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Abstract

We show, under some natural restrictions, that some semigroup orbits of polynomials cannot contain
too many elements of small multiplicative order modulo a large prime p, extending previous work of
Shparlinski [‘Multiplicative orders in orbits of polynomials over finite fields’, Glasg. Math. J. 60(2)
(2018), 487–493].
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1. Introduction

Let K be a field and K its algebraic closure. Let F = {φ1, . . . , φk} ⊂ K[X] be a set of
polynomials of degree at least 2. For x ∈ K, let

OF (x) = {φin ◦ · · · ◦ φi1 (x) : n ∈ N, i j = 1, . . . , k} (1.1)

denote the forward orbit of P under F .
For a prime p and an integer s ≥ 1, let Fps denote the finite field of ps elements. For

w ∈ Fps and φ1, . . . , φk defined over Fps ,

T (w) := #OF (w) ≤ ps.

For u ∈ F
∗

p, the multiplicative order τ(u) is the smallest integer l ≥ 1 such that ul = 1.
When k = 1 and ε > 0 is arbitrary, Shparlinski [5] obtained the bound

#{n ≤ N − 1 : τ( f (n)(x)) ≤ t} = O(max{N1/2,N/log log p}),

for x ∈ Fp, p prime and t ≤ (log p)1/2−ε , provided f is not linearly conjugate to a
monomial nor to a Chebyshev polynomial.

We seek to generalise results of this sort when the dynamical systems are generated
as semigroups under composition by several maps φi which are not linearly conjugate
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to monomials or to Chebyshev polynomials. Let Fn = {φin ◦ · · · ◦ φi1 : 1 ≤ i j ≤ k}
denote the n-level set. Let ε > 0 and suppose that h ≥ 3l are integers such that

#{v ∈ Fp : τ(v) ≤ t, v = f (u), f ∈ Fn, n ≤ N} ≥ B(k, h)

for each N, where B(k, h) is the size of the complete k-tree of depth h − 1. We prove,
among other results, that

#{v ∈ Fp : τ(v) ≤ t, v = f (u), f ∈ Fn, n ≤ N} �l,F max
{B(k, h)l+1

h
,

B(k, h)l+1

log log p

}
,

for all x ∈ Fp, p prime and t ≤ (log p)1/2−ε . That is, if the number of orbit points of
iteration order at most N and multiplicative order at most t is bigger than B(k, h), then
this number is bounded above in terms of B(k, h) and the characteristic of the field. We
use recent results of Ostafe and Young [4] about the finiteness of cyclotomic algebraic
points that are preperiodic for F and that fall on the set of roots of unity, and results
from graph theory due to Mérai and Shparlinski [2].

Sections 2, 3 and 5 are devoted to preliminary notation and results. Section 4
contains results for points in orbits generated by sequences of polynomials from the
initial set of polynomials and Section 6 contains the result for the full semigroup orbit.

2. Preliminary notation

For K a number field and x ∈ K, the naive logarithmic height h(x) is given by∑
v∈MK

[Kv : Qv]
[K : Q]

log(max{1, |x|v}),

where MK is the set of places of K and | · |v denotes the corresponding absolute value
on K for each v ∈ MK . Let M∞K be the set of archimedean (infinite) places of K and M0

K
the set of nonarchimedean (finite) places of K. For v ∈ M0

K , the restriction of | · |v to Q
gives the usual v-adic absolute value on Q. We write Kv for the completion of K with
respect to | · |v and Cv for the completion of an algebraic closure of Kv. To simplify
notation, we write dv = [Kv : Qv]/[K : Q].

For an arbitrary field K, let F = {φ1, . . . , φk} ⊂ K[X] be a dynamical system of
polynomials of degree at least 2. For x ∈ K, let OF (x) denote the forward orbit of P
under F as in (1.1).

Set J = {1, . . . , k} and W =
∏∞

i=1 J (an infinite product of countably many copies
of J) and let Φw := (φw j )

∞
j=1 be a sequence of polynomials from F for w = (w j)∞j=1 ∈W.

In this situation,

Φ(n)
w = φwn ◦ · · · ◦ φw1 with Φ(0)

w = Id and Fn := {Φ(n)
w : w ∈ W}.

That is, we consider sequences of polynomials Φ = (φi j )
∞
j=1 ∈

∏∞
i=1 F and, for x ∈ K,

we write Φ(n)(x) := φin (φin−1 (. . . (φi1 (x))). The set

OΦ(x) := {x,Φ(1)(x),Φ(2)(x),Φ(3)(x), . . .}
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is the forward orbit of x under Φ. The point x is called Φ-preperiodic if OΦ(x) is finite.
and preperiodic for F if OF (x) is finite.

