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Abstract

The shimmy oscillations of a truck’s front wheels with dependent suspension are studied
to investigate how shimmy depends on changes in inflation pressure, with emphasis on
the inclusion of four nonlinear tyre characteristics to improve the accuracy of the results.
To this end, a three degree-of-freedom shimmy model is created which reflects pressure
dependency initially only through tyre lateral force. Bifurcation analysis of the model
reveals that four Hopf bifurcations are found with decreased pressures, corresponding to
two shimmy modes: the yaw and the tramp modes, and there is no intersection between
them. Hopf bifurcations disappear at pressures slightly above nominal value, resulting
in a system free of shimmy. Further, two-parameter continuations illustrate that there
are two competitive mechanisms between the four pressure-dependent tyre properties,
suggesting that the shimmy model should balance these competing factors to accurately
capture the effects of pressure. Therefore, the mathematical relations between these
properties and inflation pressure are introduced to extend the initial model. Bifurcation
diagrams computed on the initial and extended models are compared, showing that for
pressures below nominal value, shimmy is aggravated as the two modes merge and the
shimmy region expands, but for higher pressures, shimmy is mitigated and disappears
early.
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1. Introduction

Shimmy, the name of which originally comes from a dance move, is a self-excited
lateral and yaw vibration of a wheel assembly, known to be experienced on bicycles,
motorcycles, road vehicles and aircraft landing gears. This undesirable vibration
typically has a frequency in the range of 10 to 30 Hz and can reach considerable
amplitudes, which is potentially dangerous and may result in loss of control or severe
damage to mechanical components such as the wheel-suspension system. One of the
earliest studies of shimmy was reported by Broulhiet [6] in 1920s, who introduced the
concept of side slip which, until now, is still the basis for the understanding of shimmy
oscillations in a wide range of wheeled vehicles. Since then, numerous investigations
have been conducted and have yielded many positive results to reveal the shimmy
mechanism and to provide technical supports for better suppression of shimmy. For
details, the literature review by Ran [21], Krüger et al. [15] and Zhang et al. [36] can
act as an entry point to shimmy research.

Shimmy is found to be affected by many factors, such as parameters in the
suspension and steering systems [18, 29], as well as the friction and free-play in the
structure [20, 37]. Among them, the behaviour of the pneumatic tyre is of particular
importance and tyre characteristics, for example, the relaxation length, cornering
stiffness and pneumatic trail, are considered as crucial parameters regarding shimmy
stability. The milestone for this area was the seminal work of von Schlippe and Dietrich
[23] on tyre mechanics and its influence on shimmy. The stretched string tyre model
they developed formed the basis for almost all tyre models that described tyre transient
properties and has been applied extensively in shimmy analysis. Thereafter, the effects
of tyre properties, especially the nonlinearities in tyre behaviour, have been of great
concern in the field of shimmy analysis. Pacejka [19] applied the magic formula to
examine the influence of the nonlinear cornering force of the tyre on vehicle shimmy.
Research by Ran et al. [22] highlighted the necessity of a nonlinear tyre model with
nonconstant relaxation length in shimmy analysis for more accurate results at large
amplitude. Wei et al. [30] discovered that vehicle shimmy could be suppressed by
reducing the pneumatic trail, increasing the relaxation length or declining the tyre
cornering stiffness related to low-adhesion road. Although these studies have provided
strong theoretical references for relevant research, few researchers have addressed the
combined influence of different nonlinear tyre characteristics, for example, when they
change simultaneously with the tyre inflation pressure, to model more realistic tyre
behaviour, especially given Besselink’s work [4], which showed that the shimmy
stability could be very dependent on the tyre model selected and a too simple
representation of tyre behaviour could lead to incorrect results.

Tyre inflation pressure plays an important role in vehicle dynamics and handling
performance by significantly influencing tyre properties, including lateral, vertical and
cornering stiffness and rolling resistance, which has been widely studied by many
researchers [8, 10, 33]. Most existing research is devoted to extending tyre models, such
as the magic formula [5, 12], the UniTire model [34] and others [11, 13], to capture the
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[3] Effect of inflation pressure on shimmy with MTP considered 3

TABLE 1. Values of parameters with description and data sources.

Description Parameters Value Sources

Inertial moment of left (right) front wheel
about kingpin

I1 6 Kgm2

Inertial moment of left (right) front wheel
about y-axis

I2 4.85 Kgm2

Inertial moment of front-axle about x-axis I3 160 Kgm2

Angular stiffness of tie-rod rotating around
kingpin

k1 35.5 KNm/rad

Angular stiffness of drag link rotating
around kingpin

k2 17 KNm/rad

Angular stiffness of suspension rotating
around x-axis

k3 32 KNm/rad

Lateral stiffness of tyre k4 80 KN/m
Vertical stiffness of tyre k50 400 KN/m
Angular damper of tie-rod rotating around

kingpin
c1 10 Nms/rad

Angular damper of drag link rotating
around kingpin

c2 100 Nms/rad [16]

Angular damper of suspension rotating
around x-axis

c3 1050 Nms/rad

Equivalent angular damper of wheel
rotating around kingpin

c4 44 Nms/rad

Rolling radius R 0.4 m
Wheel centre distance L 1.608 m
Rolling resistance coefficient f 0.015
Wheel offset l 0.07 m
Wheel caster angle γ 0.04 rad
Half of contact length a0 0.2 m
Relaxation length σ0 0.65 m
Pneumatic trail t0 0.07 m
Parameter of lateral shape factor Cy pcy1 1.29∗

Lateral peak value of friction μy at nominal
condition

pdy1 0.875∗

Variation of μy with load pdy2 −0.06452
Variation of μy with inflation pressure ppy3 −0.16666
Variation of μy with inflation pressure

squared
ppy4 0.2811

Cornering stiffness Kyα at nominal
pressure and load

pky1 12.0628∗ [19]

Continued
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TABLE 1. Continued

