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Abstract. The Conley index of an isolated invariant set is defined only for flows;
we construct an analogue called the 'shape index' for discrete dynamical systems.
It is the shape of the one-point compactification of the unstable manifold of the
isolated invariant set in a certain topology which we call its 'intrinsic' topology (to
distinguish it from the 'extrinsic' topology which it inherits from the ambient space).
Like the Conley index, it is invariant under continuation. A key point is the
construction of a certain 'index category' associated with the isolated invariant set;
this construction works equally well for flows or discrete time systems, and its
properties imply the basic properties of both the Conley index and the shape index.

0. Introduction
The homotopy index developed over the years by C. C. Conley and his students
has been justly termed the Conley index. Although virtually all of Conley's students
had some part in the development of the theory of this index, the version closest
to the one we present here first appeared in the thesis of Kurland (published as
[6]). Recent expositions appear in [1], [2], [9] and [11].

The basic theory of the Conley index may be summarized as follows:

(1) The Conley index of an isolated invariant set of a flow is independent of the
index pair used to define it.

(2) The Conley index is invariant under continuation.

(Definitions will be given in the sequel.) We shall prove the following analogue
which works equally well for discrete time dynamical systems and flows:

(1) The intrinsic topology of the unstable manifold of an isolated invariant set
of a dynamical system is independent of the index pair used to define it.

(2) The shape of the one-point compactification of this unstable manifold is
invariant under continuation.

The main ingredient of the proof is the construction of maps

associated to pairs of index pairs {Na, La) and (Np, Lp) and non-negative times t,
and satisfying the identity

/
S ft fS+t

yP J Pa —Jya •
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This determines a category which we call the index category of the invariant set.
The idea of the Conley index goes back to Morse and Smale. Morse showed that

the topology of the sublevel sets of a smooth function changed when the level moved
through a critical level and thereby proved his inequalities relating the Betti numbers
of the manifold and the indices of the critical points. Smale [10] defined certain
dynamical systems (axiom A and no cycles), showed they admitted 'filtrations'
analogous to the filtration of a manifold by the sublevel sets of a Morse function
and thereby extended Morse theory from gradient dynamical systems to a vastly
more general class. The monograph [4] summarizes some of the fruits of this line
of thinking.

Conley and his students made the following two essential contributions to all
this. Firstly, they showed that the theory could be applied to any isolated invariant
set, not just hyperbolic ones. Secondly, they 'localized' the theory in the sense that
the index pair {N, L) need not consist of adjacent levels of a filtration, i.e. one need
not assume that orbits which leave a neighbourhood of the invariant set never return.
(Invariant sets which do have this property Conley termed 'Morse sets'.) Conley
also suggested to us the idea that the analogue for discrete dynamical systems of
the cohomology index should be the direct limit.

1. Notation and terminology
Throughout M denotes a compact smooth manifold (although many of our argu-
ments work on a locally compact metric space). By a dynamical system on M we
mean a smooth homomorphism of groups

r->Diff(M) :*-»/'

from the additive group T into the group Dili (M) of diffeomorphisms from M
onto itself. We consider two cases simultaneously: discrete time T = Z so that
/eDif i(M) and/ ' denotes the fth iterate of/ and continuous time T = R so that
/ is a flow. In the continuous time case the smoothness hypothesis means that the
evaluation map R X M - > M : ( / , X ) H / ( X ) is smooth (C1). In the continuous time
case we call the vector field t>e #?(M) defined by

v(x)=4j'(x)j t =o

the infinitesimal generator of/
If J <= T and X <= M, we write fJ(X) where some authors write X • J:

WhenxeM, define fJ(x)=fJ{{x}). In the discrete time case (T = Z), if/<=R, the
notation is understood as if J were replaced by J nZ: fJ(X) =fJr"z(X); thus
fiy2-i\x) = {f2{x),f\x)} when T = Z.

We denote by T+ the non-negative elements of T; thus R+ = [0, oo) and Z+ = Z n
R+ = N, the natural numbers.

If (N, L) is a compact pair in M (i.e. if L c J V c M and L and N are compact),
then we denote by N/ L the space which results from N when the elements of L
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are identified to a point. More precisely,

N/L=N\Lu{*},

where the topology is chosen so that the projection map N -* N/ L (which is the
identity on N\L and sends L to *) is continuous and restricts to a homeomorphism
from N\L onto N/L\{*}. We shall not distinguish between the subset N\L of M
and the subset N/L\{*} of N/L. Note that N/0 is obtained from N by adjoining
a single (isolated) point: N/0 = ATu{*}.

We denote by cl (V), int (V) and d( V) respectively the closure, interior and
(set-theoretic) boundary of a subset V of M. The reader should take care to
distinguish two similar notations with different meanings: N\L (set-theoretic
difference) and N/L (smash L to the base point). The notation

f~g
shall mean that the maps / and g are homotopic and [X] denotes the homotopy
type of the space X, i.e.

if and only if X and Y are homotopy equivalent.

2. An overview of shape theory
Shape theory was invented by Borsuk; our main reference is [7]. An older reference
explaining inverse and direct systems and their limits is [3]. The definitions (given
below) are arranged so that the following theorems are true.

THEOREM 2.1. Every compact metric space X is homeomorphic to an inverse limit of
polyhedra lim (P,p).

THEOREM 2.2. The inverse system of polyhedra converging to X is unique in the
following sense. If (P,p) and (Q, q) are inverse systems whose spaces are polyhedra
(or even homotopy polyhedra) and if lim (P, p) and lim (Q, q) are homeomorphic {or
even only homotopy equivalent), then the inverse systems (P, p) and (Q, q) are shape
equivalent.