We let S be the shift map which sends Ψ = (ψi)∞i=1 to S (Ψ) = (ψi+1)∞i=1.
For S ⊂ K and an integer N ≥ 1, we denote by Tx,Φ(N,S) the number of n ≤ N with

Φ(n)(w) ∈ S, that is,
Tx,Φ(N,S) = #{n ≤ N : Φ(n)(x) ∈ S}.

For f =
∑d

i=0 aiXi ∈ Q[X] and K a number field containing all the coefficients of f ,
the Weil height of f is

h( f ) =
∑

v∈MK

dv log(max
i
|ai|v).

For the system of polynomials F = {φ1, . . . φk}, we write h(F ) = maxi h(φi). We will
use the following bound for the Weil height.

Proposition 2.1 [1, Proposition 3.3]. Let F = {φ1, . . . , φk} be a finite set of polynomials
over a number field K with deg φi = di ≥ 2, and d := maxi di. Then, for all n ≥ 1 and
φ ∈ Fn,

h(φ) ≤
(dn − 1

d − 1

)
h(F ) + d2

(dn−1 − 1
d − 1

)
log 8 = O(dn(h(F ) + 1)).

3. Preliminary results

We will make use of the following combinatorial result.

Lemma 3.1 [3, Lemma 4.8]. Let 2 ≤ T < N/2. For any sequence

0 ≤ n1 < · · · < nT ≤ N,

there exists r ≤ 2N/T such that ni+1 − ni = r for at least T (T − 1)/4N values of
i ∈ {1, . . . ,T − 1}.

The following result for general fields is a direct application of Lemma 3.1.

Proposition 3.2. Let K be an arbitrary field, x ∈ K and S ⊂ K an arbitrary subset of
K. Suppose that there exist a real number τ ∈ (0,1/2) and a sequence Φ of polynomials
contained in F = {φ1, . . . , φk} ⊂ K[X] such that

Tx,Φ(N,S) = τN ≥ 2.

Then there exists an integer t ≤ 2τ−1 such that

#{(u, v) ∈ S2 : (S nΦ)t(u) = v for some n} ≥
τ2N

8
.

Proof. Letting T := Tx,Φ(N,S), we consider all the values

1 ≤ n1 < · · · < nT ≤ N
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such that Φ(ni)(x) ∈ S, i = 1, . . . , T − 1. From Lemma 3.1, there exists t ≤ 2τ−1 such
that the number of i = 1, . . . ,T − 1 with ni+1 − ni = t is at least

T (T − 1)
4N

=
T 2

4

(
1 −

1
T

)
=
τ2N

4

(
1 −

1
T

)
≥
τ2N

8
.

Moreover, if J := {1 ≤ j ≤ T − 1 : n j+1 − n j = t}, then

Φ(n j)(x) ∈ S and Φ(n j+1)(x) = (S n jΦ)t(Φ(n j)(x)) ∈ S for each j ∈ J .

Consequently,

#{(u, v) ∈ S2 : (S nΦ)t(u) = v for some n} ≥
τ2N

8
. �

4. Multiplicative orders in finite fields

In this section we consider F = {φ1, . . . , φk} ⊂ Z[X]. We also use F to denote the
set of reductions φ1, . . . , φk mod p. For a sequence Ψ of terms in F , we write

Mw,Ψ(t,N) = #{n ≤ N − 1 : τ(Ψ(n)(w)) ≤ t},

where τ is the multiplicative order in F
∗

p. We use U to denote the set of all roots of
unity in C and Φs to denote the cyclotomic polynomial of order s. The resultant of two
polynomials F,G ∈ Z[X] is denoted by Res(F,G). The next lemma is well known.

Lemma 4.1 [5, Lemma 2.6]. For any integers r, s ≥ 1 and F ∈ Z[X],

Res(Φr,Φs(F)) = exp(O(rs(h(F) + deg F))).

We now formulate special cases of results due to Ostafe and Young [4]. For these
and for all the following results, we say that a polynomial in Z[X] is nonspecial if it is
not linearly conjugate to any monomial or any Chebyshev polynomial.

Lemma 4.2. Let F = {φ1, . . . , φk} ∈ Z[X] be a set of nonspecial polynomials of
respective degrees di ≥ 2. Then φi(Q(U)) is finite for each i and so is the set of u ∈ Q(U)
such that OF (u) ∩ U , ∅.