Description Parameters Value Sources

Cornering stiffness Kyα at nominal pressure
and load

pky2 1.715

Cornering stiffness Kyα at nominal pressure
and load

pky3 2.0005

Variation of Kyα with inflation pressure ppy1 −0.6255
Variation of Kyα with inflation pressure ppy2 −0.06523
Lateral curvature factor Ey at nominal pressure

and load
pey1 −0.801∗

Variation of Ey with load pey2 0.54602
Variation of Ey with load squared pey3 −0.91981
Variation of Ey with inflation pressure pepy1 0.58897 [12]
Variation of Ey with inflation pressure squared pepy2 0.08363
Linear combination of pressure and load

effects on Ey

pepey1 0.40612

Parameter of Ct qcz1 1.000+

Dt at nominal pressure and load qdz1 0.175+

Variation of Dt with load qdz2 −0.00565
Variation of Dt with inflation pressure ppz1 0.4408+

Bt at nominal pressure and load qbz1 12.035
Variation of Bt with load qbz2 −1.33
Variation of Bt with load squared qbz3 0 [19]
Et at nominal pressure and load qez1 −1.7924
Et at nominal pressure and load qez4 0.2895
Variation of Et with load qez2 0.8975
Variation of Et with load squared qez3 0
Lateral stiffness of the tyre at nominal

condition
cy0 96.92 KN/m∗

Variation of relaxation length with inflation
pressure

pcy1 0.5

Variation of vertical stiffness with inflation
pressure

pfz1 0.7

effects of inflation pressure on different tyre characteristics. For landing gear shimmy,
Thota et al. [28] modelled six tyre properties as functions of the inflation pressure
based on experimental data from two radial tyres to examine how shimmy depended
on pressure changes. They found that the area where torsional and lateral shimmy
oscillations occurred decreased with an increase in the tyre inflation pressure. For
bicycle or motorcycle shimmy, also called wobble, Massaro et al. [17] experimentally
analysed the effect of the inflation pressure on the wobble stability for two types
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of motorcycle tyres and concluded that despite the difference of wobble stability at
high-speeds, increasing pressure was beneficial for low- to medium-speed wobble. In
the automotive context, however, the way the inflation pressure affects vehicle shimmy
stability has not been well studied. Although the studies reported above can work as
academic reference, the different sizes among aviation, motorcycle and vehicle tyres
imply the relations they derived may not be representative of automotive applications.
More so, since shimmy is a system oscillation and depends both on the tyres as well
as the geometry, compliance and inertia of the steering/suspension system.

This work aims not only to study the influence of tyre inflation pressure on shimmy
stability but also to consider as many pressure-related tyre properties as possible and
to include their nonlinear dependences on inflation pressure in the shimmy model with
the purpose of capturing more accurate tyre behaviour. To achieve this, the extended
tyre models developed by Besselink [5], Pacejka [19] and Guo [10] are considered
to handle the effect of inflation pressure changes on tyre properties which are found
crucial regarding shimmy stability, including tyre lateral force, half-contact length,
pneumatic trail, relaxation length and vertical stiffness. Although the lateral stiffness
of the tyre and the coefficient of rolling resistance also strongly depend on inflation
pressure, their effect on shimmy is limited, which is reflected in bifurcation diagrams
as nearly vertical bifurcation curves. Therefore, they are not considered in our research.
The extended tyre models are then integrated into the shimmy model established by
Li et al. [16] to analyse the influence of inflation pressure on shimmy oscillations,
which can clearly demonstrate how the bifurcation curves change when additional
nonlinear tyre properties are involved, thereby emphasizing the necessity of consid-
ering complex tyre behaviour. One of the contributions of this paper is to reveal
the individual and competitive effects of nonlinearities in tyre behaviour on shimmy
oscillations with pressure changes.

With regards to analysis methods, time domain simulation is a straightforward, but
a less efficient and time-consuming approach, especially when studying the effects
of various parameters in a dynamic system. The linearization method, meanwhile,
only yields valid conclusions around equilibria and is unable to capture the behaviour
of periodic solutions, as well as some critical points like fold bifurcations when the
system is unstable. Therefore, the bifurcation analysis based on numerical continuation
is used in this work with the aid of the software package COCO. This MATLAB-based
platform performs the pseudo-arclength continuation to trace branches of equilibria
from an initial equilibrium solution. The Jacobian at each equilibrium point is
determined numerically, with stability identified from the eigenvalues of this Jacobian.
Bifurcation conditions, such as eigenvalues crossing the imaginary axis, are used to
detect and classify bifurcations within equilibria branches. For more information about
continuation methods in general, the reader may refer to textbooks on the subject
such as [14, 25]; for information about the specific implementation in COCO, the
reader may refer to [1, 7]. This method proved to be more effective in determining
the boundaries of stable dynamic regimes and the dependency of these regimes on
parameters of interest, especially for the model with a high level of nonlinearity.
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6 Y. Yang, J. Knowles and G. Mavros [6]

Many substantial studies on shimmy analysis have been carried out using this method.
Representative scholars include Stepan and Takacs [3, 24], Thota [26, 27], Ran [21, 22]
and Wei [31, 32].

This paper is organized as follows. Section 2 discusses the mathematical model
of steering wheel shimmy of a truck, with the dependency of tyre lateral force on
inflation pressure considered in the tyre model. Using this shimmy model, Section 3
presents the effect of forward speed on shimmy for three inflation pressures, providing
high-level understanding of the pressure effect. Section 4 is devoted to analysing the
influence of the four tyre properties on shimmy oscillations, and then developing
the mathematical relations between these tyre properties and inflation pressure.
Adding these equations into the model built in Section 2, Section 5 compares the
two-parameter bifurcation diagrams of the extended model with the results obtained
in Section 3 and demonstrates the importance of considering multiple tyre properties.
Section 6 summarizes the results and points to future work. The description, values
and sources of all parameters are listed in Table 1, Appendix A.