THEOREM 2.3. Let F be an algebraic functor as described below. Then any shape
equivalence between (P,p) and (Q,q) induces an isomorphism between
lim (F(P), F(p)) and lim (F(Q), F(q)), where lim denotes the inverse limit if the
functor F is covariant and the direct limit if it is contravariant.

Definition 2.4. We say that compact metric spaces X and Y have the same shape
and write

if and only if there are inverse systems of polyhedra (P,p) and (Q,q) where X is
homeomorphic to lim(P, p), Y is homeomorphic to lim (Q,q), with (P,p) and
(Q, q) shape equivalent.

Theorems 2.1 and 2.2 assure that this definition is meaningful and theorem 2.3
says that the usual functors of algebraic topology (singular homology, singular
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cohomology, homotopy, etc.) extend in a natural (from the point of view of shape
theory) way from the category of homotopy polyhedra to the category of compact
metric spaces. For example, one way to express X as an inverse limit of polyhedra
is via the so-called Cech system [7, p 327] of nerves of open coverings of X. The
limit of the simplicial homology of the Cech system is precisely Cech homology
(usual definition), so that the extension of homology given by shape theory agrees
with Cech homology [7, p 122].

COROLLARY 2.5. Two homotopy polyhedra have the same shape if and only if they
have the same homotopy type.

COROLLARY 2.6. Suppose (P, p) and (P,q) are inverse systems over the same directed
set having the same spaces but possibly different bonding morphisms. Ifpab is homotopic
to qabfor all a, b with a^b, then the inverse limits have the same shape:

P,j>)) = Sh(lim(P,g)).

COROLLARY 2.7. IfX = lim (P, p) is an inverse limit of homotopy polyhedra and each
bonding morphism pab is a homotopy equivalence, then X has the same shape as each
of the approximating spaces: Sh (X) = Sh (Pa) for all a.

Here are the relevant definitions. First, by theorem 7 (p 319) and theorem 8 (p
320) of [7], a compact topological space has the homotopy type of a compact
polyhedron if and only if it has the homotopy type of a compact CW-complex if
and only if it has the homotopy type of a compact ANR; we call such a space a
homotopy polyhedron.

By an inverse system over a directed set A we mean a pair (P,p), where P is a
function which assigns to each a € A a space Pa and p is a function which assigns
to a, be A with a s b a morphism pab :Pb-> Pa such that pab °pbc = pac for a < b< c
and pa a = id, the identity map of Pa. The spaces Pa are called the spaces of the
system, while the morphisms pab are called the bonding morphisms. Let (Q, q) be
another inverse system over a directed set B. An indexed family of morphisms

(f,4>):(P,p)-»(Q,q)
consists of an order-preserving map <f>: B -> A and a function / which assigns to
each be B a map fb: P^u,)-* Qb. The composition of two families (g, i/0 °(f,<t>) =
(h, </> ° i/>) is defined by hc = gc° /^(C)- We call a family:

commuting iff for all b, c e B with b < c we have

ultimately commuting iff for all b,ceB with b< c there exists a e A with

a>(f>{b),<t>(c) and

fb ° P<t,(h)a = qbc °fc ° PMOCI

homotopy commuting iff for all b,ceB with 6 < c w e have

fb ° P<b(b)<t,(c)~ qbc °fc\

ultimately homotopy commuting iff for all b,ceB with b<c there exists ae A

with a > <f>{b), <f>(c) and

~ qbc °fc° P*Ma •
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Given two families (f, <f>), (g, i/>): (P, p) -> (Q, q), call them:
ultimately equal iff for all b e B there exists a e A with a > 4>(b), if/(b) and

fb ° P<t>(b)a = gb ° P4(b)a\

ultimately homotopic iff for all be B there exists aeA with a><f>(b), i\i(b) and

Two inverse systems (P,p) and (Q,q) are called shape equivalent if there exist
ultimately homotopy commuting families (f, </>): (P, p)-*(Q, q) and (g, t/j): (Q, q)-*
(P,p) such that the composition (g, i/0 ° (f <f>) is ultimately homotopic to the identity
family of (P,p) and the composition (/, </>) ° (g, i/0 is ultimately homotopic to the
identity family of (Q, q); the family (/, <f>) is then called a sliape equivalence.

By an algebraic functor we mean one denned on the homotopy category of
homotopy polyhedra into a category which admits inverse limits if the functor is
covariant and direct limits if the functor is contravariant. Any functor into the
category of groups is an example.

We have now defined all the terminology needed to understand the statements
of 2.1-2.7 (except perhaps that which can be found in [3]) and proceed to guide
the reader to the proofs. The reader is invited to test his/her understanding of the
definitions by showing that the Warsaw circle of [7] (p xiii and example 4 on p 67)
has the shape of the circle.

A proof of theorem 2.1 is given on p 61 of [7]. Theorem 2.2 comes from theorem
9 on p 65 and remark 2 on p 19. For theorem 3 see theorem 2 on p 122, remark 2
on p 124 and theorem 4 on p 128.

Corollary 2.5 is a triviality. Any space is the inverse limit of a trivial inverse
system having a directed set of one element, viz. the space itself. A shape equivalence
between two such trivial inverse systems is the same thing as a homotopy equivalence.
Corollary 2.6 is also a triviality; the identity map is a shape equivalence.

