logistics

problems faced by World War II–era militaries—applies methods of combina-

torial optimization (as well as continuous optimization) to these problem areas

for improved decision-making and efficiency in real-world problems.

Combinatorial optimization problems are also at the heart of classical the-

oretical computer science, where they are used to characterize and delineate

complexity classes, such as P and NP. Typical combinatorial optimization

problems have limited structure to exploit, and therefore quantum computing

most often only provides polynomial speedups. In fact, it came as a surprise in

the early days of quantum computing research that for a wide variety of such

problems, quantum computers do offer up to quadratic speedups via Grover’s

search algorithm [464]. Subsequently, much effort was devoted to understand-

ing how Grover search and its generalization, amplitude amplification, offer

speedups for various combinatorial optimization problems.

In this chapter, we cover several distinct approaches to solving combina-

torial optimization problems. First, we look at combinatorial optimization

through its relation to search problems, where Grover’s algorithm, or its

generalizations, can be applied to give a quadratic or subquadratic speedup.

Then, we cover several proposals—variational algorithms (viewed as an

exact algorithm), the adiabatic algorithm, and the “short-path” algorithm

[505, 329]—that have the potential to surpass the quadratic speedup of

Grover’s algorithm. We discuss the (limited) evidence that these approaches

could generate significant advantages, as well as the associated caveats.
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4.1 Search algorithms à la Grover 63

We do not specifically cover the large body of work on quantum approaches

for approximate combinatorial optimization (typically variational quantum al-

gorithms or quantum annealing). These algorithms usually translate the opti-

mization problem to energy minimization of a spin system with a Hamiltonian

that encodes the classical objective function. They apply some physically moti-

vated heuristics to efficiently generate solutions that have low energy, and seek

a better objective value than could be generated classically in a comparable

amount of time. An advantage of these approaches is that they are often more

compatible with noisy near-term hardware. While approximate optimization

remains an interesting direction, these quantum algorithms are heuristic and

there is a general scarcity of concrete evidence that they will deliver practical

advantages.

We refer the reader to [6] for a comprehensive survey of quantum methods

for combinatorial and continuous optimization.

The authors are grateful to Ashley Montanaro for reviewing this chapter.

4.1 Search algorithms à la Grover

Overview

Grover’s search algorithm [464] and its generalizations, such as amplitude am-

plification, are essential sources of quantum speedups. A straightforward ap-

plication of Grover search in the spirit of optimization is quantum minimum

finding [367, 48], which provides a quadratic speedup for finding the mini-

mizer of a function on a given set of elements.

As search is a generic primitive, Grover’s algorithm is widely applicable,

and it can speed up many subroutines, especially in algorithms for combina-

torial optimization. We list a few representative applications that demonstrate

how Grover’s algorithm may be applied to speed up combinatorial optimiza-

tion.

Actual end-to-end problem(s) solved

The goal is to solve a search problem, that is, decide whether there is an ele-

ment among a set of objects that satisfies some criterion, and if there is such

an object, find one. Many combinatorial optimization problems are fundamen-

tally search problems; a notable class of examples are graph problems, such as

finding a maximal independent set, a k-coloring, a lowest weight Hamiltonian
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64 4. Combinatorial optimization

cycle1 (called the traveling salesperson problem), or the shortest path between

two vertices.

For conceptual clarity, here, we focus on the prototypical Boolean satisfia-

bility problem, that is, SAT solving: given a Boolean formula in the so-called

conjunctive normal form, decide whether it has a satisfying Boolean assign-

ment (and if so, find one). A formula in this form consists of some constraints

(called clauses) each containing the logical AND of some variables or their

negation (called literals). We denote the number of Boolean variables by n and

the total number of literals of the formula by ℓ (typically ℓ ≥ n since each

variable should appear at least once).

Dominant resource cost/complexity

If there are at least m marked elements among N possible ones, then the search

problem can be solved with high probability by using O(
√

N/m) Grover itera-

tions. Each Grover iteration requires generating a uniform superposition over

the N elements starting from the all |0⟩ state and checking whether an element

is marked (in superposition), which can be implemented with gate costO(ℓ+n).

If the formula is satisfiable, then there is at least one solution, thus O(
√

2n)

Grover iterations suffice, giving an overall complexity of O((ℓ + n)
√

2n).

