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Abstract

We show, under some natural restrictions, that some semigroup orbits of polynomials cannot contain
too many elements of small multiplicative order modulo a large prime p, extending previous work of
Shparlinski [‘Multiplicative orders in orbits of polynomials over finite fields’, Glasg. Math. J. 60(2)
(2018), 487-493].
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1. Introduction

Let K be a field and X its algebraic closure. Let ¥ = {¢1, ..., ¢} C K[X] be a set of
polynomials of degree at least 2. For x € K, let

Or(x) = {¢h;, 00 () :neN,i;=1,...,k} (1.1)

denote the forward orbit of P under 7.
For a prime p and an integer s > 1, let F,s denote the finite field of p* elements. For
w € F,s and ¢y, ..., ¢y defined over F s,

T(w) := #O#(w) < p°.

Foru e F;, the multiplicative order 7(u) is the smallest integer [ > 1 such that u’ = 1.
When k = 1 and € > 0 is arbitrary, Shparlinski [5] obtained the bound

#Hn <N —1:7(f"(x)) <1} = O(max{N'?, N/loglog p}),

for x € Fp, p prime and ¢ < (log p)'/?~¢, provided f is not linearly conjugate to a
monomial nor to a Chebyshev polynomial.

We seek to generalise results of this sort when the dynamical systems are generated
as semigroups under composition by several maps ¢; which are not linearly conjugate
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to monomials or to Chebyshev polynomials. Let ¥, = {¢;, 0---o¢; : 1 <i; <k}
denote the n-level set. Let € > 0 and suppose that i > 3/ are integers such that

#veF, : 1(v) <t,v = f(u), f € Fn,n < N} > B(k, h)

for each N, where B(k, h) is the size of the complete k-tree of depth 2 — 1. We prove,
among other results, that

B(k, h)l+l B(k, h)l+1 }

#{veﬁ’p:T(v)gt,v=f(u),f€7:,,,nSN} <<1¢max{ ,
’ h loglog p

for all x € Fp, p prime and ¢ < (log p)!/>~¢. That is, if the number of orbit points of
iteration order at most N and multiplicative order at most ¢ is bigger than B(k, /), then
this number is bounded above in terms of B(k, i) and the characteristic of the field. We
use recent results of Ostafe and Young [4] about the finiteness of cyclotomic algebraic
points that are preperiodic for ¥ and that fall on the set of roots of unity, and results
from graph theory due to Mérai and Shparlinski [2].

Sections 2, 3 and 5 are devoted to preliminary notation and results. Section 4
contains results for points in orbits generated by sequences of polynomials from the
initial set of polynomials and Section 6 contains the result for the full semigroup orbit.

2. Preliminary notation
For K a number field and x € K, the naive logarithmic height i(x) is given by
K, :Q,
K5 log(max({1, [x];}),

veMy

where My is the set of places of K and | - |, denotes the corresponding absolute value
on K for each v € M. Let Mg be the set of archimedean (infinite) places of K and M%
the set of nonarchimedean (finite) places of K. For v € MIO<, the restriction of | - |, to Q
gives the usual v-adic absolute value on Q. We write K, for the completion of K with
respect to | - |, and C, for the completion of an algebraic closure of K,. To simplify
notation, we write d, = [K,, : Q,]/[K : Q].

For an arbitrary field K, let ¥ = {#y, ..., ¢} € K[X] be a dynamical system of
polynomials of degree at least 2. For x € K, let O#(x) denote the forward orbit of P
under F asin (1.1).

Set J ={1,...,k} and W =[], J (an infinite product of countably many copies
of J) and let ®,, := (¢w,);';1 be a sequence of polynomials from # for w = (wA,-);?‘;1 ew.
In this situation,

o =¢, o---0¢,, with®? = Idand F, :={®P :we W)

That is, we consider sequences of polynomials ® = (¢;, ;‘;1 e [12, ¥ and, for x € K,
we write ®"(x) := ¢; (¢;_, (... (¢;,(x))). The set

Oo(x) := {x, @D (x), P (x), dP(x),.. .}
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is the forward orbit of x under ®. The point x is called ®-preperiodic if Og(x) is finite.
and preperiodic for 7 if O (x) is finite.
We let S be the shift map which sends ¥ = ()2, to S(¥) = (Yir 1)1,
For 8 ¢ K and an integer N > 1, we denote by T, ¢(&, S) the number of n < N with
O (w) € S, that is,
T.o(N,S) =#{n < N: ®"(x) e S}.