2. Mathematical model

The shimmy model of a truck with dependent suspension considered in this work
is much developed and experimentally validated in a previous work by Li et al. [16];
its schematic view is shown in Figure 1. A global Cartesian coordinate system o-xyz is
established such that the x-axis is aligned with the vehicle’s longitudinal axis (driving
direction), the z axis is oriented upward normal to x-axis and the y-axis completes the
right-handed coordinate system. The model includes three degrees of freedom: two
wheels may rotate about the kingpin, giving rise to yaw oscillations described by the
yaw angles θ1 and θ2; the front live axle may also vibrate about the x-axis, resulting in
axle tramp described by the tramp angle ψ. They are all marked in red in Figure 1 and
oriented about the positive z- and x-axes. The model usually comprises the following
three parts: equations of motion, tyre cornering characteristics description and rolling
constraint equations for slip angles.

A mathematical description of the yaw oscillation and axle tramp is given by the
equations of motion:

I1θ̈1 = k1(θ2 − θ1) + c1(θ̇2 − θ̇1) − c4θ̇1 − I2
V
R
ψ̇

+

[L
2

k5l(γ − f ) + k4R2γ
]
ψ − Fy1(Rγ + t), (2.1)

I1θ̈2 = k1(θ1 − θ2) + c1(θ̇1 − θ̇2) − (c4 + c2)θ̇2 − k2θ2 − I2
V
R
ψ̇

+

[L
2

k5l(γ − f ) + k4R2γ
]
ψ − Fy2(Rγ + t), (2.2)

I3ψ̈ = −c3ψ̇ −
[
k3 +

L2

2
k5 + 2k4R2

]
ψ + I2

V
R
θ̇1 + I2

V
R
θ̇2 + (Fy1 + Fy2)R, (2.3)
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FIGURE 1. Model of steering wheel shimmy for (a) rear view, (b) side view and (c) top view.

where R is the rolling wheel radius, L is the wheel centre distance, l is the wheel
offset; f is the coefficient of rolling resistance, V is the wheel forward speed and t
the pneumatic trail. Here, I1 and I2 are the inertia moments of front wheels about
the kingpins and y-axis, and I3 the inertia moment of front axle about the x-axis.
Linear stiffness and damping terms are used to model the angular compliance of
the tie-rod (k1, c1), the drag link (k2, c2) and the suspension (k3, c3), as shown in
Figure 1. Furthermore, k4 and k5 represent the lateral and vertical stiffness of the
tyre, respectively, and c4 is the angular damping of wheels rotating around the
kingpins. In addition, note that the linearization of sine functions is adopted due to
the small values of the caster angle γ and the tramp angle ψ. The lateral force Fy1
and Fy2 are determined by a tyre model, which is explained in detail in the following
section.

2.1. Tyre lateral characteristics Precise expression for cornering characteristics of
the tyre is crucial for effective analysis of steering wheel shimmy. The magic formula
is a widely used semi-empirical tyre model to describe the nonlinearity of tyre lateral
force. The lateral force equations are as follows:

Fy1 = −Dy sin{Cy arctan[Byα1 − Ey(Byα1 − arctan(Byα1))]}, (2.4)

Fy2 = −Dy sin{Cy arctan[Byα2 − Ey(Byα2 − arctan(Byα2))]}, (2.5)

where α1 and α2 represent the slip angles of right and left tyres, and both are oriented
about the positive z-axis; By, Cy, Dy, Ey are four factors that can adjust the shape of
force curve. In this work, these parameters are modelled as functions of tyre inflation
pressure according to the extended formulations by Pacejka [19], to handle pressure
changes. In addition, it is noteworthy that the curvature factor Ey is found to be
negatively related to the inflation pressure [10], whilst the extended expression of Ey by
Pacejka [19] does not include this influence. As a result, with reference to Hopping’s
work [12], improvement is made based on this with second-order polynomials applied
to describe the empirical relationship between Ey and inflation pressure. The detailed
expressions of these factors are introduced as follows:
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8 Y. Yang, J. Knowles and G. Mavros [8]

Cy = pcy1, (2.6)

Dy = μyFz = Fz(pdy1 + pdy2 dfz)(1 + ppy3 dpi + ppy4 dpi
2), (2.7)

By =
Kyα

CyDy

=
pky1Fz0(1 + ppy1 dpi)

CyDy
sin

[
pky3 arctan

{ Fz

pky2(1 + ppy2 dpi)Fz0

}]
, (2.8)

Ey = pey1 + pey2 dfz + pey3 dfz2 + pepy1 dpi + pepy2 dpi
2 + pepey1 dfz dpi, (2.9)

where μy is the peak lateral friction coefficient and Kyα the cornering stiffness; dpi, df z
are the changes in tyre inflation pressure and vertical load, which are given by

dfz =
Fz − Fz0

Fz
,

dpi =
pi − pi0

pi0
.

Here, pi, Fz describe the actual inflation pressure and vertical load; pi0 and Fz0
represent the nominal pressure and vertical load, which are assumed to be 2.5 bar
and 6000 N in this work. In addition, Fz remains unchanged at Fz0 in the following
bifurcation analysis so that the influence of pressure changes can be highlighted. Other
coefficients in (2.6)–(2.9) are described in Appendix A. The coefficient values of Cy,
μy and Kyα come from an example tyre in Pacejka’s work [19] (205/60R15 91 V), and
the coefficients in Ey refer to [12] to capture the similar trend of the curve’s curvature
with inflation pressure. Figure 2 illustrates how the lateral force varies with the slip
angle for different pressures, showing the significant dependency of force curves on
inflation pressure. However, during transient motion like shimmy oscillations, the
tyre’s slip angle has some important dynamics associated with it, and these also
strongly depend on its inflation pressure. The tyre model, therefore, needs to account
for the constraint equations for slip angle to accurately capture related behaviours,
which is presented in the next section.

2.2. Rolling constraint equations for slip angle During transient motion, the
mechanics of a rolling tyre, such as the lateral deflection, is described by the stretched
string model with a finite contact length [23]. In this model, for points in the contact
region, the assumption is made that no sliding occurs with respect to the road.
Additionally, since from its approximation, tyres cannot respond instantaneously,
the influence of the tyre relaxation length σ is revealed in the kinematics. The
non-holonomic rolling constraint equations that govern the tyre’s slip angle are
expressed as
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FIGURE 2. Influence of inflation pressure on the curve of lateral force.