In some applications, it is useful to consider a generalization of Grover

search, amplitude amplification, which enables working with an arbitrary prior

distribution on the elements, unlike Grover’s algorithm which effectively uses a

uniform prior. The relevance of this extension can be seen through the example

of 3-SAT, which is a restricted version of SAT where each clause has at most 3

literals. A clever application of amplitude amplification described by Ambai-

nis [24] for solving 3-SAT more efficiently uses Schöning’s algorithm [908]

and thus generates a nontrivial prior distribution on the solutions.

The complexity of amplitude amplification is similar to that of Grover search

in general. If |ψ⟩ is the quantum state representing the prior distribution, so that

measuring the state yields a marked element with probability at least p, then

O(
√

1/p) “Grover iterations” suffice to find a marked element with high prob-

ability. The algorithm requires preparing the initial state |ψ⟩, and then each

iteration consists of a reflection 2|ψ⟩⟨ψ| − I around |ψ⟩ and checking whether

an element is marked (in superposition). The former reflection can be imple-

mented with two uses of the circuit that prepares |ψ⟩ from the all |0⟩ state, and

a reflection about the all |0⟩ state.

1 A Hamiltonian cycle in a graph is a cycle that visits each vertex once, not to be confused with
a quantum Hamiltonian.
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4.1 Search algorithms à la Grover 65

Existing resource estimates

There are several studies on the resource estimation of Grover-type

(sub)quadratic speedups. Due to the wide range of these problems, we

do not focus on explicit gate counts on any particular problem/implementation

variant, but rather list some prominent articles and illustrate their findings at a

high level [223, 895, 79, 217, 216, 532]. Unfortunately, these recent studies

revealed that quadratic or smaller speedups alone are unlikely to be useful

for the foreseeable future, unless the large overheads of current fault-tolerant

quantum computing schemes can be greatly reduced. For example, [223]

concluded that even if there is some reasonable advantage in quantum gate

counts for solving the constraint satisfaction problems that they consider,

the classical computation supporting the fault-tolerant quantum computation

actually voids the speedup in practice. They state that “Even when considering

only problem instances that can be solved within one day, we find that there

are potentially large quantum speedups available. ... However, the number

of physical qubits used is extremely large, ... . In particular, the quantum

advantage disappears if one includes the cost of the classical processing power

required to perform decoding of the surface code using current techniques.”

The most recent of the references listed above [532] estimates that achieving

a quantum advantage via a quadratic speedup requires at least a month-long

computation already if each iteration contains at least one floating-point

operation. The situation looks more promising for cubic and quartic speedups,

but unfortunately such improvements seem to require techniques beyond

Grover search.

Caveats

Grover originally described his result as “A fast quantum mechanical algo-

rithm for database search” [464]. If we work in the circuit model of quan-

tum computation, then strictly speaking Grover search gives a slowdown for

database search, as every Grover iteration needs to “touch” every element in the

database. If we anyway need to touch all N elements in the database, then the

best we can do is to simply go over every element in linear timeO(N). Grover’s

search circuit, on the other hand, would have gate complexity Õ(N3/2), clearly

worse than sequentially going through the entire dataset.

In the database scenario, we can only recover the quadratic speedup if we

assume that we can use a quantum random access memory (QRAM), with con-

stant (or logarithmic) cost for each database query. The analogous assumption

regarding ordinary RAM is often made in classical computer science, simply

because RAM calls are cheap in practice. However, since a RAM call should

be able to touch every bit of the database, from a circuit complexity perspective
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66 4. Combinatorial optimization

a RAM call must have gate cost at least N. On the other hand, from a time com-

plexity perspective, one can view a RAM call as a massively parallel piece of

computation implementable in a binary tree structure with logarithmic depth.2

While QRAM can also be implemented with a quantum circuit of O(log(N))

depth, a similar accounting might not be fair in the quantum case, depending

on the eventual cost of hardware implementation—especially if error correc-

tion of the QRAM is necessary and the entire QRAM circuit is implemented

in a fault-tolerant fashion.

Nevertheless, Grover’s algorithm can provide a quadratic speedup without

extra hardware assumptions when the elements of the list that we search over

can be easily generated and checked “on the fly.” For example, in the case

of SAT, we search over the 2n possible truth assignments, yet we can easily

check whether an individual assignment is satisfactory by simply substituting

the assignment into the formula and evaluating the resulting Boolean expres-

sion. This is the defining feature of problems in the complexity class NP, whose

solutions are efficient to verify.

Comparable classical complexity

For the unstructured search problem, exhaustive search is essentially the best

that can be done, with a running time ∼ ℓ · 2n. Of course, SAT seems to be far

from unstructured, but under the Strong Exponential-Time Hypothesis [558,

220] the best classical algorithm for SAT has running time 2n−o(n).