Proof. Use [3, Corollary 2.2] and [4, Theorem 1.4]. �

Lemma 4.3 [4, Theorem 1.7]. Under the conditions of the previous lemma,

{α ∈ Q(U) : φis ◦ · · · ◦ φi1 (α) ∈ Fl(φis ◦ · · · ◦ φi1 (α)), s ≥ 0, l ≥ 1}

is finite.

Next we aim to bound the number of elements of bounded order in an orbit.

Theorem 4.4. Let F = {φ1, . . . , φk} ∈ Z[X] be a set of nonspecial polynomials of
respective degrees di ≥ 2 and let d = maxi di. Take any fixed ε > 0.
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(i) For any prime p and t ≤ (log p)1/2−ε and for all initial values w ∈ Fp,

sup
Ψ sequence in F

Mw,Ψ(t,N) = O(max{N1/2,N/log log p}).

(ii) Let Ψ be a sequence of terms in F . Then, for any sufficiently large P ≥ 1 and
t ≤ P1/2−ε , for almost all primes p ≤ P and for all initial values w ∈ Fp,

Mw,Ψ(t,N) = O(max{N1/2,N/log p}).

Proof. For w ∈ Fp and Ψ a sequence of terms in F , write

Mw,Ψ(t,N) := ρΨN.

Then there are at least ρΨN values of n < N with Φl(Ψ(n)(w)) = 0 for some positive
integer l ≤ t. By Proposition 3.2, there is some positive integer mΨ ≤ 2ρ−1

Ψ
such that,

for at least ρ2
Ψ

N/8 values u ∈ F
∗

p,

Φs(u) = Φl(γ(u)) = 0,

for some pair (s, l) ∈ [1, t]2 and γ = (S nΨ)(mΨ) ∈ FmΨ
. Denote by Rs,l,mΨ,γ the resultant

of the polynomials Φs(X) and Φl(γ(X)). By Lemma 4.2, there are only finitely many
values of mΨ for which Rs,l,mΨ,γ = 0 is possible for some s, l and γ. Then there are at
most c1 values of u ∈ Fp giving solutions of Rs,l,mΨ,γ = 0, where c1 does not depend on
Ψ but only on F . If ρ2

Ψ
N/8 > c1, there exists (s, l,mΨ, γ) such that p | Rs,l,mΨ,γ , 0.

If this is the case, then ρΨ >
√

8c1/N. Using Lemma 4.1 and Proposition 2.1 with
d = maxi di,

log |Rs,l,mΨ,γ| = O(sldmΨ) = O(t2d2ρΨ
−1

).

This does not depend on p, or on the initial values of Ψ from which ρΨ was derived,
and so log p = O(t2d2ρΨ

−1
). But t ≤ (log p)1/2−ε , so (log p)2ε ≤ t−2 log p = O(d2ρΨ

−1
) and

therefore ρΨ ≤ c2(log log p)−1. Taking

ρΨ = max{3
√

c1/N, 2c2(log log p)−1},

where the constant c2 depends only on F , induces a contradiction. This proves (i).
For (ii), consider Ω(Rs,l,mΨ,γ), where Ω(r) denotes the number of distinct prime

divisors of an integer r , 0. If Rs,l,mΨ,γ , 0, then

Ω(Rs,l,mΨ,γ) ≤ 2 log |Rs,l,mΨ,γ| = O(t2d2ρΨ
−1

) = O(P1−2εd2ρΨ
−1

).

This does not depend on p, or on the initial values of Ψ from which ρΨ was derived. If
ρΨ ≥ (2 log d)/(ε log P), it follows that Ω(Rs,l,mΨ,γ) = o(P/log P). Consequently, in this
case, maxΦ ρΦ ≤ O(1/log p) for all but o(P/log P) primes. �

Corollary 4.5. Let F = {φ1, . . . , φk} ∈ Z[X] be a set of nonspecial polynomials of
respective degrees di ≥ 2 and d = maxi di. Then, for any fixed ε > 0, for any prime
p and t ≤ (log p)1/2−ε and for all initial values w ∈ Fp,

#{u ∈ Fp : u = f (w), τ(u) ≤ t, f ∈ Fn, n ≤ N − 1} = O(max{N1/2kN ,NkN/log log p}).
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Proof. The set FN contains kN polynomials. For each f ∈ FN , we can choose a
sequence Φ of terms in F such that Φ(N) = f , obtaining kN sequences representing
the elements of FN . For each such sequence Φ, by Theorem 4.4,

