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Abstract
Epidemiological and economic (Epi-econ) models account for endogenous interactions between the
epidemic and the economy. We explore the applicability of an Epi-econ model to isolate the effects of
lockdown policies during coronavirus disease 2019 in the Netherlands. To this aim, we recalibrate the
seminal Epi-econ model of Eichenbaum and colleagues with updated parameters specific to the Dutch
context.We find that themodel performs poorly in replicating observed Epi-econ trends under baseline
assumptions. Next, we explore possibilities to improve model fit by relaxing policy and transmission
parameters, and by incorporating observed “random noise” in infectivity parameters. This approach
spectacularly improves model performance in replicating observed trends. Finally, we test the
performance of the model in simulating alternative policy scenarios. We use the Containment and
Health Index from the Blavatnik School of Government to replace Dutch policy parameters with
exemplary countries on opposite sides of the stringency spectrum. We find that a more stringent
lockdown policy would reduce peak prevalence, while aggravating peak economic contraction, but
with little effect on overall trends. Conversely, a more lenient lockdown policy was estimated to
increase the peak and overall prevalence, with little effect on economic outcomes. We conclude that
while rigorous adjustments to existing models were required, a combined Epi-econ model could be
informative to policymakers in assessing alternative lockdown policy options.

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has had a major impact on healthcare
systems and economic activity. An important question is whether there is a trade-off between
health and economic interests during a pandemic. In the Netherlands, policy initially focused
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on dampening the impact of COVID-19 on healthcare, particularly aiming to protect intensive
care unit capacity, while retaining economic activity. The focus was primarily on “flattening
the curve” to prevent patient overflow in hospitals. This was pursued predominantly through
lockdown policies. As in many other countries, whole sectors of society and the economy
(e.g. hospitality, retail, culture, events, travel, tourism) were put in lockdown during the first
COVID-19 wave. Furthermore, office work and education continued online, public transport
was severely restricted, planned care was postponed, and organized sport and many other
social activities were banned. A number of these interventions have been shown to reduce
COVID-19 reproduction rates (Camehl & Rieth, 2021; Levelu & Sandkamp, 2022). For
example, closure of nonessential shops, school closures and strictness of mass gatherings
theoretically reduce infections (Wang&Ramkrishna, 2020). However, these restrictions have
had major economic impacts, depending on the policy measures taken (König & Winkler,
2021b). This ignited public debate regarding the net benefits of the lockdown policy relative to
the economic costs (Salgotra et al., 2021). Proponents of stricter lockdowns suggested policy
responses similar to countries such as Germany or South Korea, while opponents championed
less restrictive policy responses of, for example, Sweden or the United Kingdom. To fully
assess optimal policy responses, any social and economic costs should be weighed against
presumed health benefits of lockdown policies, in comparison to alternative policy scenarios
(Lasaulce et al., 2020). The Netherlands could provide an interesting case study, being a
densely populated, high-income open economy.An optimal balance between epidemiological
and economic (Epi-econ) interests may be most relevant for the Netherlands.

A general approach to combine Epi-econ parameters is to impute economic costs of
infections into a susceptible, infected, and recovered (SIR) model, including derivative
models. A family of SIR models have been adjusted to incorporate economic damage by
adding economic costs to infection and mortality cases (Meza, 2020; Ramírez García &
Jiménez Preciado, 2021). For example, Pollinger (2020) parameterizes an epi model
including the cost of infection to the Italian economy, to estimate the effect of tracing
policies on Gross Domestic Product (GDP). Forsyth (2020) amends an epi model with
economic costs using simple production functions, finding that the optimal lockdown
strategy would be selective lockdown for symptomatic people. However, the direct effect
of COVID-19mortality on the economy is estimated to be small (Gagnon et al., 2022).More
elaborate SIR models incorporate economic demand models. For example, Flaschel et al.
(2021) combine Epi-models with Keynesian demand models, allowing evaluation of
different policy scenarios. Vásconez et al. (2023) estimate a Dynamic Stochastic General
Equilibrium (DSGE)-SIR model incorporating monetary policy. These models have the
potential to inform policy. For example, Andersson et al. (2022) constructed a simple model
to study the tradeoff between health and economic production during COVID-19. They find
that a social planner concerned for health would never let health capacity be exceeded, while
a social planner aiming to maximize productivity would let the pandemic peak as soon as
possible (Andersson et al., 2022). Trotter et al. (2020) find the optimal timing of policies to
coincide with the largest increase in infections.

However, there are convincing reasons to believe that economic damage is partly
endogenous, because people may scale back economic activities on their own accord in
fear of becoming infected. For example, general equilibriummodels show that demand-side
reductions have been shown to outweigh supply-side disturbances due to COVID-19
(Abo-Zaid & Sheng, 2020). This endogenous economic reaction dampens the epidemic:
curtailing economic activities voluntarily also inhibits the spread of the virus (Di Guilmi
et al., 2022). The feedback loops between epidemiological trends and economic activitymay
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prelude policy responses; for example, travel activity was scaled down significantly before
the lockdown came into effect (Villas-Boas et al., 2023; Goolsbee & Syverson, 2021).
Part of the apparent effectiveness of containment policies may be attributable to endogenous
behavioral reactions (Chetty et al., 2020; Bodenstein et al., 2021; Cardani et al., 2021;
Gonzalez-Eiras & Niepelt, 2022). For example, country policy responses are shown to be at
most insufficient to explain large differences in economic effects (Pujol, 2020). To prevent
overestimating policy effectiveness, the endogenous interaction between epidemic and
economy needs to be modeled explicitly. For example, Parui (2021) extends the Epi-model
with an economic supply-and-demand framework, generating a simple feedback loop. He
proposes strong fiscal expansion and health capacity increases to reduce both health and
economic effects (Parui, 2021).