A similar argument holds for the generalized problem considered in the set-

ting of amplitude amplification: if we have some prior distribution, we can

classically find a marked element by sampling from this distribution roughly

1/p times. Since unstructured search is a special case of this problem, we can-

not hope for a better classical algorithm in general.

Speedup

The speedup is quadratic in terms of the number of required iterations if we

compare to corresponding naive classical algorithms. It can be shown that this

speedup is optimal in the black-box query model [122]. Moreover, we do not

expect that there would be a bigger than quadratic speedup in gate complex-

ity [210] in the general (non-black-box) case.

2 Viewing RAM as a low-depth circuit disregards issues regarding signal transmission.
Considering that the speed of light is finite and we have only 3 dimensions to fit the memory

cells into, a RAM call should asymptotically cost at least
3√

N time. In fact, state-of-the-art
clock speeds are already in a regime where the speed of light may be a bottleneck, so we
might eventually need to reconsider how the time complexity of RAM is modeled.
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4.1 Search algorithms à la Grover 67

Outlook

We have discussed how Grover search provides a quadratic speedup for SAT,

and how amplitude amplification yields a quadratic speedup for Schöning’s

3-SAT algorithm [908]. Since the best known 3-SAT solvers [526, 497]

have complexity O(1.308n)—only slightly better than Schöning’s O(1.334n)

complexity—this implies a close-to-quadratic quantum speedup. However,

note that this relates to worst-case complexity, and on practical instances, the

scaling can be much better.

We now comment on some of the other combinatorial optimization problems

where Grover’s algorithm can be used as a subroutine. One class of exam-

ples is graph-related problems. In the literature, these problems are most often

studied in the query model, therefore, here we also only discuss their speedup

in terms of query complexity. (Since these are (sub)quadratic speedups, we

know that the fault-tolerant resource estimates will be unfavorable anyway,

as discussed above.) For instance, the problem of finding the shortest paths

from a single source s in graph G = (V, E) to all other vertices v ∈ V can be

solved classically using Dijkstra’s algorithm in time O(|E| + |V | log |V |) if the

graph is provided with its adjacency list (and with query complexity O(|E|)),
whereas the quantum query complexity of this problem is Θ̃(

√
|V ||E|) [368].

Reference [368] determines the query complexity of several other graph prob-

lems such as deciding graph connectivity and strong connectivity as well as

finding the minimum-weight spanning tree. For all of these problems, there is

a similar (sub)quadratic quantum speedup.

One graph problem that is often mentioned in connection to quantum com-

putation is the (in)famous traveling salesperson problem. However, for this

problem, the best provable speedup is only subquadratic. The naive classical al-

gorithm runs in time Õ(n!), and Grover’s algorithm offers a quadratic speedup

over it. The best classical algorithm uses dynamic programming and runs in

time Õ(2n). Ambainis et al. [28] showed how to obtain a speedup over this

algorithm by combining classical precalculation with recursive applications of

Grover’s search resulting in time complexity Õ(1.728n) assuming that QRAM

calls have unit costs. Considering the overheads coming from the implemen-

tation of QRAM and fault tolerance, the traveling salesperson problem seems

to be one of the least likely candidates to achieve a practical quantum speedup

when the nodes have large degree. For bounded degree graphs there is slightly

more hope as quantum algorithms with close-to-quadratic speedups have been

devised [789] that do not require QRAM.

Finally, let us mention quantum walk algorithms, which can also be viewed

as a generalization of Grover search. However, quantum walks are more dis-
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68 4. Combinatorial optimization

tant relatives of Grover search and can only be applied in more specific set-

tings. They can be used for proving many nontrivial speedups in query com-

plexity, however, the resulting algorithms are often not practical due to high

space and/or gate complexity overheads, as is the case for the prototypical el-

ement distinctness problem. The query reduction is moderate N → N2/3 in

the number of elements N, but the corresponding quantum algorithm [25] un-

fortunately uses a QRAM consisting of roughly N2/3 registers; moreover, the

QRAM must be able to store data in superposition.