For corollary 2.7 we must construct a shape equivalence between the inverse
system (P,p) over A and the trivial inverse system (Q, i) over {1}, where Qi = Pa

and i,, = id, the identity map of Pa. Let i: {l}-» A be given by i(l) = a and IT: A^{1}
be given by ir(b) = l for all b. Define (/, t.): (P, p) ̂  (Q, i) by / , = id and
(g, IT)-(Q, 0•*(P,P) by gb = Pbcgca, where gca: Pa-*Pc is a homotopy inverse to pac

and c = c(b) is any index larger than a and b. (The homotopy class of gb is
independent of the choice of c as d ^ c implies pbc°gca~pbc°Pad °gdc °gca ~
Pbd ° gda-) Then (f, i) ° (g, ir) is the identity of (Q, i) (which is a commuting family)
while (g, 77-) ° (f, i) = (g, a), where a: A-* A is given by a(fc) = a for all b. (g, a) is
an ultimately commuting family as b < d implies pbd ° gd ~pbd ° Pde ° gea = Pbe ° gea ~
gb for large e. To show that (g, a) is ultimately homotopic to the identity, we must
show that for every be A there exists deA with d>b and d>a = a(b) and
gb°Pad~Pbd\ d = c works.

LEMMA 2.8. Suppose <1> and W are smooth real-valued functions on M, that 0 is a
regular value for both 3> and ^P, and that ^"'(O) and ^"'(0) intersect transversally.
Let

N = $-'([(), oo)) n^-'ao, oo))
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and

L= ()

(Thus N is a manifold with corners.) Then the space N/ L is a homotopy polyhedron.

Proof. In standard references on Morse theory such as [8] or [5] it is proved that
on a manifold with a boundary one can always find a Morse function having the
boundary as a regular level and that one can use that Morse function to extend a
cellular decomposition of the boundary to the whole manifold. Using this fact, first
decompose ^"'(OJnMf^O) (no boundary), then decompose Nn$~ ' (0 ) and N n
^"'(0) (boundary is $" ' (0)0 ^"'(0)), extend this decomposition to a 'collar' of
dN of form (flup)"1^. e]) (product with an interval) and finally extend to N
(boundary is (<&'^)~1(e)). Now we have made N into a CW-complex with L a
subcomplex. Hence JV/L is a CW-complex.

3. Isolated invariant sets and continuation
Fix a dynamical system / on M. Given any set V, denote by /(V,f) the maximal
invariant set inside of V:

An isolating neighbourhood for / is a set V such that the maximal invariant set in
its closure is contained in its interior:

an isolated invariant set for / is a set S of form

for some isolating neighbourhood V (one then says that V is an isolating neighbour-
hood for (5,/)).

PROPOSITION 3.1. Let V, and V2 be isolating neighbourhoods for the same isolated

invariant set S off. Then

D /'(cl(V1))cint(V2)
-«0S(S(0

for sufficiently large t0.

Proof. Compactness.

COROLLARY 3.2. For all dynamical systems g sufficiently near f (in the C° topology)
we have

KV1,g) = I(V2,g).

COROLLARY 3.3. The set of all dynamical systems having a given set Vas an isolating
neighbourhood is open in the space of all dynamical systems on M (C° topology).

Let / = [0,1] denote the unit interval. A continuation of isolated invariant sets on
M is a collection

{(SA,/A):Ae/}
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of pairs indexed by / such that the dynamical system F on M x / given by

F'(x, A) = (/!(*), A)

(for t e T, x e M, A € /) is smooth and the set 1 <=• M x J defined by

2 = {(x,A):xeSA}

is an isolated invariant set for F; one calls this a continuation from (S0,f0) to (Sj ,fi).
The relation 'there is a continuation from (So,/O) to (S,,/,) ' is an equivalence
relation on the space of all pairs (5, /) with S an isolated invariant set of/ Let
W = UA VA X{A} be an isolating neighbourhood for (2, F). Then VA is an isolating
neighbourhood for /A and

SA = / ( V A , / A ) ,

so each SA is an isolated invariant set for /A. Since each VA is also an isolating
neighbourhood for /M for /x sufficiently near A, we have:

PROPOSITION 3.4. A continuation is 'locally trivial' in the sense that there is a covering
ofJ by open intervals Jj (j =1,2,..., n) and a collection Vj (j = 1, 2,..., n) of subsets
of M such that for A e J, we have that Vj is an isolating neighbourhood for fK and

The role of continuations in the theory of dynamical systems is analogous to the
role of homotopies in topology. Of course, in applications one constructs the
continuation by constructing the isolating neighbourhood W c M x /.

4. The induced semidynamical system of a pair

Definition 4.1. Given a compact pair (N, L) in M and te T+, define a map

by

f ( x ) = \f'(x) iff[°-'\x)czN\L.
# 1 * otherwise.

Note that if/#(x) = * for some t, then this continues to hold for all larger t. Also
note that the family of maps {/#} satisfies the semigroup property

for (, se T+, where id denotes the identity map of N/L. We call ft->/i the semi-
dynamical system induced by f on the space N/ L.

THEOREM 4.2. Assume the continuous case: T = R. Then the evaluation map

is continuous if and only if:
(i) L is positively invariant relative to N, i.e.

xeL, fl0''\x) <= N=»/f0-'](x) c L.

(ii) Every orbit which exits N goes through L first:

xeN, /[0>oo)(^)5z;^V=*3's0with/[0-']cN and / ' (X)GL.
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Proof. First we assume that (i) fails and show that / # fails to be continuous at some
(t, *). Assume that xe L and f[0-'\x) <= N but f{x)£L. On replacing x by f"(x)
and t by t — s0, where s0 = sup {s e [0, t]:f(x) e L), we may assume without loss of
generality that f(x)e N\L for 0<s<f. Let xn=fx/n(x) and tn = t-\/n. Then
(tn, xn) converges to (t, *) in R+ x N/L but /£(*„) =/ ' (x) * * =/i(*); i.e. /£(*„)
does not converge to /#(*) .