For f = Z?:o aX e @[X] and K a number field containing all the coefficients of f,
the Weil height of f is
h(f)= ) dylog(max|ai,).
veMy !
For the system of polynomials 7 = {¢y, ... ¢}, we write A(F) = max; h(¢;). We will
use the following bound for the Weil height.

ProposiTion 2.1 [1, Proposition 3.3]. Let & = {¢1, ..., ¢} be a finite set of polynomials
over a number field K with deg ¢; = d; > 2, and d := max; d;. Then, for all n > 1 and
¢ E ﬂ)

n—1

d-1

d'—1
d-1

h(¢) < ( )h(‘}') n dz(d )log 8 = O(d"(h(F) + 1)).

3. Preliminary results
We will make use of the following combinatorial result.
Lemma 3.1 [3, Lemma 4.8]. Let2 < T < N/2. For any sequence
0<n <---<nr <N,

there exists r < 2N|T such that ni1 —n; =r for at least T(T — 1)/4N values of
ie{l,..., T -1}

The following result for general fields is a direct application of Lemma 3.1.

ProposiTion 3.2. Let K be an arbitrary field, x € K and S C K an arbitrary subset of
K. Suppose that there exist a real number T € (0, 1/2) and a sequence ® of polynomials
contained in F = {¢1, ..., ¢} C K[X] such that

T.o(N,S)=1tN =2.
Then there exists an integer t < 2t~ such that

T2

1=

#H(u,v) € S* : (S"®) (1) = v for some n} >

w ‘

Proor. Letting T := T, (N, S), we consider all the values

1Sn1<-~~<nT§N
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such that ®")(x) € S, i=1,...,T — 1. From Lemma 3.1, there exists r < 2r~! such
that the numberof i = 1,...,7 — 1 with n;y; —n; = t is at least

T

T(T—l):T_Z(l_l)_TZN(1 1)_728N

4N 4 T) 4

Moreover, if § :={1<j<T -1:nj—n;=1}, then

O"(x)eS and O (x) = (SVD) (D" (x)) €S foreach je J.

Consequently,
2
N
#(u,v) € S : (S"D)Y () = v for some n} > TT o
4. Multiplicative orders in finite fields
In this section we consider ¥ = {¢, ..., ¢} C Z[X]. We also use F to denote the
set of reductions ¢y, ..., ¢ mod p. For a sequence W of terms in ¥, we write

M, w(t,N) =#n <N —1: 71(¥"(w)) <1},

where 7 is the multiplicative order in F;. We use U to denote the set of all roots of
unity in C and @, to denote the cyclotomic polynomial of order s. The resultant of two
polynomials F, G € Z[X] is denoted by Res(F, G). The next lemma is well known.

Lemma 4.1 [5, Lemma 2.6]. For any integers r,s > 1 and F € Z[X],
Res(®,, D (F)) = exp(O(rs(h(F) + deg F))).

We now formulate special cases of results due to Ostafe and Young [4]. For these
and for all the following results, we say that a polynomial in Z[X] is nonspecial if it is
not linearly conjugate to any monomial or any Chebyshev polynomial.

Lemva 4.2, Let ¥ =A{d1, ..., ¢} € Z[X] be a set of nonspecial polynomials of
respective degrees d; > 2. Then ¢;(Q(U)) is finite for each i and so is the set of u € Q(U)
such that OF(u) N U # (.

Proor. Use [3, Corollary 2.2] and [4, Theorem 1.4]. O
Lemma 4.3 [4, Theorem 1.7]. Under the conditions of the previous lemma,
{aeQU): ¢ 0 0d(@) € Fi(di, 0---0¢j(a)),s>0,1>1}
is finite.
Next we aim to bound the number of elements of bounded order in an orbit.

TheorREM 4.4. Let F = {1, ..., ¢} € Z[X] be a set of nonspecial polynomials of
respective degrees d; > 2 and let d = max; d;. Take any fixed € > 0.
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(i)  For any prime p and t < (log p)'/?>=€ and for all initial values w € FP,

sup M, w(t,N) = O(max{Nl/z,N/log log p}).

¥ sequence in F

(i) Let ¥ be a sequence of terms in ¥. Then, for any sufficiently large P > 1 and
t < P'127¢, for almost all primes p < P and for all initial values w € Fp,

M,,(t,N) = O(max{N'/?, N/log p}).
Proor. Forw € E, and W a sequence of terms in ¥, write
M, g(t,N) := pyN.
Then there are at least pyN values of n < N with @;(¥"(w)) = 0 for some positive

integer [ < 1. By Proposition 3.2, there is some positive integer my < 2py' such that,
for at least p3,N/8 values u € F;,

D, (u) = Oi(y(u)) =0,

for some pair (s,/) € [1,1]* and y = (S"¥)"™) € F,,,. Denote by Ry, the resultant
of the polynomials ®4(X) and @;(y(X)). By Lemma 4.2, there are only finitely many
values of my for which Ry, , = 0 is possible for some s,/ and y. Then there are at
most ¢; values of u € FF giving solutions of Ry, , = 0, where c; does not depend on
Y but only on ¥ . pr\zl,N/S > ¢y, there exists (s, [, my,y) such that p | Ry, # 0.