There are nevertheless more practical quantum walk algorithms applicable,

for example, to speed up backtracking algorithms [775, 27, 569, 743], which

are among the most successful and widely used classical heuristics for solv-

ing SAT instances in practice. The quantum algorithm can achieve an essen-

tially quadratic speedup compared to its classical backtracking variant. This

approach is applicable to the traveling salesperson problem in the special case

that the graph has degree at most 4 [789]. For resource estimates, see the ear-

lier quoted reference [223]. A further extension of this algorithm is applica-

ble to branch-and-bound algorithms [776, 247], and in some cases yields run-

ning times that are substantially better than what we know can be achieved

by naively using Grover’s algorithm. For example, it can find exact ground

states for most instances of the Sherrington–Kirkpatrick model [933] in time

O(20.226n) [776], which means about a quadratic speedup compared to classi-

cal methods. Branch-and-bound-based speedups can also be applied to solve

mixed-integer programs, which include certain formulations of the portfolio

optimization problem [247].

There is a plethora of other applications of quantum search speedups,

ranging from machine learning [1040] to dynamic programming solutions

of other NP-hard problems [28], which we do not discuss here for length

constraints and due to discouraging resource estimates for (sub)quadratic

quantum speedups.

4.2 Beyond quadratic speedups in exact combinatorial

optimization

Overview

The discovery of Grover’s algorithm [464] (later generalized to amplitude am-

plification) has long been the source of enthusiasm that quantum algorithms

can be advantageous for combinatorial optimization, as it leads to quadratic

asymptotic speedups for many concrete end-to-end search problems in this

area. However, resource estimates indicate that early and intermediate-term
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4.2 Beyond quadratic speedups 69

fault-tolerant devices will fail to deliver practical advantages when the avail-

able speedup is only quadratic, due to intrinsic overheads of quantum computa-

tion compared to classical computation (see, e.g., [223, 79]). Thus, identifying

whether beyond-quadratic speedups are available is of principal importance for

identifying end-to-end practical advantages in combinatorial optimization. De-

spite the fact that Grover’s algorithm is optimal in the black-box (unstructured)

setting, superquadratic speedups could be possible when the combinatorial op-

timization problem has a certain structure that can be better exploited by a

quantum algorithm than a classical algorithm.

Unfortunately, many proposals that could conceivably deliver super-

quadratic speedups lack rigorous theoretical performance guarantees. This

includes the quantum adiabatic algorithm and variational quantum algorithms

such as the quantum approximate optimization algorithm (QAOA) [384],

which is typically formulated to give approximate solutions, but at higher cost

could also be used to find exact solutions. Limited analytic and numerical

work provides some evidence (e.g., [179, 928]) that QAOA could outper-

form a vanilla application of Grover’s algorithm to the k-SAT problem, but

provides no definitive conclusion on the matter. Alternatively, a line of work

in [505, 329] studies a different algorithm (related in certain aspects to the

quantum adiabatic algorithm) and provides rigorous running time guarantees

that slightly surpass Grover’s algorithm.

However, while these algorithms may have a speedup over Grover’s algo-

rithm, this does not entail a superquadratic speedup over the best classical al-

gorithm, which can often exploit structure in other ways to do much better

than exhaustive search. Overall, it remains an open question whether quantum

algorithms can provide superquadratic speedups for useful problems in exact

combinatorial optimization.

Actual end-to-end problem(s) solved

Combinatorial optimization problems ask to find which solution is optimal

among a finite set of possible candidates. Here, we stick to binary optimiza-

tion on n bits, where the universe of possible candidates are bit strings z =

(z1, z2, . . . , zn) ∈ {1,−1}n. The input to the problem is a compact description

of some cost function C : {1,−1}n → R, and the desired output is the string

z∗ for which C is minimized. Let E∗ = C(z∗) denote the optimal value of the

cost function. For simplicity we assume z∗ is unique and E∗ is known ahead of

time.3 This setting contrasts with that of approximate optimization, where the

3 This assumption can often be relaxed at the expense of at most poly(n) overhead, for example,
by iterating over all possible values E∗ might take, which fall within a poly(n)-size range
when the cost function consists of only poly(n) constant-size (integer-valued) terms.
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70 4. Combinatorial optimization

acceptable outputs include a much larger set of strings z that are not necessarily

optimal solutions, but are still good enough, for example, because they achieve

a nontrivial approximation ratio |C(z)|/|E∗| with the optimal cost value. Classi-

cal and quantum algorithms for approximate optimization are often heuristic,

making it more difficult to systematically study the complexity of the algo-

rithms and the possibility that quantum algorithms may provide a speedup.