Mw,Ψ(t,N) = O(max{N1/2,N/log log p})

uniformly for any Φ, or in other words, for each path in the N-tree FN . Since there are
kN paths (polynomials and sequences) in the n-tree FN , this yields

#{u ∈ Fp : u = f (w), τ(u) ≤ t, f ∈ Fn, n ≤ N − 1} = O(max{N1/2kN ,NkN/log log p}).
�

Theorem 4.6. Let F = {φ1, . . . , φk} ∈ Z[X] be a set of nonspecial polynomials of
respective degrees di ≥ 2 and d = maxi di. Let s(w) be the minimum number of
sequences Ψi of terms in F such that OF (w) = OΨ1 (w) ∪ · · · ∪ OΨs(w) (w). Then, for
any prime p and for all but O(1) initial values w ∈ Fp,

dT (w)τ(w)s(w) � (log p)s(w).

Proof. For a sequence Ψ of functions from F and w ∈ Fp, we set TΨ(w) := #OΨ(w).
There are integers mΨ, lΨ, n with T (w) ≥ TΨ(w) ≥ mΨ > lΨ ≥ 0 and n = τ(w), so that

Ψ(mΨ)(w) = Ψ(lΨ)(w) and Φn(w) = 0. Taking QmΨ,lΨ,n as the resultant of the polynomials
Ψ(mΨ)(X) − Ψ(lΨ)(X) and Φn(X), it follows that

p | QmΨ,lΨ,n.

If |QmΨ,lΨ,n| < p, then QmΨ,lΨ,n = 0 and thus the polynomials Ψ(mΨ)(X) − Ψ(lΨ)(X) and
Φn(X) have a common root in C. By Lemma 4.3, there are only O(1) possible values
of n where this can happen, and therefore only finitely many possibilities for w ∈ Fp.

Now, note that dmΨn ≤ dTΨ(w)τ(w). By Lemma 4.1 with r = n, s = 1,

|QmΨ,lΨ,n| = exp(O(dmΨn)) = exp(O(dTΨ(w)τ(w))),

where O does not depend on the initial values of Ψ from which mΨ was derived. If
c0 is chosen small enough not depending on Ψ, then dTΨ(w)τ(w) ≤ c0 log p implies
|QmΨ,lΨ,n| < p, and then dTΨ(w)τ(w)� log p for all but O(1) values w ∈ Fp, where none
of the implied constants depend on Ψ.

Let s(w) be the minimum number of sequences Ψi of terms in F such that OF (w) =

OΨ1 (w) ∪ · · · ∪ OΨs(w) (w). Then

dT (w)τ(w)s(w) ≥ dTΨ1 (w)τ(w) · · · dTΨs(w) (w)τ(w)� (log p)s(w)

for all but O(1) values of w ∈ Fp. �
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5. A graph theory result

Here we present a graph theory result of Mérai and Shparlinski [2] that will be used
in our next result.

Let H be a directed graph, possibly with multiple edges. Let V(H) be the set of
vertices ofH . For u, v ∈ V(H), let d(u, v) be the distance from u to v, that is, the length
of a shortest (directed) path from u to v. Assume that all the vertices have out-degree
k ≥ 1 and label the edges from each vertex by {1, . . . , k}.

For a word ω ∈ {1, . . . , k}∗ over the alphabet {1, . . . , k} and a vertex u ∈ V(H), let
ω(u) ∈ V(H) be the end point of the walk starting from u and following the edges
according to ω.

Fix u ∈ V(H) and a subsetA ⊂ V(H). Then, for words ω1, . . . , ωl, put

LN(u,A;ω1, . . . , ωl) = #{v ∈ V(H) : d(u, v) ≤ N,
d(u, ωi(v)) ≤ N, ωi(v) ∈ A, i = 1, . . . , l}.

For k, h ≥ 1, let B(k, h) denote the size of the complete k-tree of depth h − 1, that is,

B(k, h) =


h if k = 1,
kh − 1
k − 1

otherwise.

Lemma 5.1. Let u ∈ V(H) and h, l ≥ 1 be fixed. If A ⊂ V(H) is a subset of vertices
with

#{v ∈ A : d(u, v) ≤ N} ≥ max
{
3B(k, h),

3l
h

#{v ∈ V(H) : d(u, v) ≤ N}
}
,

then there exist words ω1, . . . , ωl ∈ {1, . . . , k}∗ of length at most h such that

LN(u,A;ω1, . . . , ωl)�
h

B(k, h)l+1 #{v ∈ V(H) : d(u, v) ≤ N},

where the implied constant depends only on l.