Next we assume that (ii) fails and show that / # fails to be continuous at some
(s, x) with x € N\L. Assume that x e N and /[0>00)(x) 2 JV but that the requisite t
fails to exist. Let s = sup{f€[0, oo):/[0>r](x)c: N} so that there is a sequence sn

converging to s with/s»(*)£ N; i.e./£(x) = *. But as N is closed,/[0>s](x) <= JV and
so by hypothesis there can be no te[0, s] with f'(x)e L; thus /[<M]<= N\L, i.e.
/#(*) =f(x)**. Thus/# is not continuous at (s,x)eR+ x(N\L)<=R+x(N/L) as
required.

Now assume (i) and (ii), but that/# is not continuous, i.e. that there is a sequence
{*„}<= N/L converging to xe N (by compactness) and a sequence {/„} converging
to t €R+ with/£(*„) not converging tof#(x). We must derive a contradiction. We
distinguish two cases: /#(*) = * and /#(*) =/ '(*) e AT\L.

First consider the case/#(x) = *. Then passing to a subsequence, we may assume
flp(xn)=f'"(xn)e N\L and that/ '(*)£ L (else we would have convergence). But
/co'"](xn)<= JV\Lc N sof[0-'\x)c N as N is closed. Since/U*) = *, we must have
fl°-'\x)r\L^<Z, which together with f'(x)(. L contradicts (i).

Now consider the case /#(*) =/ '(*) e A^\l- Then passing to a subsequence and
using the continuity of/, we may assume that/# (xn) = * for all n so/[0>'nl(xn) £ JV\L.
Either/[0>I"](xM)s* N o r / [ o ' » ] (x n )nL^0 ; in either case choose sne[0, tn] so that
/*"(*„) e L (in the former case we use (ii)). The points f"{xn) accumulate at a point
f\x) e L, which contradicts the assumption that/#(x) =/ '(*) e N\L (for that would
require /c°''](x) c N\L). This completes the proof.

THEOREM 4.3. Assume the discrete case: T = Z. Thenf0 is continuous if and only if:
(A0) Every xoe Lnf~*(N\L) has a neighbourhood Ao in M withf(AonN\L) <=

M\N. (This means that whenever xoe L but f(x0) e N\L we have/#(x) = * for all
x e N\L sufficiently near x0.)

(BO) Every xoe(N\L) nf~\(dN)\L) has a neighbourhood Bo in M withf{Bon
N\L)cN. (This means that whenever xoe N\L and f0(xo) = f(x0)e N\L then
/#(x) =f(x) e N\Lfor all x sufficiently near x0.)

Proof. Assume condition (AO) fails. We will show that / # is not continuous at *.
We have xoe L with/(x0) e N\L, and no Ao exists as in (AO); thus there is a sequence
xn e N\L converging to x0 with f(xn) e N. Since L is closed and /(x0) € N\L, we
even have f(xn) € N\L. But then /#(xn) =/(xn) converges to /(x0) e N\L while xn

converges to * in N\L. Thus / # is not continuous.
Next assume condition (BO) fails for some xo€ N\L. We will show that/* is not

continuous at x0. Then xoe N\L and/(x0) e N\L, but since no Bo exists as in (BO),
there is a sequence xn e N\L converging to x0 with/(xn)g N. Then/#(xn) = * does
not converge in N/L to /#(x0) =/(x0) € N\L so that /# is not continuous.
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Now we assume (AO) and (BO) and prove that/# is continuous on N/L. There
are four steps.

/ # is continuous at xoe (N\L) r\f~l{L). For x near xo,f(x) is near/(x0) e L and
so /#(x) is near *.

/ # is continuous at xoe(N\L)nf~l(M\N) since/#(x) = * for JC near x0.
/ # is continuous at xoe(N\L) nf~l(N\L) since (BO) ensures that/#(x) =f(x) e

N\L for x near x0.
/ # is continuous at *. We assume not, and derive a contradiction. There is a

sequence xne N\L converging to * in N/L with /#(*„) converging to ye N\L.
Pass to a subsequence so that xn converges to xoe L. Then/(xn) =/#(xn) converges
to f(x0) = y€ N\L. This contradicts the existence of Ao as in (AO).

This completes the proof of theorem 4.3.

The analogues of the necessary and sufficient conditions of theorem 4.2 are only
sufficient in the discrete case. These conditions are positive invariance of L in TV:
f(L) n iV <= L (which says that if x e L and f(x) e N then f(x) e L) and the exit set
property: N nf~x(M\N)<^ L (which says that if f(x) is the first point for which
some forward orbit originating in N leaves N, then x e L).

COROLLARY 4.4. Assume the discrete case: X = Z. Assume

and

Nnf-\M\N)<=L.

Then f# is continuous.

Proof. Ln/'^JVXL) is empty so condition (AO) holds vacuously. Also Nn
f~\M\N) c L implies f(N)\N <=f(L) which implies f(N\L) <= N so that (N\L) n
f'\N\L)<= Bo and f(Bon N\L) c N with Bo = M\L. This proves condition (BO).

THEOREM 4.5. Assume the discrete case: T = Z. Assume N c M is closed and

(dN)nf-\N)nf(N) = 0.

Define

L0=f(N)n(dN)

and

L, = c\(N\r\N)).
Then Lo <= L, andf#: N/ L -* TV/ L w continuous for any closed subset L of N satisfying
Lo<= L<= L,.