Concrete examples can be formed by choosing the function C(z) to be a low-

degree polynomial in the bits of z. For example, if C is a degree-2 polynomial

in z, this is a quadratic unconstrained binary optimization (QUBO) problem,

which is also equivalent to the classical Ising spin model from Eq. (1.3). If,

furthermore, every term of C has degree exactly 2 (no degree-1 or constant

terms) and every coefficient is either 0 or 1, then the problem is equivalent to a

MAX-CUT problem. Finally, if C is a sum of degree-3 terms of the form

zazbzc + zazb + zazc + zbzc + za + zb + zc ,

where

za, zb, zc ∈ {z1,−z1, z2,−z2, . . . , zn,−zn} ,

then the problem is equivalent to a MAX-3-SAT instance in conjunctive normal

form. To see this, note that if za = zb = zc = 1, the term evaluates to 7, and

for any other setting, it evaluates to −1. Thus, the solution z∗ that optimizes

C represents the bit string that minimizes the number of “unsatisfied” clauses

for which za = zb = zc = 1. This is easily generalized from MAX-3-SAT to

MAX-k-SAT.

For a fixed instance C, the quantum algorithms must find z∗ with high proba-

bility over measurement outcomes. If it does so for every C chosen from some

class of problem, we say it succeeds in the worst case. Alternatively, we can

consider ensembles of instances chosen from some class of problem; if for a

large fraction of instances from the ensemble, the algorithm finds z∗ with high

probability, then we say the algorithm succeeds in the average case.4 A com-

monly considered average-case ensemble is the Sherrington–Kirkpatrick (SK)

model [933], defined as

C(z) =

n∑

i=1

n∑

j=i+1

Ji jziz j where Ji j ∼ N(0, 1), (4.1)

4 A more typical definition of the average-case complexity of an algorithm is the expected
runtime required for it to find the solution z∗, averaged over both choice of instance and
internal algorithmic randomness (i.e., classical coin flips or quantum measurement outcomes).
This definition is related to the convention we follow, but it is more coarse grained as it does
not distinguish between the two types of randomness, the latter of which can be boosted by
repetition.
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4.2 Beyond quadratic speedups 71

where the coefficients Ji j are drawn randomly from a standard Gaussian dis-

tribution N(0, 1). The SK model is relevant in spin glass theory, and can be

generalized to higher-degree interactions, where it is referred to as the p-spin

model [345]. Another ensemble is the random MAX-k-SAT ensemble, where

MAX-k-SAT instances are generated by choosing each clause uniformly at

random with some fixed clause-to-variable ratio (see, e.g., [307]).

Dominant resource cost/complexity

A vanilla application of Grover’s algorithm to binary optimization prob-

lems achieves O∗(20.5n) running time, where notation O∗(2an) is shorthand

for poly(n)2an. We cover three approaches to solving binary optimization

problems on a quantum computer that have some potential to improve upon

this running time. Note that all of these algorithms require polynomial (in

fact, linear O(n)) space. However, their running time is expected to scale

exponentially in n.

• First, we consider variational quantum algorithms, using the QAOA [384]

as a representative. These algorithms are typically studied as efficient

(polynomial-time) quantum algorithms that produce approximate solu-

tions, that is, strings z , z∗ for which C(z) is small, but not optimal.

However, they may also be viewed as exact algorithms, since, if repeated

a sufficient number of times, they eventually produce the exactly optimal

z∗. The QAOA fixes a depth parameter p and variational parameters

γ = (γ1, . . . , γp) and β = (β1, . . . , βp) (sometimes these are set to some

fixed instance-independent value, and sometimes they are variationally

updated on subsequent repetitions of the algorithm). The QAOA starts

in the n-qubit equal superposition state |+⟩⊗n and implements alternating

rounds of rotations about the diagonal cost function C and a “mixing”

operator X =
∑

i Xi, where Xi denotes the Pauli-X gate about qubit i. The

state produced by QAOA is thus given by

|ψγ,β⟩ = e−iβpXe−iγpC · · · e−iβ2Xe−iγ2Ce−iβ1Xe−iγ1C |+⟩⊗n .

If one makes a computational basis measurement of |ψγ,β⟩, one obtains z∗

with probability |⟨z∗|ψγ,β⟩|2. The expected number of repetitions required

to obtain z∗ is the inverse of this probability, and this running time can be

quadratically sped up by performing amplitude amplification on top of the

QAOA protocol; thus, the QAOA unitary is applied O(|⟨z∗|ψγ,β⟩|−1) times.