This can be achieved by Epi-econ models that combine models of Epi evolution with a
model of Econ choice behavior (Boppart et al., 2025). Since the COVID-19 outbreak, Epi-
econ modeling has been a fruitful topic of study. The highly cited work of Eichenbaum et al.
(2021) extends Epi-models with economic decision-making models to render a hybrid Epi-
econmodel. They introduce feedback loops where economic agents scale back consumption
and production when infection risk increases, limiting epidemiological spread at the cost of
reduced economic production. The authors show that additional lockdown measures are
required to obtain socially optimal outcomes. Their model allows dynamic policy measures
to optimize welfare over time. The authors show that the model performs reasonably well in
predicting actual outcomes in the United States (Eichenbaum et al., 2021). Others have built
upon this model by introducing asymptomatic infections (Bognanni et al., 2020) or the
possibility of reinfection (Iverson et al., 2022). Diex de losRios (2022) expands the Epi-econ
model by introducing uncertainty surrounding infectivity and bounded-rational individuals.
Pataro et al. (2021) endogenize time-variance in behavioral responses to policy measures. In
general, models simplify reality to illustrate the main mechanisms of combining Epi-econ
interactions. However, these models scarcely compare the theoretical models to the actual
observed trends. We aim to research whether existing Epi-econ models, particularly the
seminal model of Eichenbaum et al. (2021), can be calibrated to empirical data from the
Netherlands and be used to gauge the effect of policy measures while controlling for
endogenous behavioral responses. This renders the following research questions:

• Can the Epi-econ model developed by Eichenbaum et al. (2021), when applied to the
Netherlands, be parameterized to realistically simulate economic and epidemiological
trends observed in the Netherlands in 2020?

• What steps are required to improve model performance?
• Can this model be used to realistically simulate Epi-econ outcomes under alternative
policy measures?

With this exercise, we aim to assess the usefulness of Epi-econ models in policy evaluation.
The added value is twofold: first, our approach analyzes the validity and generalizability of
the Epi-econ model while providing suggestions to improve parameterization. Second, we
aim to show the added value of using theEpi-econmodels in ex post policy evaluation.We use
the Epi-econ model to estimate howmuch of the economic and health damage is due to policy
and how much would have occurred even without policy. This may provide insight into
potential tradeoffs between economic consequences and health effects. While full economic
approaches could be applied to ex post policy evaluation, one potential benefit of using Epi-
econ model is that it already incorporates nonlinear feedback effects between economic and
epidemic trends. However, this approach depends on the ability of the Epi-econ model to
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accurately and reliably simulate observed trends. This article aims to explore the preconditions
required to use Epi-econ models in policy evaluation rather than to provide a full economic
evaluation of the corona policy in the Netherlands. Moreover, the article aims to explore
potential improvements to the predictive capabilities of Epi-econ models.

2. Background

2.1. Epidemic, economic, and policy trends in the Netherlands

Figure 1 shows the prevalence for the Netherlands as estimated by the Dutch Institute for
Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu,
RIVM). The estimates take into account unobserved prevalence (Ainslie et al., 2022).
The first confirmed COVID-19 infection in the Netherlands was reported on 27 February
2020. The estimates display a first peak on 25 March 2020 at a level just below 1% of the
population. A second and third peak occurred inOctober andDecember. The total number of
infection throughout 2020 is estimated at 14.8 % of the population (Ainslie et al., 2021).

The global economic output gap due to COVID-19 is estimated at ~6.5 % in 2020
(Rungcharoenkitkul, 2021). Similar to most countries, the Netherlands experienced sharp
declines in economic activity. Figure 2 showsweekly economic activity, based on theOECD
Weekly Tracker of GDP growth (OECD, 2023). Economic activity dropped sharply in
March 2020, followed by a rapid recovery. The effects of the second wave in the fall of 2020
and winter of 2020/2021 are less pronounced. The estimated total loss in economic activity
in 2020 is EUR 17 bn (2.1 %).1

COVID-19 containment policy in theNetherlands consisted of a range of policymeasures
and adaptions throughout 2020. The Oxford COVID-19 Government Response Tracker of
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Figure 1. Estimated prevalence of COVID-19 in the Netherlands. Source RIVM2 and own
calculations.

1 StatLine – Bbp, productie en bestedingen; kwartalen, waarden, nationale rekeningen (cbs.nl).
2 https://coronadashboard.rijksoverheid.nl/landelijk/besmettelijke-mensen.
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the Blavatnik School of Government weights individual containment measures into a
Containment and Health Index (CHI) that reflects the stringency of COVID-19 containment
policies (Hale et al., 2020). Figure 3a displays the Dutch CHI. An attractive feature of the
CHI is that similar indices have been composed for a wide range of countries, allowing for
cross-country comparison of COVID-19 policies. For example, the CHI has been used to
compare stock market volatility (Zhuo &Kumamoto, 2020), unemployment effects (Dreger
& Gros, 2021), economic growth (Ashraf & Goodell, 2022), and tradeoffs between eco-
nomic and health damage (Cross et al., 2020; König & Winkler, 2021a).