/ Our hypothesis can be rewritten as

so intersecting both sides with TV gives Lo<= Lt. Clearly
/(L,)n/Vc=L0

so that for Lo<= L<= L, we have/(L)n TV<= L whence Ln/"'(TV\L) = 0 , so condi-
tion (AO) holds vacuously.
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Condition (BO) also holds vacuously when Loc £,. This is because N\L<^ N and
(dN)\Lc(dN)\L0=(dN)\f(N)<= M\f(N) so that (N\L)nf-l((dN)\L)<z Nn
M\N = 0 . This completes the proof of theorem 4.5.

5. Index pairs

Definition 5.1. Let S be an isolated invariant set for a dynamical system / on a
space M. An index pair for (S,/) is a compact pair (N, L) in M such that N\L is
an isolating neighbourhood for (5,/) and the semidynamical system /# on N/ L
induced by / is continuous.

We remark that in view of theorem 4.2 this definition agrees with the standard
definition (see [1], [2], [9] and [11]) in the continuous case. Our goal in this section
is to prove that any isolated invariant set admits an index pair. We shall in fact prove
somewhat more; namely that there exist index pairs which are stable (i.e. remain
index pairs) under suitable perturbations of the dynamical system /

THEOREM 5.2. Let V be an isolating neighbourhood for (S,f). Then there exists a
Lyapunov function for (S,f) on V, i.e. a smooth function <J>: V-»R such that

*(/ '(*)) < $(x) if /t0>'](x) c V\S and t > 0;

4>(x)=0 forxeS.

Proof. We first consider the discrete time case: T = Z. Note that in this case the
conclusion of the theorem may be more simply expressed as<I>(x) = 0 i f x e S and
<J>(/(x))<4>(x)ifx,/(x)eV\S.

Step 1. Choose x o e (V\S )n f ' \V ) ; we will define *0: V->R such that 4>0|S = 0,
4>o(/(x))<<J>o(x) for xe V n f ' ( V ) , and ®0(f(x0))«i>0(x0). By the definition of
isolating neighbourhood the orbit of x0 must leave cl (V); choose q so thatf(x0) e
M\cl(V). Now choose a neighbourhood U of x0 so small that f(U)ncl (V) = 0 ;
i.e.

Now choose a smooth function <f>: M -»[0,1] supported in U with </>(x0) ^ 0 so that

<M/-*(*» = o
for xe cl (V). Define <J>0: V-»R by the formula

if q is positive and by

(=0 t=0

if q is negative. Then

which proves the desired inequalities. (Note that changing / outside cl (V) could
change <&0- In the smooth case <t> and hence <&0 may be chosen as smooth as / )
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Step 2. As M is separable, we may find functions <!>„: M->R as in step 1 so that
the open sets {xeM: <t>n(/(x)) <<&„(*)} cover (V\S)nf~\V). We then define <f>
by an infinite series

<*>(*)= I cn4>n(x),
n

where the coefficients cn are chosen positive and tending to zero so rapidly that the
series converges uniformly. (If it is desired that 4> be of class C , choose the
coefficients so that the derivatives of order ^ r converge uniformly as well.)

The continuous time case is quite similar. Step 2 is exactly the same; for step 1
we replace the sum by an integral:

*o(x) = - | <f>{f'(x))dt.
J-q

As before we obtain an equation

*(/*«) = <&(*)-[ 4>(f(x))dt
Jo

when f^°'s\x) c V, which (as <f> is non-negative) implies that 3> is non-increasing
on orbit segments in V and strictly decreasing on the support of <f>. This completes
the proof of 5.2.
THEOREM 5.3. Assume the discrete time case: T = Z. Let Vbe an isolating neighbour-
hood for (S,f) so that S= I(V,f) the maximal invariant set in V. Then there exist a
neighbourhood SFoffin Diff (M) (C° topology) and a compact pair (TV, L) which is
an index pair for (/(V, g), g) for any g e f . One can choose (TV, L) so that N/L has
the homotopy type of a polyhedron.

Proof. Let <$: V ^ R b e a Lyapunov function as in theorem 5.2. By proposition 3.1
we may shrink V if necessary and assume that 4> °f and 4> ° /~ ' are both defined
on V. Choose e > 0 so small that

and define TV c V by

TV = {x € V: - e < *(x) < 4>(/~'(*)) ^ e}.

As the inequalities defining TV cannot hold for x e d V, we have

we take

Then TV n &~1{e) = 0 and f(L) n TV = 0 so that there exists a neighbourhood 9 of
/ i n Diff(M) with g(N)nf(®~\e)) = 0 and g{L)n TV = 0 for ge 9. Hence

for g € ^. From theorem 4.5 it follows that g# is continuous.
From S<=int(V)n4>-'(0) we obtain S<=int(TV)c V. From S<=int(TV) we obtain

S<= int (/"'(TV)) so that 5 c TV\Lc V. Thus TV\L is an isolating neighbourhood for
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(5,/) = (/(V,/),/) . By proposition 3.1 we have that JV\L is an isolating neighbour-
hood for (/(V, g), g) for g sufficiently near / We note that we can also choose e
so that —e is a regular value of <£ and e is a regular value of ¥ = <E> °/~ ' (Sard's
theorem [5]) and then perturb <I> and ¥ so that &~l(-e) and ty~l(e) are transverse.
Then by lemma 2.8 N/L is a homotopy polyhedron. This completes the proof of
theorem 5.3.