Implementing the QAOA unitary typically requires only p ·poly(n) gates, as

each of the rotations about X and C are efficient to implement. For hard com-

binatorial optimization problems such as typical MAX-k-SAT instances, the
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72 4. Combinatorial optimization

expectation is that the total running time required will be exponential. If the

depth p is chosen to be constant or even poly(n), the dominant cost will

come from the O(|⟨z∗|ψγ,β⟩|−1) repetitions required to amplify the |z∗⟩ state.

Alternatively, one can reduce the number of repetitions needed to O(1) at

the expense of taking p to be very large (at least exponentially large in n);

indeed, for sufficiently large p, the QAOA can be viewed as a Trotterized

simulation of the adiabatic algorithm [384].

There is some analytic evidence that the QAOA may outperform Grover’s

algorithm at finding the exact solution for constant p in certain cases. Ref-

erence [179] studied the QAOA applied to hard (i.e., near the satisfiability

threshold) k-SAT instances with instance-independent choice of γ, β for con-

stant p, and developed an analytic formula for the expected success proba-

bility |⟨z∗|ψγ,β⟩|2 averaged over random instance in the limit n → ∞. This

formula was evaluated numerically and suggested, for example, that the av-

erage success probability behaves as 2−0.33n for p = 10 on 8-SAT. One might

be tempted to declare that this implies an overall average running time of

O∗(20.33n/2), substantially better than Grover, but such a conclusion is not

analytically supported as the average of the inverse probability can be much

larger than the inverse of the average probability. Nevertheless, it provides

intriguing evidence in favor of such a conclusion. Further numerical evi-

dence that QAOA may be effective as an exact algorithm was provided in

[928], which numerically assessed the performance of QAOA on instances

of the low autocorrelation binary sequences (LABS) problem up to n = 40,

although compared to the best classical heuristic solver, the advantage ap-

peared to be subquadratic.

• Second, we consider the quantum adiabatic algorithm [382, 16]. The stan-

dard approach, as applied to binary optimization problems, is to start in the

state |+⟩⊗n and evolve by a Hamiltonian that interpolates along a path H(s)

parameterized by s ∈ [0, 1], given by

H(s) = (1 − s)(−X) + sC . (4.2)

It is important to note that the ground state of H(0) is |+⟩⊗n and the ground

state of H(1) is |z∗⟩. This evolution can be simulated on a fault-tolerant

gate-based quantum computer using Hamiltonian simulation, and its run-

ning time is dominated by the inverse of the minimum spectral gap ∆min

of H(s). That is, the gate complexity to run the algorithm and produce |z∗⟩
scales as at least ∆−1

min
and possibly a larger power of ∆−1

min
. Much numerical

work has been done on the performance of the adiabatic algorithm on small

instances of combinatorial optimization problems, but it generally lacks an-

alytical guarantees. The expectation is that ∆min will be exponentially small
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[638, 1071, 517] in n (or worse, see, e.g., [23, 1032]), meaning the running

time of the algorithm is exponentially large, but it remains possible that it

surpasses the O∗(20.5n) running time of Grover’s algorithm in some cases,

and could in principle deliver a superquadratic speedup.

• Third, we consider the short-path algorithm studied in [505, 506, 508] and a

dual version of the algorithm studied in [329]. The goal of these algorithms

was to be able to provide a rigorous guarantee that the algorithm can find

z∗ in time 2(0.5−c)n for some value of c > 0. Similar to the adiabatic algo-

rithm, the short-path algorithm also considers a single-parameter family of

Hamiltonians

H(s) = (1 − s) fX

(
−X

n

)
+ s fZ

(
C

|E∗|

)
, (4.3)

where fX , fZ : R→ R are monotonic filter functions, and each term X/n and

C/|E∗| are normalized to have minimum value −1. The idea of the short-path

algorithm is to, rather than evolve smoothly from s = 0 to s = 1, perform

a pair of discrete “jumps.” The first jump goes from the ground state |+⟩⊗n

at s = 0 to the ground state |ψb⟩ of an intermediate point with s = b. The

second jump goes from |ψb⟩ to the ground state |z∗⟩ at s = 1. The jumps are

accomplished with quantum phase estimation (or more advanced versions

utilizing the quantum singular value transformation) of the Hamiltonian Hb

combined with amplitude amplification. The running time of the algorithm

is [329, Theorem 1]

poly(n) · 1

∆
·
(

1

|⟨+|ψb⟩|
+

1

|⟨ψb|z∗⟩|

)
, (4.4)