3. Methods

This study adapts the Epi-econ model of Eichenbaum et al. (2021) to the Netherlands. The
full model, including adaptations, is described in Appendix Appendix A. We pursue the
following steps to assess the potential to evaluate policy options:

1. We parameterize the Eichenbaum, Rebelo and Trabandt (ERT) model to the Dutch
pre-COVID economic and epidemiological situation (1a) and perform sensitivity
analysis on the main parameters (1b).

2. We endeavor to reproduce observed economic and epidemiological trends by (a) a
fixed-parameter calibration of policy parameters, (b) a semiflexible parameter cali-
bration allowing policy and transmission parameters to vary over time, and (c) a fully
flexible fit of the model parameters to the observed data using linear regressions

3. We simulate alternative policy responses by running CHI policy indices of a selection
of countries through the model, as well as variants on the Dutch approach.

3.1. Step 1: Parameterization of the model

ERT uses fixed parameter values to define the initial prepandemic conditions. The modeling
equations subsequently define how these parameters evolve over time during the pandemic.
We adapt the main model parameter values to the Netherlands (Table 1). Country-specific
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Figure 2. OECD Tracker of economic activity in 2020 (Source: OECD (2023)). Data were
downloaded on 9 September 2021.
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discount rates, consumption levels, hours worked, and case fatality rates (CFRs) are taken
from literature. To determine values for labor productivity A and the aversion-to-work
parameter θ, data on disposable income and hours worked were used.3 We follow Eichen-
baum et al. (2021) and Ferguson et al. (2006) who argue that in a flu epidemic, 30 % of
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Figure 3. (a) Oxford COVID-19 Government Response Tracker of the Blavatnik School of
Government Containment and Health index of the Netherlands in 2020 (Hale et al., 2020). (b)
Implied macro transmission rate (ρt) in the Netherlands (Source: RIVM and own calculations).

3We consider the economy in steady state without a pandemic (see Appendix A), rendering the utility
maximization problem: max c,n ln cð Þ� 1

2θn
2 s.t. c=An. It follows that n=

ffiffiffiffiffiffiffiffi
1=θ

p
en c=A

ffiffiffiffiffiffiffiffi
1=θ

p
. With n = 3.4 hours

and c = EUR 112, θ = 0.0865, and A = 33.1.
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Table 1. Calibrated model parameters

Parameter ERT valuea NL value Notes and source (NL values)

Prepandemic
consumption level (c)

USD 158.90 per day (USD
58,000 per year)b

EUR 112.64 per day (EUR
41,000 per year)

Estimated as net disposable income per
household (CBS, 2019)

Prepandemic hours
worked (n)

4.1 h per day 3.4 h per day Based on Dutch hours worked, employed
labor force, and the number of students
(CBS, 2019; Roeters et al., 2019)

Productivity parameter A 39.8 33.1 Own calculations based on prepandemic
consumption level and hours worked (CBS,
2019; Roeters et al., 2019)

Aversion to work
parameter θ

0.0595 0.0865 Own calculations based on prepandemic
consumption level and hours worked (CBS,
2019; Roeters et al., 2019)

Daily discount rate β 0.961/365 per day 0.97751/365 per day The Working Group on Discount Rates 2020
recommends using a default discount rate
of 2¼ % per year
(Werkgroep_Discontovoet, 2015). The
annual discount factor is, therefore, 0.9775
per year

Mean disease duration
(1/(πr + πd))

18 days 8 days Mean incubation period is 7.8 days (Zaki &
Mohamed, 2021)

Median infectious period is 6.5–9.5 days
(Byrne et al., 2020)

Fraction asymptomatic
infectious (ϕ)

0.8 0.74 Based on Italian data (Poletti et al., 2021)

Base reproduction
number (R0)

1.5 2.3 Base reproduction number estimate for the
Netherlands (Ainslie et al., 2022)
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Table 1. Continued

Parameter ERT valuea NL value Notes and source (NL values)

Transmission during
consumption (π1)

5.50 × 10�7 2.72 × 10�6 Calibrated to ensure that 12%of infections are
related to consumption; SCP time-use
survey (Ferguson et al., 2006)

Transmission at work (π2) 8.26 × 10�4 5.47 × 10�3 Calibrated to ensure that 22%of infections are
work-related (Ferguson et al., 2006; CBS,
2019)

Transmission during
leisure (π3)

0.056 0.190 Calibrated so that the base reproduction
number is 2.3 (Ainslie et al., 2022)

Case fatality rate (πd/
(πr + πd))

0.5 % 0.5 % Estimates of 0.48 % (total 2020) and 0.76 %
(first wave)

Initial number of infected
(I0)