α̇1 +
V
σ
α1 +

V
σ
θ1 −

a
σ
θ̇1 = 0, (2.10)

α̇2 +
V
σ
α2 +

V
σ
θ2 −

a
σ
θ̇2 = 0, (2.11)

where a is the half-length of the tyre contact patch.
Finally, substitution of the tyre lateral force equations (2.4)–(2.5) into the equations

of motion (2.1)–(2.3), coupled with the constraint equations (2.10) and (2.11), com-
pletes the shimmy model of steering wheels, which can be expressed in the form of a
state matrix with respect to bifurcation parameters:

ẋ = f (p, x), (2.12)

where x = (θ1, θ̇1, θ2, θ̇2,ψ, ψ̇,α1,α2)T represents the system state variable and
p = (pi, V)T is the bifurcation parameter. In terms of the four pressure-dependent
tyre properties a, t, σ and k5, in Section 3, they are fixed at initial values which are
obtained from the literature [16] and marked as a0, t0, σ0 and k50 in Appendix A.
In Section 4, however, these four tyre characteristics are also regarded as bifurcation
parameters to investigate their effects. Unless otherwise specified, when one property
is changed, the other three remain at their initial values. The values of other parameters
in the model are given in Appendix A.

3. The effect of inflation pressure on shimmy

In this section, a bifurcation analysis on the created model (2.12) is carried
out to indicate the wheel’s nonlinear dynamics response and the onset of shimmy
oscillations. The bifurcation diagrams for the forward speed V against the yaw angle
of the right wheel θ1 and the tramp angle ψ at nominal pressure pi0 (2.5 bar) are
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FIGURE 3. One-parameter bifurcation diagrams at nominal inflation pressure.

first presented in Figure 3 as the baseline case with graphical conventions defined
in the legend. Due to the symmetry of the system considered, the configuration of zero
yaw angle and zero tramp angle is always an equilibrium. Therefore, a stable band of
equilibria is located at the zero position as the speed V is increased from 0, where
the system is stable and free of shimmy. Changes in its stability occur when Hopf
bifurcations emerge, which gives rise to periodic orbits, that is, shimmy oscillations.
Since these limit cycles are all symmetric with respect to the zero position, only the
parts above zero are shown in this work. As shown in Figure 3, a supercritical Hopf
bifurcation HB1 occurs when V reaches 46.14 km/h, leading to a stable limit cycle,
where the wheels oscillate around the kingpin and the axle tramps around the x-axis at
an amplitude which increases as V goes up; when V reaches 56.34 km/h, the amplitude
of θ1 and ψ peaks at 3.45◦ and 0.14◦, respectively, and starts to decrease; the stable
oscillations end at another supercritical Hopf bifurcation HB2 (70.5 km/h). The results
calculated by numerical continuation match those obtained by Li et al. [16, Figure 8],
a model which has been verified by road experiments.

As the inflation pressure pi is decreased to 0.6pi0 (1.5 bar), however, the continuation
results are changed significantly, as presented in Figure 4(a) with the same graphical
conventions as Figure 3. Several important features can be noted after comparison: the
speed range of the limit cycle bounded by HB1 (27.63 km/h) and HB2 (97.13 km/h)
expands nearly three times and the same goes for the peak amplitude of θ1 (9.85◦)
and ψ (0.41◦); new supercritical Hopf bifurcations HB3 and HB4 appear at 192.98 and
345.89 km/h, respectively, giving rise to a new stable limit cycle with the maximum
amplitude of 3.18◦ for θ1 and 0.92◦ for ψ. This is the emergence of the second shimmy
mode. Additionally, the frequency of the second mode (10.6–13.2 Hz) is always higher
than the first mode (5.28–6.66 Hz). Since for the yaw motion, the amplitude of the
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FIGURE 4. One-parameter bifurcation diagrams for inflation pressures (a) 1.5 bar and (b) 2.7 bar.

first mode is larger, but for the tramp motion, the larger amplitude emerges in the
second mode, the first mode hereinafter is called the yaw mode and the second the
tramp mode. It can be seen from the comparison between Figures 3 and 4(a) that
the system exhibits more unstable behaviour at low inflation pressures and shimmy
occurs over a wider range of speeds. In contrast, with regards to high pressures (2.7
bar), the two modes both vanish and the stable bands of equilibria cross the diagrams
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FIGURE 5. Effect of tyre inflation pressure on the Hopf bifurcations with lateral force changes
considered.

(Figure 4(b)) from left to right, meaning that shimmy disappears and that the system
remains stable at any speed.

Figure 4 clearly illustrates that the inflation pressure has a qualitative influence on
the bifurcations observed over a range of speeds, and thereby on shimmy oscillations.
To provide a global picture of how pi affects shimmy oscillations, a two-parameter
continuation is performed in the (V, pi) plane, as shown in Figure 5. The curves
of HB1–HB4 changing with pressure divide the plane into regions corresponding
to different behaviour of the system. In the region in shadow, there is no shimmy
oscillations, that is, the straight-rolling motion is stable, but the system becomes
unstable and experiences shimmy oscillations in the white region, including the yaw
mode and the tramp mode. It can be seen from the bifurcation diagram that there is a
same trend in the two modes with inflation pressure changes. Increasing pi significantly
suppresses and eventually eliminates shimmy oscillations: the speed ranges of the two
modes are reduced to zero at (252 km/h, 1.73 bar (0.69pi0)) and at fold bifurcation F1
(57.79 km/h, 2.61 bar (1.044pi0)), whilst decreasing pi leads to the opposite tendency.
These results qualitatively agree with the work on landing gear shimmy by Thota
et al. [28] and on motorcycle shimmy by Massaro et al. [17]. In comparison, with
the reduction of pi, the tramp mode expands much faster than the yaw mode: the
curve of HB4 exceeds the boundary of the diagram rapidly after 1 bar. It is also worth
mentioning that there is no interaction between the two modes even when the pressure
is close to zero. In other words, the stable region between the two modes always
exists. Despite the qualitative agreement with previous work, the influence of inflation
pressure on the tyre model is incomplete as only tyre lateral force was considered.
The following section explores how other tyre properties, which are known to heavily
depend on pressure, significantly influence these shimmy oscillations.
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4. Effect of pressure-dependent tyre properties on shimmy