6. Another semigroup result about multiplicative orders

Theorem 6.1. Let F = {φ1, . . . , φk} ∈ Z[X] be a set of nonspecial polynomials of
respective degrees di ≥ 2 and d = maxi di. Let h, l ≥ 1 be integers such that h ≥ 3l
and #{v ∈ Fp : τ(v) ≤ t, v = f (u), f ∈ Fn, n ≤ N} ≥ 3B(k, h). Take any fixed ε > 0.

(i) For any prime p and t ≤ (log p)1/2−ε and for all initial values u ∈ Fp,

#{v ∈ Fp : v = f (u), τ(u) ≤ t, f ∈ Fn, n ≤ N} �l,F max
{B(k, h)l+1

h
,

B(k, h)l+1

log log p

}
.

(ii) For any sufficiently large P ≥ 1 and t ≤ P1/2−ε , for almost all primes p ≤ P and
for all initial values u ∈ Fp,

#{v ∈ Fp : v = f (u), τ(u) ≤ t, f ∈ Fn, n ≤ N} �l,F max
{B(k, h)l+1

h
,

B(k, h)l+1

log p

}
.
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Proof. Set
Γ := {x ∈ F

∗

p : τ(y) ≤ t}.

We consider the directed graph with the elements of Γ as vertices and edges (x, φi(x))
for i = 1, . . . , k and x ∈ Γ. In the notation of Section 5 and Lemma 5.1, we let Γ take the
place of H and A. By hypothesis, l ≤ h/3 and #{v ∈ Γ : d(u, v) ≤ N} ≥ 3B(k, h). From
Lemma 5.1, there exist words ω1, . . . , ωl ∈ {1, . . . , k}∗ of length at most h and therefore
degree at most dh, such that

LN(u,Γ;ω1, . . . , ωl) ≥ c1
h

B(k, h)l+1 #{v ∈ V(Γ) : d(u, v) ≤ N}, (6.1)

with c1 a positive constant depending only on l.
If v ∈ LN(u,Γ;ω1, . . . , ωl), then {v, ωi(v)} ⊂ Γ for each i. This means that, for a given

i = 1, . . . , l,
Φr(v) = Φs(wi(v)) = 0

for some r, s ∈ [1, t]2. Denote by Rr,s,ωi the resultant of the polynomials Φr(X) and
Φs(ωi(X)). By Lemma 4.2, there are at most c2 values of v ∈ Fp which are solutions of
Rr,s,ωi = 0, and therefore c2 ≥ LN(u,Γ;ω1, . . . , ωl). If

#{v ∈ V(Γ) : d(u, v) ≤ N} >
c2B(k, h)l+1

c1h
, (6.2)

there exists a triple (r, s, ωi) such that p | Rr,s,ωi , 0. In this case, using Lemma 4.1 and
Proposition 2.1 with d = maxi di,

log |Rr,s,ωi | = O(rsdh) = O(t2dh),

where the implied constants do not depend on p. Thus, log p = O(t2dh). By hypothesis,
t ≤ (log p)1/2−ε , and so it follows that (log p)2ε ≤ t−2 log p = O(dh), and therefore
h−1 ≤ c3(log log p)−1. By (6.1),

#{v ∈ V(Γ) : d(u, v) ≤ N} ≤
c2B(k, h)l+1

c1h
≤

c2c3B(k, h)l+1

c1 log log p
. (6.3)

Consequently, if

#{v ∈ V(Γ) : d(u, v) ≤ N} ≥ max
{2c2B(k, h)l+1

c1h
, 2

c2c3B(k, h)l+1

c1 log log p

}
,

then (6.2) and (6.3) yield a contradiction. This proves (i).
For (ii), observe that if Rr,s,ωi , 0, then

Ω(Rr,s,ωi ) ≤ 2 log |Rr,s,ωi | = O(t2dh) = O(P1−2εdh),

and this does not depend on p. We note that h−1 ≥ log d/ε log P implies that
Ω(Rr,s,ωi ) = o(P/log P). This concludes the proof. �

Remark 6.2. If the hypotheses of Theorem 6.1 are satisfied with h = (logk N)1/(l+1),
then we recover and generalise [5, Theorem 1.2].
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