0.1 % 0.0062 % The number of infected people on 17 February
2020 (1,074) divided by the total
population on 1 January 2020 (17.4 mln)c

aWe have translated ERT calibration to a per day step.
bThe average USD-EUR exchange rate during 2020 is 1.14 USD = 1 EUR (OECD). American households are on average 10-15 % larger than Dutch households (UN).
chttps://coronadashboard.government.nl/landelijk/besmettelijke-mensen.
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infections occur within a household, 33% in the overall community, and 37% in schools and
workplaces (Ferguson et al., 2006; Eichenbaum et al., 2021). We use the estimated
reproduction number at the beginning of the epidemic of 2.3 (Ainslie et al., 2022) to
calculate transmission rates.4 We utilize survey data from the Netherlands, reporting that
38 % of leisure time involves consumptive activities (Roeters et al., 2019). As 33 % of
infections occur in the general community and 38 % of time spent in the general community
involves consumptive activities, it follows that 12 % (0.38 × 0.33) of infections are
consumption-related.5 An estimated 10 contacts per day in education and 4 contacts per
day at work (Lee et al., 2010) are used to calculate infection rates at work. In theNetherlands,
the working population is ~9.3 mln, while 2.6 mln people between the ages of 15 and
27 years were in education, including working students (CBS, 2019). Following
Eichenbaum et al. (2021), 59 % of infections at work and school are attributable to work.
This implies a share of infections at work of 22% (0.59× 0.37).6 Next to differences inwork–
leisure balance, a higher base reproduction rate implies higher transmission rates for
the Netherlands (e.g. 0.19 for consumption in NL vs. 0.06 in ERT). Different COVID-19
CFRs have been reported for the Netherlands, ranging from 0.76% during the first wave and
0.48 % over 2020 (Ainslie et al., 2022). We follow ERT in using a CFR of 0.5 %, and apply
sensitivity analyses (Appendix C). Combined with a mean disease duration of 8 days (Byrne
et al., 2020; Zaki & Mohamed, 2021), the daily recovery rate πr becomes 0.995/8 and the
daily death rate πd = 0.005/8. The sum of the recovery rate and the death rate (πr + πd) gives
the percentage unsusceptible for infection (removal rate). We adjust the start number of
infected persons of 0.0062 % of the population on Day 0 (17 February 2020).7

3.2. Step 2: Model fitting

The second step aims to calibrate the policy and transmission parameters to empirically
observe Epi-econ trends (Di Bartolomeo et al., 2022). Economic lockdown parameters,
modeled by μ, apply constraints on consumption and economic activity, which can be
tightened or relaxed over time. Transmission rates, modeled by π, are partly determined by
fixed biological traits of the virus such as infectivity – although these traits may vary between
virus variants – and partly by policy measures such as social distancing and protective
measures. This renders two time-variant parameters (πt and μt) that allow us to fit the model
to the actual data (Anzum& Islam, 2021; Haw et al., 2022). In a stepwise approach, we start
with fixed parameter values and relax this assumption gradually. The steps are presented in
Table 2.

First, we assume transmission parameters to be invariant and the policy parameter value μ
to take effect at the start of the lockdown and be retained throughout the year. Next, we allow
incremental changes to μ. Using trial-and-error optimization, we scale the policy parameter
to the NL-CHI. Next, additional flexibility is assumed by allowing infection transmission
parameters to be affected by policy (Eichenbaum et al., 2022). Again, we allow incremental

4Using Equation (A.8) in Appendix A: ρ0 = π1c
2 + π2n2 + π3.

5 π1c2

π1c2 + π2n2 + π3
= 0:12 implies transmission during consumption (π1) of 2.72 × 10�6.

6 π2n2

π1c2 + π2n2 + π3
= 0:22 implies transmission at work (π2) of 5.47 × 10�3.

7 The original ERT simulations started the epidemicwith a 0.1%prevalence. Our simulations start at 0.0062%of
the population, as estimated by the RIVM.
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Table 2. Parameterization steps to improve model fit to observed trends

Scenario Policy parameter μ Transmission parameters π Time variance Method

One-time policy μ takes effect on the first day of the
lockdown at a fixed value

Fixed Fixed Trial-and-error
optimization

CHI policy μ is scaled according to the CHI Fixed Semiflexible policy,
fixed transmission

Trial-and-error
optimization

CHI lockdown and
transmission policy

μ is scaled according to the CHI Transmission parameters are
scaled according to the CHI

Semiflexible policy
and transmission

Trial-and-error
optimization

CHI lockdown, fully
flexible transmission
rates

μ is scaled according to the CHI Transmission rates are fitted to
the CHI

Fully flexible Linear
regressions
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changes over time by scaling the infection transmission rates to the CHI using trial-and-error
optimization to match observed trends (Buckman et al., 2020). Finally, we endogenize time-
varying variables (Ho et al., 2023).

To calibrate transmission parameters, we calculate the macro transmission rate ρt (see
Appendix Appendix B for more detail). Figure 3b shows the evolution of the macro
transmission rate in the Netherlands in 2020. A sharp decline during the first lockdown is
followed by waves of abrupt changes and day-to-day fluctuations. The macro transmission
rate is affected by a number of endogenous and exogenous factors, such as social distancing,
hygiene policies, andmeteorological circumstances, as well as the containment rate (Chudik
et al., 2021). Evidently, policies aimed at restricting contacts and reducing contact trans-
missibility affect the macro transmission rate. The feedback loop between economic
behavior and epidemiological trends may also affect the macro transmission rate variance.
The variation of the macro transmission rate can be disaggregated into a part affected by
policy and an unexplained part. Using linear regression models, we estimate how ρt is
affected by policy:

ρt = β0 + β1CHIt + β2st + ε

where following Ainslie et al. (2022), we add a seasonal variable st8 (Ainslie et al., 2022).
We incorporate the variation in ρt not explained by the CHI into the transmission parameters
to allow daily epidemiological fluctuations in the model.We use the fitted values to estimate
the effects of policy relative to endogenous effects (Appendix C).We assume that policy has
a constant effect on the macro transmission rate. In reality, however, policy effects may be
nonlinear, for example, larger changes in the CHI render disproportionately larger effects on
the transmission parameters, on top of the existing nonlinear effects in the model. In a
sensitivity analysis, we explore potential nonlinear policy effects by adding nonlinear
specifications of CHI.