If this is the case, then py > v/8c1/N. Using Lemma 4.1 and Proposition 2.1 with
d = max; d;,

108 Ry 1y y| = O(sI™) = O(Pd* ).

This does not depend on p, or on the initial values of ¥ from which py was derived,
and so log p = O(2d**"). But t < (log p)!/2"¢, so (log p)*¢ < r2log p = O(d** ") and
therefore py < cy(loglog p)~!. Taking

py = max{3/c; /N, 2¢2(log log p)~},

where the constant ¢, depends only on ¥, induces a contradiction. This proves (i).
For (ii), consider Q(R; ), where Q(r) denotes the number of distinct prime
divisors of an integer r # 0. If Ry, , # 0, then

QR 1myy) < 2108 Ry gy = O ) = O(P' 2@ ).

This does not depend on p, or on the initial values of ¥ from which py was derived. If
pw > (2logd)/(elog P), it follows that Q(Rm,.y) = o(P/log P). Consequently, in this
case, maxg pop < O(1/log p) for all but o(P/log P) primes. O

CoroLLARY 4.5. Let F ={¢1,...,¢r} € Z[X] be a set of nonspecial polynomials of
respective degrees d; > 2 and d = max; d;. Then, for any fixed € > 0, for any prime
pand t < (log p)'>=¢ and for all initial values w € F,

#ueF, u=fw),tw) <t, f € Fpn <N — 1} = O(max{N'?k", NK" /log log p}).
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Proor. The set Fy contains k¥ polynomials. For each f € Fy, we can choose a
sequence @ of terms in F such that ®™) = £, obtaining k" sequences representing
the elements of . For each such sequence ®, by Theorem 4.4,

M, w(t,N) = O(max{N'/%, N/log log p})

uniformly for any @, or in other words, for each path in the N-tree . Since there are
kN paths (polynomials and sequences) in the n-tree Fy, this yields

#u€eF, u=fw),7(u) <t,f € Fpn <N — 1} = O(max{N'*k", Nk /log log p}).
m}

TueEOREM 4.6. Let F = {1, ..., dr} € Z[X] be a set of nonspecial polynomials of
respective degrees d; > 2 and d = max; d;. Let s(w) be the minimum number of
sequences ¥; of terms in F such that OF(w) = Og, (W)U --- U Oy (w). Then, for
any prime p and for all but O(1) initial values w € F,,

s(w)

d"™1(w)*™ > (log p)*™.

Proor. For a sequence W of functions from ¥ and w € ]E_?,,, we set Ty(w) := #Oy(w).

There are integers my, Iy, n with T(w) > Ty(w) > my > Iy > 0 and n = 7(w), so that
P () = P (w) and @, (w) = 0. Taking Q1. as the resultant of the polynomials
o) (x) — P (X) and @,,(X), it follows that

14 | Qm\y,lly,w

If |Quytynl < s then Qi = 0 and thus the polynomials ¥ (X) — ¥*)(X) and

®,(X) have a common root in C. By Lemma 4.3, there are only O(1) possible values

of n where this can happen, and therefore only finitely many possibilities for w € FP.
Now, note that "™*n < d"*®™1(w). By Lemma 4.1 with r = n, s = 1,

| Qi 1.l = €Xp(O(d™ 1)) = exp(O(d™* " (w))),

where O does not depend on the initial values of ¥ from which my was derived. If
co is chosen small enough not depending on ¥, then d”*™1(w) < colog p implies
|Omy.ie.nl < p, and then d"*™1(w) > log p for all but O(1) values w € IFI,, where none
of the implied constants depend on ‘P.

Let s(w) be the minimum number of sequences ¥; of terms in ¥ such that Oz (w) =
Oy,(W)U---U Oy, (w). Then

dT(w)T(W)s(w) > dTwl(W)T(W) . dT‘PS(“’)(W)T(W) N (log p)S(w)

for all but O(1) values of w € Fp. O
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5. A graph theory result

Here we present a graph theory result of Mérai and Shparlinski [2] that will be used
in our next result.

Let H be a directed graph, possibly with multiple edges. Let V(H) be the set of
vertices of H. For u,v € V(H), let d(u, v) be the distance from u to v, that is, the length
of a shortest (directed) path from u to v. Assume that all the vertices have out-degree
k > 1 and label the edges from each vertex by {1,...,k}.