Example. A good example to keep in mind is the following. Take M = R2 with
fix, y) = (2'JC, 2~'y). Take V = [-1,1] x [-1,1] an isolating neighbourhood for the
hyperbolic fixed point S = {(0,0)}. Take the Lyapunov function <J>(x, y) = y2-x2.
Then N is bounded by two hyperbolas with four points of intersection (inside V
if e is small enough) and L is a portion of one of them. This same example illustrates
both the discrete time case and the continuous time case which follows.
THEOREM 5.4. Assume the continuous time case: T = R. Let Vbe an isolating neighbour-
hood for (5,/) so that S= I(V,f) the maximal invariant set in V. Let veSt(M) be
the infinitesimal generator off. Then there exist a neighbourhood & of v in %{M)
(C° topology) and a compact pair (N, L) which is an index pair for (/(V, g), g) for
any flow g whose generator w lies in 9. One can choose (N, L) so that N/L has the
homotopy type of a polyhedron.

Proof. As in the discrete case we take

N = {x € V: -e < *(x) < <t>(f-s(x)) < e},

where 4> is a Lyapunov function denned on a neighbourhood of the closure of
V, S > 0 is small enough that f[~SM(x) lies in the domain of 4> for x e V»and e > 0
is small enough so that

Choose a neighbourhood & of v in %?(M) so that

d<f>(x)w(x)<0, d(<J>°/

inr _s ? AN a»d w e 0. ^Tbis is .possiWs as the inequalities hold wh«n w •= v, 4> « as
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constructed above, xe V\S.) We take

L = 4>-1(-e)nJV.

Choose we & and let g denote the flow generated by w. If xe L, then g'(x)£ N
for small positive t; while if x s (dN)\L, then g'(;c)eint (N) for small positive f.
Thus (N, L) satisfies the conditions of theorem 4.2 and so is an index pair as required.
We show N/L is a homotopy polyhedron as before.

We remark that theorem 5.4 cannot possibly hold if one requires only that the
flow g be close to / in the C° sense (as opposed to their generators being close).
The reason is that the condition that L be positively invariant relative to N can
always be violated by a small perturbation of the flow.

COROLLARY 5.5. Let {(SA,/A): A € / } be a continuation of isolated invariant sets. Then
there is a covering Jj (j = l,2,...,n) of the unit interval J and pairs (Nj, Lj)
(j = 1,2, . . . , n) such that (NJt L,) is an index pair for (SA,/A) for A € JT-.

6. The index category
In this section we fix an isolated invariant set S for a dynamical system f on M
and choose an indexing {(Na, La)}a of all the index pairs for (S,f).

Definition 6.1. Let (Na, La) and (NB, LB) be index pairs for (S,f) and te T+. The
morphismfrom Na/La to Np/L0 induced by the dynamical system fat time t is the map

f'^-.HJL^Np/Le

defined by

I* otherwise,

where the set C'aB is the subset of Na\La defined by

:)^Nn\Ln and

When a = /3 we abbreviate f'aa to fa:

f'a=f'aa:NJLa^NJLa.

LEMMA 6.2. There is a function which assigns to each pair (a, fi) of index pairs for
(S,f) a number tap having the following properties:

'aer:=0» tap = tpa, <a-y — tap + tpy,

t*taft/3, faM(x)^ Na\La=>fa+l-b-'\x)cz NP\L0.

Proof. To define ta0, note that by proposition 3.1 we have

fl-J](x)^ Na\

and

Na\La

for sufficiently large l>0; we denote by ua/i the infimum of all such t and take
f«0=3wa/3 if ai±fi with taa=0. To show tay^ta0 + tpy, it suffices to show uay<
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"a? + upy- For this we must show that if t> ua/3, s > Upy and flaM{x) <= Na\La, then
fla+t+s-b-'-s\x)^Ny\Ly. This follows as fla-b\x)c Na\La implies / [ a + u >- ' ] (x)c
NP\LP which implies/[a+I+s*"'"s](x)c N r \L r . This proves the lemma.

THEOREM 6.3. (i) The morphism f'pa is continuous for t> ta/}.
(ii) The morphisms f'a form the semidynamical system on Na/La induced by the

dynamical system f; i.e.
fa=f+:NJLa + NJLa.

(iii) Ift>taf3 and s> tpy, then s + t>tay and
fS+l _ fS ft
Jya —Jyp ° J pa •

Definition 6.4. These conditions say that there is a category whose objects are the
spaces Na/La, where (Na, La) is an index pair for (5,/), and whose morphisms
are the morphisms/^: Na/La -» Np/ Lp induced by the dynamical system/at times
t> ta/i. We call this category the index category of (S,f). It contains as morphisms
the elements f'a:Na/La-* Na/ La of the semigroup induced by /
Proof of 6.3. We consider the discrete time case: T = Z; the continuous time case
is similar (see [9]). We prove that/pa is continuous at xoe Na/ La via a case analysis.

Case l./[0'2'/3](x0) n (M\Na)* 0 or/['/3-'](x0) n (M\NP)^ 0 . Then these intersec-
tions continue to be non-empty for x near x0, so f'pa(x) = * for such x.

Case 2./ '(xo)e L^. Then/'(x) is near Lp for x near x0, sof'pa(x) is near * for such
x.

Case 3. f[0-2l/3\x0)^ Na,f
ll/3''\x0)^ Np,f'(xo)e Np\Lp, but f(xo)eLp for some

5 £ [t/3, t]. Take the largest such s; then by condition (AO) of theorem 4.3 we obtain
that/s+1(x)£ Np if x is near x0 and/s(x) e Np\Lp, so that/^a(x) = * for x near x0.
Case 4./[0-2'/3](x0)c: ATa,/

['/3-'](x0)^ Np\Lp and/s(x0)e La for some se[0,2t/3].
Suppose that s is the largest integer with this property. We obtain from lemma 6.2
and t> taP that s<t-tap/3 and/s+1(*o)e Na\La. Hence it follows from condition
(AO) of theorem 4.3 that/I+1(*)g Na if x is near x0 and/s(x) e Na\La. Since tap/3
is an integer, we obtain s+l<t-tap/3 and it follows again from lemma 6.2 that
xi C'ap if x e Na\La is near x0. Hence f'pa(x) = * for x near x0.