3.3. Step 3: Analyzing alternative policy scenarios

Next, we estimate alternative policy responses by replacing the Dutch CHI with the CHI of a
selection of countries. Representing a more lenient and a more stringent approach, respec-
tively, we chose the Swedish and the Korean CHI (Krueger et al., 2022). As shown in
Figure 4, Korea adopted a more stringent response, particularly in the first wave, while
Sweden was less stringent in both waves (Bricco et al., 2020). Korean policy would mainly
simulate an earlier anticipation by the Netherlands. Interestingly, the Dutch COIVD policy
was more lenient during the summer than either Sweden or Korea.

Finally, we evaluated the effects of excluding a lockdown measure from the Dutch CHI,
namely the closure of “workplaces” (Figure 5). This involves closing restaurants, shops, and
so forth. It does not concern the stay-at-home or work-from-home policies. The measure of
workplace closings could be interchanged readily with any other measure that renders
similar effects on the overall CHI, since the CHI does not discriminate between relative
effects of measures. Therefore, this could be considered as a general example of a less
stringent policy.

8 The seasonal is adapted from Ainslie et al. (2022): 0.00061 × (1 + 0.14 × COS(2 × π × DayNr/365.25)). In
addition, we tested for day-of-the-week effects. These proved not significant.
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4. Results

4.1. Step 1: Baseline simulation

Figure 6 shows the predicted Epi-econ development in the absence of policy. The simulated
epidemic prevalence peaks 69 days after the initial introduction at almost 16 % of the
population. This is much later than the actual epidemic (peaking after 37 days) and
significantly higher than the observed trends (under 1 %). The model predicts that over
75 % of the population will become infected after the first wave, leaving no potential for a
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second wave. Furthermore, the baseline simulation shows an initial economic contraction of
almost 35 %, which is much severe than the observed trends (15 %). The simulated
contraction is followed by a rapid recovery, which is also much faster than the observed
trends. One explanation is that the baseline simulation does not include COVID-19 con-
tainment policies. It is noteworthy that in the baseline simulation, after 37 days, prevalence is
just over 1 % of the population.

4.2. Sensitivity analyses

To gauge the effects of the Epi-econ feedback loop, we run the model without interaction
between economy and epidemic (SIR) in comparison (Appendix C). Without the Epi-econ
feedback loop, the predicted peak prevalence is 6 % points higher, but economic decline is
much less severe, as any reduction in hours worked is only due to COVID-19 absenteeism
and death.

Some model parameters were updated relative to the original model. A higher reproduction
parameter of 2.3 (Ainslie et al., 2022), relative to 1.5 assumed by Eichenbaum et al. (2021),
results in a steeper and higher infection peak,with tantamount effects on the economy (Appendix
C).A lower discount rate of 2.25%per annum (Werkgroep_Discontovoet, 2015) versus 4%per
annum intensifies the economic recession and thereby dampens the epidemic (Appendix C).
As a lower discount rate places additional value on future consumption, economic activity is
scaled down to reduce the risk of infection and subsequent mortality. The value of the
productivity parameter for infected people (ϕI), set at 0.74 in the baseline model, shows little
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Figure 6. Baseline simulation: (a) COVID-19 prevalence per day; (b) economic activity
per day.
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effect on the model outcomes (Appendix C). This is due to counterbalancing effects: while
reduced productivity negatively affects hours worked of susceptibles, this effect is counter-
acted by a reduced risk of encountering the infected individuals while consuming. The mean
infection period of 8 days was subjected to sensitivity analyses (12 days, Appendix C).
While a longer infection period significantly affects the length and impact of the first wave,
economic effects are smaller due to the counteracting mechanisms described above. Finally,
a CFR of 1 % instead of 0.5 % reduces the peak of the first wave, but significantly increases
the economic decline. Evidently, working and consuming become more costly in terms of
foregone expected future utility, thereby reducing economic activity, which puts a brake on
the epidemic.

4.3. Step 2: Calibrating policy parameters

Following Eichenbaum et al. (2021), we introduce policy through the containment rate μt.
We calibrate μ to attain a peak prevalence of 1 %, in accordance with observed peak
prevalence. However, even at a maximum value of μ of 100 %, peak prevalence is still
much higher than observed at over 11 %, while the economic contraction is over 50 %. We
conclude that a fixed policy parameter μ by itself is insufficient to simulate observed
developments (Figure 7).
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Subsequently,we assume a semiflexible time variant and scale μt proportionally to theCHI
of theNetherlands. As the observed peak prevalence is beyond reachwith any μt, we calibrate
μt to match the observed economic trends in the first acute phase of the epidemic, given the
actual epidemic development. The subsequent recovery of the economymaybe influenced by
factors outside of the model, such as fiscal support packages and increasingly efficient
adaptation of economic activity to COVID-19 circumstances. The first shock, however,
can only be attributed to the epidemic itself and the initial policy response to it. Using a trial-
and-error fitting, a calibrated value of μt = 0:005CHIt is obtained.