As the aim of our paper is to study the nonlinear dynamics that can arise within the
equations of motion for the shimmy phenomenon, this section first illustrates how each
of the four pressure-dependent tyre properties independently influence the shimmy
response when changed relative to the others, before combining their effects as a
function of inflation pressure. Presenting these relative changes provides insight into
the range of responses that could be obtained from this shimmy model, highlighting
competing mechanisms whose relative magnitudes will change from tyre to tyre.
Two-parameter bifurcation diagrams are obtained to demonstrate the two shimmy
modes as functions of these properties for different inflation pressures. As with
Figure 5, the stable regions for all pressures are shaded to separately identify different
domains. The mathematical dependency of these properties on inflation pressure is
then modelled to be incorporated into the shimmy model in the next section. To provide
a complete view of the overall dynamics, the range of tyre characteristic values in the
following analysis is much greater than general operation values.

4.1. Half-contact length In the modelling of the motion stability, controllability
and braking dynamics of vehicles, information about the tyre’s half-contact length
with the road surface is crucial [2]. The half-contact length a is a geometrical property
and directly dependent on vertical tyre deflection, which is heavily influenced by tyre
inflation pressure pi. Typically, a decrease in pi results in increased vertical deflection,
thereby larger contact length. The change in a can affect shimmy substantially for
different inflation pressures, which can be observed in Figure 6. At pi0 (2.5 bar),
for example, as a is slightly reduced from 0.2 m to 0.186 m, HB1 and HB2 which
bound the yaw mode quickly approach each other and eventually collide, indicating
the disappearance of shimmy. However, when there are two modes at 0.6pi0 (1.5 bar),
a only has a quantitative effect on the tramp mode (its speed range is decreased
with the reduction of a). In addition, with the increase in pi from 0.6pi0 to 1.2pi0
(3 bar), the area where the yaw mode occurs gradually shrinks and the intersection
points of HB1 and HB2 curves continue to move upward almost vertically, which
means that the speed at which bifurcations intersect remain unchanged (58 km/h),
but the value of a that makes shimmy appear is getting increasingly higher. Since a is
decreased with increasing pressure, this will obviously speed up the disappearance of
shimmy.

In this work, according to Guo’s experiment [10], the half-contact length is defined
to be proportional with the square root of the wheel load and the tyre inflation pressure:

a = a0

√( Fz

Fz0

)√(
pi0

pi

)
. (4.1)

4.2. Pneumatic trail Pneumatic trail t is the distance along the x-axis between
the centre of contact patch and the point where the lateral force is applied, which
determines the moment arm of the lateral force related to the generation of the
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FIGURE 6. Effect of half-contact length on the Hopf bifurcations for four inflation pressures.

FIGURE 7. Effect of pneumatic trail on the Hopf bifurcations for four inflation pressures.

self-aligning moment. Its effect on shimmy (Figure 7) illustrates that in terms of the
yaw model, the intersection points of HB1 and HB2 have a similar trend to those in
Figure 6, while the upward movement is much slower with increasing pi. In addition,
when t = 0.1 m, the region where the yaw mode occurs shrinks for high pressures,
but this tendency reverses when t exceeds a certain value (approximately 0.2 m). For
instance, at 0.25 m, the range of the yaw mode expands as pi is increased. This reversal
is closely related to the onset of the tramp mode at low pressures and when it comes
to the tramp mode, the effect of t is more complicated than that of a. At 0.6pi0, for
example, t can cause qualitative changes in both modes. The details are shown in
Figure 8. With a reduction of t from 0.07 to 0.05 m, HB1 and HB2 approach each
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FIGURE 8. Effect of pneumatic trail on the Hopf bifurcations at 0.6pi0.

other and merge, and the same goes for HB3 and HB4, leading to the disappearance
of the two modes at similar t values (0.053 m and 0.057 m). When t grows, the main
feature is the closed loop formed by HB2 of the yaw mode and HB3 of the tramp
mode after their intersection in the Hopf–Hopf bifurcation HH (t = 0.135 m). The two
modes overlap after this codimension-two point and finally merge into one mode when
t > 0.28 m. Specifically, in this loop, two torus bifurcation curves T1 (in the yaw mode)
and T2 (in the tramp mode) are found to emerge locally after HH, which agrees with
what may be expected from bifurcation theory. In addition, the criticality of HB2 and
HB3 changes from supercritical to subcritical Hopf bifurcation at two degenerate Hopf
bifurcation points DH1 (0.146 m) and DH2 (0.216 m), giving birth to unstable shimmy
oscillations. This verifies Li’s inference in their work [16] that some unstable limit
cycles can occur if other nonlinear factors are properly considered in the model. Two
curves of saddle-node bifurcation S1 (in the yaw mode) and S2 (in the tramp mode)
appear from DH1 and DH2 successively.

To understand how shimmy oscillations are changed with t after the closed loop and
new bifurcations are detected, the limit cycles at two pneumatic trails are presented in
Figure 9. In panel (a), for the yaw mode, the bifurcating shimmy oscillations remain
stable up to S1 (184.75 km/h). Here, the branch turns back, and, after the immediate
T1 (181.65 km/h), it connects to the zero-equilibrium, which does not regain stability
because of the overlap of the two modes. Therefore, when S1 is crossed, a jump
phenomenon happens: shimmy suddenly changes from the yaw mode to the tramp
mode, alongside a significant increase in amplitude, as demonstrated in Figure 10(a). In
contrast, for the tramp mode, the oscillations are initially unstable due to the subcritical
Hopf bifurcation HB3 and then become stable after T2 (157.39 km/h), which is
preceded by S2 (135.56 km/h). Thus, if V is reduced past T2, the shimmy oscillations
experience a similar sudden change to the stable yaw mode from the unstable tramp
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FIGURE 9. One-parameter bifurcation diagram for pneumatic trail (a) 0.25 m and (b) 0.285 m at the same
inflation pressure.

mode, which is shown as the significantly reduced amplitude in Figure 10(b). It should
also be noted that the region between T2 and S1 indicates bi-stability, where the
stable yaw and tramp modes coexist. In this region, which steady-state solution can
be observed depends on initial conditions. The phase portrait in the plane of ψ and ψ̇
at 180 km/h (Figure 11) can provide greater insight into this dependency. Two initial
conditions L1 and L2 shown as solid squares lead to completely different simulation
trajectories, one of which converges to the stable tramp mode (the grey curve from
L1), while the other is attracted by the stable yaw mode (the black curve from L2).