Case 5. fp°f'm(x0)^Na\La and /^/3''](x0) <= N0\Lp. It follows from lemma 6.2
that/s(x0) e Na\La forO< 5 < t - tap/3. By condition (BO) of theorem 4.3 this implies
that fs(x)e Na\La for 0 < s < t-tap/3 for x near x0. Now it follows again from
lemma 6.2 that /5(x) e NP\LP for tap/3 < s < f for x near x0. We conclude that a
neighbourhood of x0 in Na\La is contained in C'ap, so that the continuity of/J,Q
at x0 follows from the continuity of/'.

This completes the proof of (i).
Assertion (ii) is obvious: the condition xe C'aa means that/[0'](x)<= Na\La, so

that /„„=/„.
To prove (iii) we must show that xe Cs

a
+

y' if and only if x€ C'ap and/ '(x)e Cspy.
Assume xe C'ap and/ ' (x)e Cpy. Reason as follows:

/ [ 0 ' 2 ' / 3 1(x)cNa\Lo, f'/3-'](x)^Np\Lp (1)

https://doi.org/10.1017/S0143385700009494 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009494


Dynamical systems and shape theory 389

(as xe C'af}) and
/[.,r+2s/3](x) c N A ^ / t -+ I /3,,+s] (x ) c N ^ ^ ( 2 )

(as / '(x) e Cpy). Combining gives

/[ ' /3 ' (+2s /31(x)cNp\L/3,

so (as 5 > ^y and t> ta/})

fl«*+">.<+">\x)cNy\Lyt fV/3-2l/3+2s/iXx)<=Na\La.

Combining gives

/[(t+s)/3-'+s](x) e Ny\Lr, /t°-2<'+s»/3Hx) <= Na\La. (3)

Therefore x e C ^ ' .
Conversely assume xe C ^ ' , i.e. (3). Then (as s> tPy and t> tafS)

fi>wwm{x)cNfi\Lpt ft"3-«w\x)cNp\Lf>,

i.e.

fi«W'*\X)cNp\L/t,

which (together with (3)) gives (1) and (2). Therefore xe C ^ and/ '(x)e Cs
Py. This

completes the proof of (iii) and thus of theorem 6.3.

7. The unstable manifold
In this section time is either continuous or discrete. Let S be an isolated invariant
set for a dynamical system / on M.

Definition 7.1. The unstable manifold Wu(S,f) of the invariant set S is the set of all
points of M whose orbit tends to S in backwards time:

W"(S,f) = |x G M: Jim d(f-(x), S) = 0[,

where d denotes any metric giving the topology of M.

PROPOSITION 7.2. If V is an isolating neighbourhood for (S,f), then xe Wu(S,f) if
and only iff~'(x) e Vfor all sufficiently large t; i.e.

Fix an index pair {Na, La) for (S,f). We will define an inverse system (Na/La,fa)
indexed by T+. All the spaces are the same:

(NJLa), = NJLa

for s e T+. The bonding maps are the elements of the semigroup

fa:{NJLa),+t->(Na/La),

induced by / We denote by W* the inverse limit

Wt = lim(NJLa,fa).

A point £e W* is a map f: T+-» Na/La satisfying

for t, se T+. The base point of W* is the constant map whose value is the base
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point * e Na/La; we denote by WQ the complement of the base point:

Wa=W*\{*}.

Thus a typical point £e Wa is a map f: 7~+-» Na/ La either of form

for all t G 7*+ and some x G Na\La or of form

f* iff<r,
= l/'-(x)eJVa\Ite ifr<r

for all t e T+, some T = r(f) e T+ and some x = £(r) e 7VQ. (This because if
for some t, then this continues to hold for all larger t.) Define

ia : Wa H> M

by

(The result is independent of the choice of / >
Note that there is a dynamical system

a • rr a

(t e r ) so that ta : Wa -* M intertwines <ra and / :

<•<» °<r'a=f ° <•„•

Indeed <rQ is the (two-sided) shift; it is defined by

for large s (this determines it for all s).

,, \& a CQltfilWOUS mjtcUotv Yjhose wva%e \s tKe unstable
manifold W(S,f) of the isolated invariant set S:

La(Wa)=W»(S,f).

If (Np, Lp) is another index pair for (S,f), then the bijective map

is a homeomorphism.

Definition 7.4. Thus the topology on W(S,f) which makes ia a homeomorphism
is independent of the choice of the index pair (Na, La); it is called the intrinsic
topology on Wu(S,f). The topology which W(S,f) inherits as a subset of M will
be called the extrinsic topology on W(S,f). We denote by W*(S,f) the one-point
compactification of Wu(S,f) in its intrinsic topology, so by definition ia extends to
a homeomorphism (denoted by the same symbol)

ia:Wt-»W*(S,f).

Proof of theorem 7.3. The idea of the definitions just given is that a point x G W"(S,f)
will be identified with its backwards orbit f(f) =/" ' (*) which will He in N\L for
large t. Of course any point in the orbit determines the whole orbit. We modify the
first part of £ in the only way we can (i.e. setting €(t) = * for small 0 in order to
get a point of the inverse limit space.
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Now we proceed to the details. Since i a (f)=/ ' (£(0) for large t, it follows
immediately that ia is continuous and injective. Since/~'(ia(f)) = f(t) e Na\La for
large t, it follows by proposition 7.2 that ia(£)e WU(S,/). Conversely, if xe Wu(S,f),
then £e Wa denned by €{t)=f~'(x) for large t maps to x under ca. This shows
that iQ is a continuous bijection.