Finally, we allow transmission parameters to be affected by policy. We calibrated the
transmission parameters to the implied macro transmission rate ρt. This allows the model to
mimic the epidemiological trends. Concurrently, we use μt = 0:005CHIt and add a linear
trend in economic development, reflecting increasing adaptation to the circumstances
(e.g. better facilities to work from home). As expected, the model closely mimics the
observed epidemiological trends and produces an acceptable fit to the economic trends
(Figure 8). Additional analyses reveal that this renders a policy parameter, which is relatively
influential, explaining 87 % of epidemic and 70 % of economic effects relative to endog-
enous Epi-econ effects (Appendix C).

0

0.002

0.004

0.006

0.008

0.01

0.012
(a)

(b)

1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec 1-Jan

Es�mated prevalence Simulated prevalence

-16.0%

-14.0%

-12.0%

-10.0%

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

OECD GDP Tracker (rela�ve to prepandemic trend)

Simulated economic development

Figure 8. Actual and simulated epidemic (a) and economic development (b).

Journal of Benefit-Cost Analysis 15

https://doi.org/10.1017/bca.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2025.10


4.4. Step 3: Alternative policy simulations

We estimated the effect of policy on ρt using linear regression (Table 3). A significant effect
is obtained, with an increase of one point on the CHI translating to a 0.0039 point reduction
in ρt. To test the assumption that policy affects the reproduction rate in a nonlinear manner,
additional linear regressions incorporating nonlinear terms and seasonal trends are esti-
mated. The nonlinear terms are statistically significant, although with limited effects on the
overall explanatory power. Marginal analysis (Appendix D) reveals that the linear term does
provide a good approximation at relevant 2020 values. The seasonal trend is also significant,
but its inclusion does not affect the policy coefficient. For the sake of simplicity and to avoid
overfitting, we incorporate the linear term only in the model. This implies that the coefficient
for CHI from the main regression model is used as a parameter to test the effect of different
CHI policy evolutions.

Next,we substitute theNL-CHI for theCHI of Sweden andKorea, recalculate ρt and μt and
rerun the model. Figure 9 shows that the application of the Swedish CHI to the Netherlands
would increase (peak) prevalence, both during the first and second wave. At the end of 2020,
this would have increased cumulative prevalence by 7 percentage points (51 %). However,
economic trends are similar. This is because the economy faces two countervailing influ-
ences. More lenient policies directly stimulate economic activity. At the same time, more
lenient policies increase infectivity and epidemic activity, which has a deterring effect on
economic activity.

Applying the Korean CHI to the Netherlands shows significant economic decline at the
start of the first wave. On the other hand, peak prevalence was reduced by a third, and while
prevalence would be higher during the summer, the second peak would have been lower too,
with positive effects on economic activity. At the end of 2020, this strategy was estimated to
result in 0.1 percentage point lower total prevalence (0.5 %) and 0.5 percentage points of
additional economic decline (10 %).

Finally, we exclude a single measure (workplace closings) from the Dutch CHI as an
example to simulate a more lenient lockdown policy (Figure 10). Surprisingly, the model

Table 3. Estimating the effect of policy on the macro transmission rate

Main regression
Main regression

(nonlinear)
Main regression
(exponential)

Regression with
seasonal

CHI �0.0039***
(0.0002)

�0.001 (0.001) 0.003 (0.002) �0.004***
(0.0002)

CHI2 �0.357***
(0.094)

eCHI �0.472**
(0.124)

β2 seasonal 350*** (37.8)
Constant 0.369*** (0.010) 0.062 (0.035) 0.537** (0.102) 0.159*** (0.024)
R2 0.61 0.71 0.71 0.69
F-test

(df1, df2)
496 (2,317) 254 (3,316) 254 (3,316) 358 (3,316)

Note: Standard errors are in parentheses. Significance: *p < .05; **p < 0.01; ***p < 0.001.
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Figure 9. Model estimates for alternative CHI of Sweden (a, b) and Korea (c, d) compared
to base simulations and observed trends.
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shows limited effects during the first wave, and a very large secondary spike in COVID-19
prevalence. A large economic decline results, generated by behavioral responses to high
infection rates. In the autumn of 2020, this effect would have dominated the favorable direct
economic consequences of a less stringent policy. While excluding the measure (workplace
closing) did reduce relative stringency slightlymore during the secondwave compared to the
first wave, the effects are highly disproportional. This is the result of stringency during the
first wave and a summer lapse. As infection rates climb, lacking the instrument of workplace
closings (and putting nothing in to replace it – as we assume) shows the power of exponential
growth. We also hypothesize that reduced policy adherence may be partly reflected in the
unexplained part of the infectivity parameter, aggravating the effects of a less stringent
policy during the second wave. This would be an interesting area for future research.