When t rises to 0.285 m (Figure 9(b)), HB2 and HB3 collide and disappear, making
the unstable periodic orbits between S1 and T2 connected, and the two modes become
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FIGURE 10. Time-history simulations of mode changes at 0.25 m and 1.5 bar with (a) increasing speed
and (b) decreasing speed.

FIGURE 11. Phase portrait of bi-stable region at 180 km/h.

one mode bounded by the supercritical Hopf bifurcations HB1 and HB4, with a large
range of speeds covered. As a result, compared with Figure 4(a), the area where
shimmy happens in Figure 9 expands dramatically and the peak amplitude is increased
nearly fourfold with a growth of t.

Literature [9, 34] has indicated that pneumatic trail decreases with an increase
in tyre inflation pressure and slip angle. Their relationships are obtained from the
extended magic formula, with similar equations to tyre force:
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FIGURE 12. Influence of inflation pressure on the curve of pneumatic trail varying with slip angle.

t1 = Dt cos{Ct arctan[Btα1 − Et1(Btα1 − arctan(Btα1))]}, (4.2)

t2 = Dt cos{Ct arctan[Btα2 − Et2(Btα2 − arctan(Btα2))]}, (4.3)

where, similarly, Bt, Ct, Dt, Et are four factors that can adjust the shape of curves. They
are given by

Ct = qcz1, (4.4)

Dt = Fz
R

Fz0
(qdz1 + qdz2dfz)(1 − ppz1dpi), (4.5)

Bt = qbz1 + qbz2dfz + qbz3dfz2, (4.6)

Et1 = (qez1 + qez2dfz + qez3dfz2)
(
1 +

2qez4

π
arctan(BtCtα1)

)
, (4.7)

Et2 = (qez1 + qez2dfz + qez3dfz2)
(
1 +

2qez4

π
arctan(BtCtα2)

)
. (4.8)

Appendix A presents the description of all coefficients in (4.4)–(4.8). The identified
values given come from the same example tyre in the literature [19] (205/60R15 91 V).
Figure 12 illustrates the curves of pneumatic trail varying with slip angle for different
inflation pressures.

4.3. Relaxation length Relaxation length σ is usually described as the distance
that a tyre rolls before the lateral force builds up to 63% of its steady-state value. It can
control the lag of the response of the side force to the input slip angle and is known
to be an important factor in causing shimmy. The bifurcation diagram (Figure 13)
provides a global picture of the influence of σ on shimmy oscillations. Like t, σ can
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FIGURE 13. Effect of relaxation length on the Hopf bifurcations for four inflation pressures.

also make qualitative changes in the two modes, but unlike the previous two tyre
characteristics a and t, increasing rather than decreasing σ can weaken shimmy. At
0.6pi0, for instance, a slight increase from 0.65 to 0.73 m can cause the tramp mode
to disappear, which is shown as the collision of HB3 and HB4, and a further increase
to 1.2 m leads to the same result for the yaw mode. If σ reduces to a very small value
(close to zero), in contrast, the two modes merge, that is, HB2 and HB3 collide at a
fold point, resulting in the continuous appearance of shimmy from 0 to 325 km/h. In
addition, it is worth noticing that with increasing pi, the disappearance points of the
yaw mode move to the lower left, which is the opposite to the cases for a and t. Given
the fact that σ for an underinflated tyre is typically higher than for an overinflated tyre,
the decreases in σ caused by increasing pi are not conducive to shimmy suppression,
but the rises in σ with lowering pi may be helpful for shimmy reduction because the
tramp mode may not appear. This forms a competitive mechanism with a and t as their
decreases for high pressures are beneficial to diminishing shimmy, while their rises for
low pressures are the opposite, which means that the consideration of σ can potentially
have a qualitative influence on the bifurcation features in Figure 5. This, therefore,
highlights the importance of taking into account various nonlinear tyre behaviour.

Based on Besselink’s improvement [5], the following expression is used to model
the relationship between relaxation length and inflation pressure:

σ =
Kyα

cy0(1 + pcy1dpi)
, (4.9)

where Kyα is the cornering stiffness of the tyre obtained in (2.8), cy0 is the lateral
stiffness of the tyre at nominal vertical force and inflation pressure, and pcy1 the
variation of relaxation length with inflation pressure.

https://doi.org/10.1017/S1446181125000094 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000094


20 Y. Yang, J. Knowles and G. Mavros [20]

FIGURE 14. Effect of vertical stiffness on the Hopf bifurcations at four inflation pressures.

4.4. Vertical stiffness The vertical stiffness k5 of the tyre strongly depends on
inflation pressure and can assume significantly different values even within the range
of allowable tyre pressures [35]. Different vertical stiffness leads to substantial changes
in shimmy responses. As shown in Figure 14, the curves of the four Hopf bifurcations
changing with k5 are completely different from the other tyre properties a, t and σ. At
0.6pi0, with increasing k5 from 4 × 105 N/m, the speed range of the yaw mode expands
remarkably whilst that of the tramp mode shrinks quickly to zero at 4.39 × 105 N/m,
indicating the ending of the tramp mode. The reduction of k5 causes HB2 and HB3
to collide at 2.55 × 105 N/m, thereby dramatically extending the range of shimmy
by merging the two modes. This expansion is also achieved by the curve of HB4,
which, as the boundary of the merged mode, has a gentle slope and rapidly exits
350 km/h after 4 × 105 N/m. As the bifurcation curves in the (V, k5) plane change with
inflation pressure, the effect of pi is apparent from the extent of the shimmy region.
In particular, as pi is increased, compared with the blue curves in Figure 14, other
curves are narrower, implying the rapid shrinking of the shimmy region, especially
the area where the first mode appears. This is consistent with what is observed in
Figure 5.