where ∆ is the spectral gap of the Hamiltonian H(b). The ∆−1 factor comes

from the need to perform phase estimation atO(∆) resolution to successfully

prepare |ψb⟩, and the two additive inverse overlap terms represent the num-

ber of rounds of amplitude amplification for the first and second jumps, re-

spectively. In [505], filter functions fX(x) = xK for odd integers K (e.g., K =

3) and fZ(x) = x were chosen, and b was chosen close to 1, such that the

first term of Eq. (4.3) could be viewed as a small perturbation of the second

term. If C is an instance of MAX-Ek-LIN2, that is, if it is a polynomial for

which all monomials are degree exactly k, then it was shown that certain

conditions on the spectral density of C near the optimal cost value imply

sufficient analytic control of ∆ and the other parameters in Eq. (4.4) such

that the algorithm runs in time O∗(2(0.5−c)n) for c > 0. However, it remained

unclear when these conditions were met. Inspired by [505], [329] proposed

using the filter functions fX(x) = x and fZ(x) = min(0, (x + 1 − η)/η) for

a fixed choice of η ∈ [0, 1], and chose a value of s close to 0 (rather than
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close to 1). In this sense, the algorithm in [329] is dual to that of [505].

These modifications allowed additional statements to be proved. For exam-

ple, it was unconditionally shown that the algorithm solves k-SAT (whether

or not a formula has a fully satisfiable solution) in time upper bounded by

O∗(2(0.5−c)n) for a (extremely small) constant c > 0, and that the same is true

for typical instances of the SK model and its higher-body generalization

(p-spin model), a polynomial speedup over Grover’s algorithm and super-

quadratic advantage over classical exhaustive search.

Existing resource estimates

Reference [895] compiled resource estimates for various primitive tasks related

to combinatorial optimization. For example, it estimated that for an n = 512 in-

stance of the SK model, implementing a single QAOA step e−iβ jXe−iγ jC would

require 577 logical qubits and 5.0×105 Toffoli gates. A similar estimate would

hold for performing a single step of adiabatic evolution with a first-order prod-

uct formula. The total logical estimate for finding z∗ would be the product of

the depth of the circuit and any number of repetitions or rounds of amplitude

amplification. An estimate of the physical resource cost could then be com-

puted for a specific fault-tolerant architecture. Without knowing the number of

repetitions, it is hard to give precise estimates, but a rough attempt was made

in [79] for different speedup factors. There, under different possible assump-

tions on the amount of classical parallelism available, a breakeven point was

estimated for different possible polynomial speedups (quadratic, cubic, and

quartic). It was found that with a quartic speedup, the breakeven point could

be reasonable (on the order of seconds to hours) even assuming the availability

of classical parallelism.

Caveats

There are several caveats. The most salient one is that for most of the algo-

rithms above, there is no provable beyond-Grover advantage. Meanwhile, in

the case of [329], the size of the provable beyond-Grover advantage is minis-

cule. The prospect of these algorithms is thus left to extrapolations from nu-

merical simulations carried out at very small instance sizes and speculation

based on physical principles.

A second important caveat is that to deliver practical superquadratic

speedups, the performance of the quantum algorithm needs to be compared to

the best classical algorithm, which is often substantially better than the O∗(2n)

running time of exhaustive enumeration. For example, 3-SAT problems are

classically solvable in O∗(20.39n) time [497].
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Along these lines, a third caveat is the existence of classical “quantum Monte

Carlo” algorithms (see, e.g., [383, 188, 570, 322, 324]), which can, under cer-

tain conditions, classically simulate the quantum algorithms described above.

This is because the Hamiltonians in Eqs. (4.2) and (4.3) are stoquastic Hamilto-

nians, defined by the property that their off-diagonal matrix elements are non-

positive (when written in the computational basis). Stoquasticity implies that

the ground state of the Hamiltonian can be written such that all amplitudes are

non-negative real numbers [191], meaning that these Hamiltonians avoid the

so-called “sign problem” enabling the potential application of quantum Monte

Carlo techniques. To be clear, it remains possible that quantum algorithms for

these combinatorial optimization problems involving stoquastic Hamiltonians

can evade classical simulation—indeed, superpolynomial oracle separations

have been shown between classical computation and adiabatic quantum com-

putation restricted to stoquastic paths [510, 432]—but it is something to keep

in mind when designing algorithms based on stoquastic Hamiltonians.