Table 4 summarizes the results in terms of the number of infected persons and economic
damages in 2020. The results show that the sole SIR model is poorly equipped to estimate
economic losses, and tend to overestimate the incidence of infections. The ERT model
(excluding policy) better captures the tradeoffs between economic and epidemiologic
activity, but tends to display marginal reductions in infections at significant economic loss.
Adding policy measures tends to significantly reduce economic activity at limited gains in
epidemic containment. The ERT model shows a large mismatch with observed trends. Our
modifications show a significant improvement in overall fit, and a more realistic tradeoff
over alternative policy scenarios. A complete cost–benefit analysis would require, besides
estimating the costs of infectivity, incorporating additional policy effects (e.g. regular care
delays, mental health effects of lockdowns and economic decline, etc.).

5. Conclusion and discussion

To explore the feasibility of Epi-econ models for evaluating alternative policy measures, we
adopted the seminal Epi-econ model of Eichenbaum et al. (2021) to simulate the Dutch Epi-
econ trends. We applied the Dutch parameters and updated existing parameters to the latest
scientific insights.We found that themodel performed poorly in simulating observed trends,
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Figure 9. (continued)

18 Gerbert Romijn, Niek Stadhouders and Johan Polder

https://doi.org/10.1017/bca.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2025.10


and degrees of freedom in the model policy parameters were too small to generate realistic
model outcomes. Subsequently, we systematically increased the flexibility of the model to
improve fit, by first adding time flexibility to the policy parameters and, next, by adding
time-variant policy influence on transmission parameters. This allowed for coupling the CHI
to the model and incorporating policy responses related to voluntary mitigating behavior
other than reductions in work and consumption. To further improve the model fit, linear
regression estimation was used to isolate the effects of policy on transmission parameters.
These rigorous alterations of the model did allow testing alternative policy scenarios in a
realistic model setting with reasonable face validity. We found that a more stringent
lockdown policy (e.g. as enacted by the Republic of Korea) would reduce peak prevalence
and aggravate peak economic contraction, with little effect on overall trends. Conversely,
more lenient lockdown policies (e.g. as enacted by Sweden) were estimated to increase peak
and overall prevalence, with little effect on economic outcomes. This is due to two opposing
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Figure 10. Model estimates for a more lenient Dutch CHI (excluding workplace closings).
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forces: first, more lenient policies result in more economic activity. However, increased
chances to become infected discourage economic activity. Too lenient measures, therefore,
could rapidly increase overall infections and thereby harm the economy even more than
stricter measures. The model allows qualitative appraisal of alternative policy scenarios and
highlights complicated interrelations between economic and epidemiological trends. How-
ever, model validity declines for more impactful policy alternatives (e.g. workplace clos-
ings), as the nonlinear nature of the model makes it sensitive to underlying assumptions and
parameter values, such as policy adherence.

These results are in line with other literature, finding a weak tradeoff between economic
damage and infection rates and preferring stronger lockdowns (Flaschel et al., 2021; Gallic
et al., 2022). Using a simple SIR model and a double sigmoid fitting methodology, Gallic
et al. (2022) argue that the Netherlands and Sweden would have been better off employing a
stricter lockdown policy such as that of Denmark’s (Gallic et al., 2022). Born et al. (2021)
construct a counterfactual lockdown policy for Sweden, and find that a stricter lockdown
would have reduced the number of deaths without significant effects on economic output.
Alfano et al. (2022) find that the nonlinear effect on economic decline may be due to the
limited capability of fiscal policy to counteract negative lockdown effects. Bognanni et al
(2020) find that mitigation measures can have positive effects on both transmission and
economic damage. Hsu et al. (2020) estimate real income losses of 30–37 % due to
suboptimal policy in the context of the United States. Borelli and Góes (2021) apply the
ERTmodel to the COVID-19 policy in Brazil, and found substantial divergence to the actual
trends, relating to the initial percentage of infections, and the exclusion of modeling new
strains. Applying DSGE economic modeling to OECD data, Cardani et al. (2021) find that
lockdown effects are a predominant factor in explaining economic contraction. However, the
authors do not distinguish between forced and voluntary lockdown behavior (Cardani et al.,
2021). Other authors also argue that no tradeoff between health and economic damage need
to exist; for example, under specific conditions, quarantines can reduce both infections and

Table 4. Summary of model outcomes

Cumulative
incidence
( % of

population)

Cumulative
incidence
(millions of
infected)

GDP loss
( %GDP)

GDP loss
(billion
euro)

Observed 15.5 % 2.70 �6.2 % € �51.4
SIR 87.0 % 15.14 �0.9 % € �7.5
EconSir 77.8 % 13.54 �5.1 % € �42.3
Full adjusted model,

NL policy
17.6 % 3.06 �6.3 % € �52.3

Full adjusted model,
SWE policy

28.8 % 5.01 �6.8 % € �56.4

Full adjusted model,
KOR policy

15.1 % 2.63 �7.0 % € �58.1

Full adjusted model, lenient
NL policy (excluding
workplace closings)

38.1 % 6.63 �8.3 % € �68.9
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economic damage (Goenka et al., 2020). Strict social policy measures and targeted isolation
may reduce both infections and damage due to shorter lockdown periods (Kahalé, 2020; Ash
et al., 2022).