Most notably, the two modes can always be observed for different pressures by
changing the value of k5, which is completely different from other tyre characteristics
(a, t and σ), in which case, the tramp mode only exists for low pressures (<0.8pi0).
At pi0, for example, the high-speed mode can emerge through lowering k5 from
4 × 105 N/m, the value in Figure 4(b), to 2.2 × 105 N/m, the value in Figure 15(a), with
remarkably higher peak amplitude than the low-speed mode. In addition, compared
with Figure 4(a), the peak amplitude of the tramp angle in Figure 15(a) increases as
well (0.14◦ to 0.41◦) with the reduction of k5. Apart from this, after a slight increase
from pi0 to 1.024pi0, the two modes are separated from each other as fold bifurcations
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FIGURE 15. One-parameter bifurcation diagrams for inflation pressures (a) pi0 and (b) 1.024pi0 at the
same vertical stiffness.

F1 (2.41 × 105 N/m) and F2 (3.19 × 105 N/m) appear. After this separation, the yaw
mode bounded by HB1 and HB2 exists for high stiffness (k5 > F2), while the second
mode remains in the lower part (k5 < 2.78 × 105 N/m), leaving the middle region
(2.78 × 105 < k5 < F2) free of shimmy. Figure 15 compares the bifurcation diagrams
before and after the separation. It is noteworthy that although the two modes separate,
the residual of the first mode with reduced peak amplitude still exists in Figure 15(b),
which is represented in Figure 14 by the small raised portion of the lower red curve
with F1 as the vertex. With a further increase in pi, this portion, as well as F1, gradually
disappear (the green curves) and the first mode is farther away from the second mode
as F2 moves to F3 (6 × 105 N/m).
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FIGURE 16. Influence of inflation pressure on (a) half-contact length, (b) relaxation length and (c) vertical
stiffness.

It is known that high pressures strengthen vertical stiffness. If pi is increased from
pi0, large k5, similar to σ, also has a detrimental effect on mitigating shimmy and
undermines the benefit of increasing pressures. This conflicts with the effects of a
and t. However, diminished k5 due to lowering pi may also not be conducive to shimmy
suppression because the area of the tramp mode can be expanded. In this regard, the
effect of k5, together with a and t, conflicts with that of σ. These conflicts make the
final bifurcation features more unpredictable.

According to Besselink’s work [5], a linear function is acceptable to adapt the
vertical stiffness for various tyre inflation pressures:

k5 = k50 (1 + pfz1dpi), (4.10)

where pfz1 is the variation parameter of vertical stiffness with inflation pressure. The
suggested values of the variation parameters pcy1 and pfz1 in (4.9) and (4.10) are
obtained from Pacejka [19] as an estimate.

Overall, the above two-parameter continuations provided evidence for the strong
influence of the four important tyre properties on shimmy oscillations. They were all
heavily affected by the tyre inflation pressure, and the mathematical relations between
them and pressure changes dpi were developed. The curves of these properties with
increasing pressure are illustrated in Figures 12 and 16. It can be concluded that
these four properties form two competitive mechanisms: for high pressures (pi > pi0),
diminished a and t, which both help to suppress shimmy, compete with increased k5
and reduced σ, which both exacerbate shimmy, while for low pressures (pi < pi0),
increased σ, which mitigates shimmy, competes with the other three characteristics,
which all worsen shimmy. These mechanisms, hence, suggest that there is a balance
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between the four characteristics, and a shimmy model needs to correctly balance
these competing factors to accurately predict the effects of inflation pressure. In the
next section, (4.1)–(4.10) will be added to the model built in Section 2 in order, and
additional two-parameter bifurcation studies will be conducted to investigate how the
influence of inflation pressure on shimmy oscillations is changed after multiple tyre
properties are considered.

5. Inflation pressure effect considering multiple tyre properties

In this section, two-parameter bifurcation diagrams are computed in the (V, pi)
plane with expressions of half-contact length (HCL) a, pneumatic trail (PT) t,
relaxation length (RL) σ and vertical stiffness (VS) k5 as functions of pressure
changes included in the shimmy model in sequence. As shown in Figure 17, the
Hopf bifurcation curves are compared with Figure 5, where only lateral force (LF)
is modelled as a function of pressure changes, to highlight the differences after
considering multiple tyre properties. The general trend is consistent, that is, increasing
pressure can weaken shimmy, and vice versa, which is predictable as the bifurcation
diagrams numerically continued in the previous section all agree with it. However,
there are still many significant differences between these curves, the most apparent
of which is the merge of the yaw and the tramp modes. As shown in the enlarged
view in Figure 17(Z2), from the dark blue to the red curves, the inclusion of a causes
the curves of HB2 and HB3 to intersect at a cusp (220.5 km/h, 0.03pi0 (0.078 bar)),
corresponding to the fusion of the two modes. In addition, as pi is decreased from pi0,
the area bounded by HB1 and HB2 increases in size, indicating a larger range of the
yaw mode. In the case of the tramp mode, HB3 and HB4 curves move to the right while
the position where the tramp mode disappears remains almost unchanged (256 km/h,
0.7pi0 (1.75 bar)). These are consistent with the previous analysis on a (Figure 6),
which shows that its increase due to reduced pi leads to the expansion of the yaw mode
and the right shift of the tramp mode. In contrast, for increased pi, its decline helps the
yaw mode shrink, corresponding to less no-shimmy pressure (1.032pi0 (2.58 bar)) in
Figure 17(Z1).