We shall describe the map i^1 ° ia in another way, using the index category, which
makes its continuity obvious. Given q,tzT+ with t sufficiently large, we have the
morphism

A,:(Na/La),+,-*(N/ )/Lp), .

By theorem 6.3
j''/3a °fa=ffi° fpa,

i.e. we have a morphism of inverse systems and hence an induced map on the inverse
limits:

(The definition is independent of the choice of t>ta/}.) By theorem 6.3 again
S« = S/3 ° l0" a nd '«• = ^ s o t n a t ^a is a homeomorphism with inverse tap.

All that remains is to check that ipa = i.p1 ° ia. For that choose £e W* and put
V = tp1 ° '«(£)• Then 1,3(77) = i«(£) =/r(7?(r)) =/r(£(r)) for large r and in particular
v('') = i(r)€{Na\La)n(Np\Lp) for all sufficiently large r. Then clearly
f'pAi(r+1)) = r}(r) for fixed f > taP and large enough r, i.e. «•£<»(£) = 17. This proves
theorem 7.3.

If S is a hyperbolic fixed point for /, then it is an isolated invariant set and
W"(S,f) in its intrinsic topology is homeomorphic to Euclidean space so W*(S,f)
is homeomorphic to a sphere. If, however, the stable and unstable manifolds of S
intersect transversally, as in the Smale horseshoe, then WU(S, f) will not be embedded
and so the intrinsic and extrinsic topologies will not be the same.

PROPOSITION 7.5. If (S,f) admits an index pair (N, L) with both N and L positively
invariant by f {i.e. / ' ( N ) c N and / ' (L )c L for /e T+), then the intrinsic topology
and the extrinsic topology on Wu(S,f) agree.

Proof. Let W* = lim (N/L,f) and W= W*\{*}. We must show that the continuous
bijection <.: W-* Wu(S,f) is a homeomorphism. Choose a sequence £„€ W with
*n = <•(£•) converging to a point x = i(£) e W"{S, / ) ; we must have that £, converges
to £ Applying a suitable shift a', we may assume without loss of generality that
xeint(N\L) so that x = f(0). For n sufficiently large we have xne\nt (N\L) as
well; it suffices to show xn = £,(<)). (If &(0) * *, then £,(*) =/"'(6,(0)) e AT\.L for
all f so that the convergence of £„ to £ is assured by the continuity of/"'.) Now
for large t we have xn =/'(£,(*)) (by the definition of i) and £,(<) 6 N\L (as £e W).
Since £,(0) =/#(fn(0) for all t, the only way we can have xn * £,(0) is if £,(0) = *,
and this means that for some s e T w e have/"s(xn)(£ N\L. But we cannot have
f~*(xn)£N as JV is positively invariant and f~'(xn)e N\L for large t, and we
cannot have f~s(xn)e L for then (since L is positively invariant) we would have
xn e L contradicting xn e int (N\L). This completes the proof.
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8. The homotopy (Conley) index
In this section we consider only the continuous time case: T = R.

THEOREM 8.1. Let S be an isolated invariant set for the flow f on M and let (Na, La)
and (Np,Lp) be index pairs for (S,f). Then the spaces Na/La and Np/L^ are
homotopy equivalent:

[NJLa] = [Np/Lp].

Proof. For t> tap the map f'pa: Na/La-> Np/Lp is a homotopy equivalence with
homotopy inverse/^. This is because/J,a °f'ap =fp' and f'ap °fpa =/*', and/ | ' and
fl' are homotopic to the identity (the homotopy s>-»/« with 0< s < 2t connects the
identity to fl').

Definition 8.2. The common homotopy type is called the homotopy index or the
Conley index of (5,/) and is denoted by h(S,f). Thus

h(S,f) = [N/L]

for any index pair (JV, L) for (S,f).

THEOREM 8.3. The homotopy index is a continuation invariant; i.e. if (S0,f0) is a
continuation o/(S, , / , ) , then h(S0,f0) = h(Sl,fl).

Proof. This follows immediately from corollary 5.5. We remark that this proof
assumes the continuation to be C1; older proofs are slightly more complicated, but
assume only continuity and thus work on an arbitrary metric space (see e.g. [1], [9]).

9. The shape index

Definition 9.1. The shape of the topological space W*(S,f) is called the shape index
of (S,f) and denoted by 5(5,/):

THEOREM 9.2. The shape index is invariant under continuation. More precisely, if
(So,fo) is a continuation of (Si,ft), then

Proof. This follows immediately from proposition 5.5 and corollary 2.6.

Remark 9.3. Assume the continuous time case: T = R. Then the shape index and
the homotopy index contain the same information. More precisely:

(i) If (JV, L) is an index pair for (S,f), then N/L and W*{SJ) have the same

Sh (N/L) = Sh (W*(S,f)) = s(S,f).

(Hence W*(S,f) has the shape of a polyhedron.)
(ii) Two isolated invariant sets have the same shape index if and only if they

have the same homotopy index:

(Corollary 2.7 implies (i); (i) and corollary 2.5 imply (ii).)
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Of course, this does not mean that h(S,f) = [ W*(S,f)] in general, although this
is true in simple examples. The illuminating example is a flow having the Warsaw
circle S as an attractor with an isolating neighbourhood an annulus N on which
the flow points in. Then L = 0 and Wu(S,f) = S in this case. This invariant set can
be continued to an ordinary circle through flows, all of which point into the annulus
(thus providing a proof that the Warsaw circle has the shape of a circle). But the
Warsaw circle and the circle are not homotopy equivalent (that is the whole point)
as the former has a trivial fundamental group.
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