A final caveat is that the quantum algorithms described here are typically not

amenable to parallelization, although in principle QAOA could be parallelized

if one opts not to use amplitude amplification (resulting in worse asymptotic

complexity). This lies in stark contrast to many classical optimization algo-

rithms for exact combinatorial optimization which are highly parallelizable, a

feature that can be exploited to significantly reduce the running time of these

classical algorithms on high-performance computers, making achieving prac-

tical quantum advantage more difficult [79].

Comparable classical complexity and challenging instance sizes

For many binary optimization problems, there exist classical algorithms that

exploit the structure of the problem to perform significantly better than ex-

haustive search. For example, the best 3-SAT algorithm runs in time O∗(20.39n)

and in general k-SAT can be solved in time 2(1−Ω(1/k))n [497]. This running

time suggests the solution will be impractical once n is on the order of 100.

The algorithm analyzed in [497] is designed for the worst case, and it is likely

not the best practical algorithm for typical instances. For random instances,

the hardness of k-SAT depends sensitively on the clause-to-variable ratio α.

Remarkably, heuristic algorithms can succeed at finding a satisfiable solution

for typical instances with thousands or even tens of thousands of variables even

very close to the satisfiability threshold αc where most instances become unsat-

isfiable (e.g., [739]). However, these algorithms are expected to fail sufficiently

close to the satisfiability threshold and in the worst case.

Similarly, the SK model admits a classical branch-and-bound algorithm

guaranteed to run in time 20.45n (for a large fraction of instances) and likely
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better than that in practice [776]. However, once the interaction degree

becomes larger than 2, the problem becomes significantly harder. The branch-

and-bound algorithm is not known to generalize to the p-spin model, and for

p ≥ 3 there is no known classical algorithm that provably achieves 2(1−c)n

for any constant c (although it has not garnered much attention, see [329]).

Similarly, in contrast to k-SAT, the MAX-k-SAT problem (i.e., the version of

the problem that asks for the optimal assignment even if it does not satisfy all

the clauses) only has a O∗(2(1−c)n) time algorithm for k = 2, and, notably, this

algorithm requires exponential space [1047].

Speedup

As there are generally no rigorous running time guarantees for the quantum

algorithms, the speedup cannot be estimated. However, it is worth emphasiz-

ing that for hard combinatorial optimization problems, the speedup could be

superquadratic, but it is not expected to be superpolynomial.

The rigorous results of [329] establish a beyond-Grover running time, but

the only case in which the speedup is beyond quadratic when compared with

the best known classical algorithm is the p-spin model with p ≥ 3 (here, the

comparison benefits from little work on classical algorithms for the problem).

We also mention the result of [904], which studies a quantum algorithm for

random instances of a QUBO-like combinatorial optimization problem with a

“planted” optimal solution—the goal is to exactly or approximately find the

planted solution, or alternatively to simply distinguish instances drawn from

the ensemble with planted solutions from instances drawn from the ensemble

without a planted solution. The algorithm generalizes the tensor PCA algo-

rithm of [511] and gives a quartic speedup over its closest classical counter-

part, although it is unclear if this speedup can extend to non-planted scenarios

as well.

NISQ implementation

The QAOA approach is amenable to NISQ implementation (assuming one opts

not to apply amplitude amplification on top of it), since the quantum circuit

one needs to implement is fairly shallow depth. In this case, the effect of un-

corrected errors in the NISQ device may degrade the performance (and require

more repetitions to extract the optimal bit string z∗). Similarly, on a NISQ quan-

tum annealer [591, 16], one could run a noisy version of the quantum adiabatic

algorithm and repeat until finding the optimal bit string z∗.
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Outlook

In contrast to algorithms for approximate optimization, which are often heuris-

tic but run in polynomial time, algorithms for exact optimization are often more

rigorous but run in exponential time. For quantum computers to be impactful

for exact combinatorial optimization, we require great advancements in the es-

timated clock speeds of quantum hardware and the overheads of fault-tolerant

quantum computing, or else the development of quantum algorithms that sig-

nificantly improve upon existing (sub)quadratic Grover-type speedups—either

quantitatively (bigger speedups) or qualitatively (e.g., requiring only shallow

circuits). Although ideas have been proposed that could potentially deliver

such improvements, they either come without provable guarantees, provide

only minor superquadratic improvement, or only apply to artificial problems.

Much more attention shall be devoted to studying these quantum algorithms

and developing new ones if we are to leverage them into actual practical ad-

vantages, especially considering the extensive amount of work devoted to de-

veloping sophisticated classical algorithms for these problems.
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