For a word w € {1,...,k}* over the alphabet {1, ..., k} and a vertex u € V(H), let
w(u) € V(H) be the end point of the walk starting from u and following the edges
according to w.

Fix u € V(H) and a subset A C V(H). Then, for words wy, ..., w;, put

Ly(u, A wy,...,w) =#veVEH):du,v) <N,
du, w;(v)) < N,w,(vyeAi=1,...,1}.
For k, h > 1, let B(k, h) denote the size of the complete k-tree of depth 2 — 1, that is,
h ifk=1,
B(k,h) = { k" - 1

1 otherwise.

Levmva 5.1. Let u € V(H) and h,1 > 1 be fixed. If A C V(H) is a subset of vertices
with

3]
#veA: du,v) <N} > max{3B(k, ), 2y € VIH) © dlay) < N}},
then there exist words wy, . ..,w; €{1,...,k}" of length at most h such that

Ly(u, A; wy,...,w) > #veVH) :du,v) <N},

h
B( k, h)l+l

where the implied constant depends only on L.

6. Another semigroup result about multiplicative orders

THeEOREM 6.1. Let F = {1, ..., ¢} € Z[X] be a set of nonspecial polynomials of
respective degrees d; > 2 and d = max; d;. Let h,1 > 1 be integers such that h > 3l
and #y € F, : 7(v) < t,v = f(u), f € Fp,n < N} 2 3B(k, h). Take any fixed € > 0.

(i)  For any prime p and t < (log p)'/*>~€ and for all initial values u € Fp,

B(k, h)l+1 B(k, h)l+1 }
h  ’loglogp )

#veF, v= fu), W) <1, f € Fpon < N} <1 max{

(i)  For any sufficiently large P > 1 and t < P'27€ for almost all primes p < P and
for all initial values u € F),

B(k, h)l+1 B(k, h)l+1 }

#{veﬁp:v=f(u),‘r(u)§t,fe7—'n,nSN} <<17:maX{ s
’ h log p
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Proor. Set .
[i={xeF,:t(y) <1}

We consider the directed graph with the elements of I as vertices and edges (x, ¢;(x))
fori=1,...,kand x € I'. In the notation of Section 5 and Lemma 5.1, we let I" take the
place of H and A. By hypothesis, [ < h/3 and #{v € I : d(u,v) < N} > 3B(k, h). From
Lemma 5.1, there exist words wy, ...,w; € {1,...,k}" of length at most /2 and therefore
degree at most 4", such that

Lnv(u,Tiw1,...,w) > ¢y #ve V) :du,v) <N}, 6.1)

h
B(k, h)l+1
with ¢; a positive constant depending only on /.

Ifve Ly T;wy,...,w), then {v, w;(v)} C T for each i. This means that, for a given
i=1,...,1,
O,(v) = Ds(wi(v)) =0

for some r, s € [1,]*>. Denote by Ry s, the resultant of the polynomials ®,(X) and
D (w;(X)). By Lemma 4.2, there are at most ¢, values of v € F, which are solutions of
R, 5w =0, and therefore c; > Ly(u,I'; wy, ..., wy). If
B k, h 1+1
Hy € VD) dluvy < Ny > RO 6.2)
1

there exists a triple (r, s, w;) such that p | R,.;,,, # 0. In this case, using Lemma 4.1 and
Proposition 2.1 with d = max; d;,

log R,.s.0,| = O(rsd") = O(£*d"),

where the implied constants do not depend on p. Thus, log p = O(rd"). By hypothesis,
t < (log p)'/>~¢, and so it follows that (log p)*¢ < t?log p = O(d"), and therefore
h™' < c3(loglog p)~!. By (6.1),

Bk, ' coe3B(k, h)H!

#yveVI) :du,v) <N} < < . (6.3)
cih cyloglog p

Consequently, if

2CZB(k’ h)l+1 2C263B(ka h)l+1 }

#v € VD) : du,v) < N} > max{ ,
cih ci loglogp

then (6.2) and (6.3) yield a contradiction. This proves (i).
For (ii), observe that if R, ,,, # 0, then
QR 5.0) < 210g R, 5| = O(Pd") = O(P'~*d"),

and this does not depend on p. We note that 4~' > logd/elog P implies that
Q(R,.5.;) = 0o(P/log P). This concludes the proof. O

RemaRK 6.2. If the hypotheses of Theorem 6.1 are satisfied with & = (log, N)!/(*D,
then we recover and generalise [5, Theorem 1.2].
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