For the green curve, the result of involving t is the closed loop formed by the
crossing of HB2 and HB3 at 0.21pi0 (0.53 bar). Based on Figure 8, it is expected that
the cross point, as shown in Figure 18, is a double Hopf bifurcation HH1, giving birth
to two torus bifurcation curves T1 and T2, and similarly, HB3 becomes subcritical after
a degenerate Hopf bifurcation DH, where a saddle-node curve S1 emerges. However,
unlike Figure 8, T1 and T2 intersect at another Hopf–Hopf bifurcation HH2 and there
is no saddle-node curve detected for HB2. As for the two modes, since t and a have
similar effects, the shimmy region further extends when pi < pi0 and narrows when
pi > pi0. Therefore, although the tramp mode vanishes at higher pressure: 1.88 bar
(0.752pi0), thereby maximizing the range of shimmy for pressures less than pi0, the
pressure at which the system is free of shimmy moves towards the lowest value:
2.56 bar (1.024pi0).
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FIGURE 17. Effect of multiple tyre properties on inflation pressure curves (LF, lateral force; HCL,
half-contact length; PT, pneumatic trail; RL, relaxation length; VS, vertical stiffness) and enlarged views
(Z1) and (Z2).

FIGURE 18. Enlarged bifurcation diagram with torus and saddle-node bifurcation curves included.
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A qualitative change is made when σ is added, shown by the light blue curve, as the
tramp mode disappears. This can be attributed to the competitive mechanism discussed
before: σ exhibits the opposite effect to a and t. For pi < pi0, therefore, it leads to the
rapid disappearance rather than expansion of the second mode, as well as the delayed
onset of the first mode, while for pi > pi0, this causes shimmy to be suppressed at
higher pressure: 2.59 bar (1.036pi0), as shown in Figure 17(Z1).

Due to a similar competition between k5 and σ for low pressures (pi < pi0), the
tramp mode reappears after the inclusion of k5, and has some overlap with the dark
blue curve. The effect of k5 is also reflected in the way the two modes intersect: there
is no closed loop or cusp. They intersect more smoothly at 0.76 bar (0.304pi0), higher
than the values before considering k5. In terms of the yaw mode, declined k5 causes
HB2 to move to the left, but has a limited influence on HB1. Therefore, in comparison
with the light blue curve, the onset of the yaw mode is at nearly the same speed, but the
range of velocities declines. However, for pi > pi0, k5 and σ both aggravate shimmy,
competing with a and t, so shimmy disappears at slightly higher pressure: 2.6 bar
(1.04pi0).

Therefore, after all four tyre properties are included in the shimmy model, the
Hopf bifurcation curve is significantly different from the initial one. Specifically,
for pressures below nominal value, the worsening effects of a, t and k5 on shimmy
overwhelm the mitigating effect of σ, so the two shimmy modes merge, implying the
disappearance of the intermediate stable region, the onset of shimmy delays and the
area of the yaw mode expands. For higher pressures, the suppression effects of a and t
are stronger than the exacerbation effects of σ and k5. Thus, the shimmy region shrinks
and the no-shimmy pressure is slightly reduced.

6. Conclusion and future work

The front wheels of a truck with dependent suspension were modelled and analysed
in this work to investigate the effect of tyre inflation pressure on shimmy oscillations,
with emphasis on the importance of considering multiple nonlinear tyre properties:
half-contact length a, pneumatic trail t, relaxation length σ and vertical stiffness k5,
to obtain improved results. Numerical continuation was carried out with the help of
toolbox COCO to identify Hopf bifurcations presenting shimmy and to trace their
trajectories with parameters of interest. The main conclusions are as follows.

(1) There exist competitive mechanisms in terms of the influence of a, t, σ and k5
on shimmy with pressure changes. When the inflation pressure pi is increased to
above the nominal value pi0, the reduction of a and t alleviates shimmy, which
forms competition with decreased σ and enhanced k5, as they both aggravate
shimmy. With lowering pi from pi0, only the rise in σ mitigates shimmy through
making the tramp mode disappear, while higher a and t, as well as lower k5, all
have the effects of exacerbating shimmy.
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(2) When only the tyre lateral force is dependent on pi, two shimmy modes are
identified for low pressures: the yaw mode at medium speed and the tramp mode
at high speed, and there is no intersection between the two modes. The shimmy
regions shrink significantly with increasing pressure as the tramp mode and then
the yaw mode vanish at 0.69pi0 and 1.04pi0, respectively. Ultimately, the system
is free of shimmy at any speed for high pressures.

(3) Significant differences appear after the heavy dependence of a, t, σ and k5 on
pi is introduced into the extended model. For pi < pi0, the effects of a, t and k5
are major considering the aggravation of shimmy: the shimmy regions expand
remarkably with the two modes merging at 0.304pi0. However, for pi > pi0, a
and t play a more important role in suppressing shimmy: shimmy happens in a
smaller region and disappears at a lower pressure. These differences highlight
the importance of considering the balance between these properties to correctly
capture the effect of pi.

In this work, since insufficient measurement data are available, some estimations
for parameters related to pressure and load dependency are made according to different
references based on different tyres, and the parameters at nominal conditions, such as
pdy1, pky1 and pey1, are determined to fit the data in Li’s article [16]. Although the
extended model established in this work is generic in the context of investigating
the effect of inflation pressure on shimmy oscillations with multiple tyre properties
included, additional experimental measurements for parametrization can be carried out
in the future with the goal of providing better data. In addition, one of the assumptions
of this work is that there is no longitudinal slip for the contact patch. Future work
can also include extending the shimmy model to consider the effect of combined slip,
thereby investigating more realistic vehicle operation scenarios. Finally, vehicles in
operation may experience asymmetric pressure settings (for example, if one wheel
develops a slow puncture): future work could explore how such asymmetries influence
the shimmy response.
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Appendix A. Values of parameters

The description and values of the parameters in all equations are listed in Table 1,
with data sources cited as well. The numbers with superscripts “*” and “+” indicate
values that have been modified compared with those in the literature [19]: a “+”
represents values that have been changed to avoid physically impossible situations like
negative pneumatic trail; a “*” indicates values that have been adjusted to make the
parameters at nominal pressure match with those in Li’s article [16].
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