However, a number of limitations apply. First, the model of Eichenbaum et al. (2021)
employs a relative straightforward approach tomodel Epi-econ effects. For example, the SIR
model employed by ERT does not account for the possibility of reinfection, international
travel or viral mutations. More elaborate models are available to assess the epidemiological
effects of policy measures for the Netherlands in isolation (e.g. see Ainslie et al., 2022).
However, it is an open question whether more advanced models have better predictive
performance (Roda et al., 2020). Furthermore, policy recommendations may require infor-
mation on multiple interrelated outcome measures, necessitating more simplistic cross-over
models. Policy recommendations also could benefit from multiple models to reduce poten-
tial idiosyncratic modeling errors (Ahn et al., 2021). Ideally, the integration of specialized
and generic models allows adequate incorporation of all relevant policy effects. Second, our
model abstracts from fiscal policy or vaccination policies. Additional fiscal policy can
reduce economic damage (Di Bartolomeo et al., 2022). For example, many governments
provided fiscal support to those affected by lockdown policies, to dampen long-term
economic decline (Gatti & Reissl, 2020). Governments may respond to Epi-econ trends
through supplementary fiscal support policies, adding a layer of complexity to the model
(Siddik, 2020). The propensity of governments to provide fiscal support is likely to affect
behavior, and thereby the economic and epidemiological effects of the lockdown policy. The
same holds for expectations of vaccination availability and policy (Eichenbaum et al., 2021;
Fu et al., 2022; Garriga et al., 2022; Glover et al., 2022; Iverson et al., 2022). Third,
additional information may be required to fully assess all costs and benefits of alternative
policy measures. Outcomes, such as health effects due to delays in regular care, mental
effects of lockdown policies, effects on education, investments, and long-term productivity,
may differ between policy options and affect optimal policy (Dudine et al., 2020; Oosterhoff
et al., 2023). Furthermore, the effects of biological changes to the severe acute respiratory
syndrome coronavirus 2 virus over time (e.g. infectivity of different strains) are not taken
into account. Fourth, behavioral responses are likely to be complex, being time-, context-,
and path-dependent. For example, behavioral responses to mitigate infection risk may
increase when the health system becomes crowded and accessibility is reduced (Hamano
et al., 2020). Moreover, policy compliance is likely to decrease over time. We find some
evidence in our results on workplace closings that similar policy changes have highly
divergent effects in different waves. Incorporating assumptions regarding declining atten-
tion to the epidemic over time was shown improve the model fit (Diez de los Rios, 2022). If
future expectations are correlated to current policy measures, model outcomes may be
biased. For example, a swift and strict policy response to the first wave may set a precedent
for next waves and influence public expectations. Therefore, a strategy of temporal policy
changes may increase effectiveness (Pataro et al., 2021). We find that policy is relatively
influential, contrary to some evidence suggesting the dominance of endogenous responses
(Goolsbee & Syverson, 2021; Herby, 2021). Combined with the overestimations of the Epi-
econ model, this could indicate an incomplete or insufficiently strong Epi-econ feedback
loop. Additional research is required to distinguish between endogenous responses and
policy responses (Hamilton et al., 2024). Fifth, we used the CHI to model the lockdown
policy under the assumption that equal changes in the CHI reflect equal-sized policy effects.
The CHI is not necessarily constructed to fulfill this assumption, reducing the precision of
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the policy variable. However, to scale the CHI to reflect the relative size of the effect of each
individual constituent policy is beyond the scope of this article. Furthermore, the effects of
changes in the CHI may be nonlinear, irrespective of the underlying measures. We find
evidence that larger changes in the CHI have a disproportionately larger effect. This implies
that our linear approximation is mainly valid for small changes in the CHI, and for larger
changes, more elaborate modeling is required. We also find that policy changes may have
nonlinear effects on infectivity, although the effects at themargin seem limited. Possibly, the
adjustment from weekly time steps to daily time steps in the model, combined with growth
rates being modeled exponentially, could cause linear approximations to resemble nonlinear
policy effects.Moreover, we assume that policy affects epidemic trendswithin the same time
step, while the actual causal mechanism may cross multiple time steps and may include
reverse causality. This is true for Epi-econ models in general. Finding the appropriate causal
and temporal structure to incorporate policy measures in modeling is a promising area for
future research. Last, we use the CHI of two countries as proxies for more lenient and more
strict policies, while acknowledging that the CHI is a result of country-specific cultural,
political, and behavioral factors. Any CHI applied to a different country is likely to produce
different results. In this light, the alternative policy paths should be viewed as crude
approximations that do not reflect any resemblance with the specific countries. Furthermore,
it is not guaranteed that the alternative policy paths were compliant with the actual policy
space of the Netherlands.

A number of potential lines of research could improve the applicability of Epi-econ
models for policy evaluation. For example, the model does not stratify between important
population groups, such as age groups or sectors, nor do they extent Epi-models with
confounding factors such as international mobility, seasonal effects or path dependency.
Differentiating between age, disease state, region, work status, employment and consump-
tion sector, gender, or income groups could improve model validity (Campos et al., 2021;
Mahmoudi, 2022; Giagheddu & Papetti, 2023). Makris (2021) estimated an SIRmodel with
multiple population groups and sectors. Other authors only use multiple age cohorts
(Acemoglu et al., 2020; Glover et al., 2020; Jaouimaa et al., 2021; La Torre et al., 2022).
Identifying unique groups with differing mechanisms relating infection and transmission to
economic effects could improve model performance, but identifying these causal mecha-
nisms is likely to be complicated. By incorporating “random noise,” our modeling approach
implicitly takes into account factors such as voluntary social-distancing behavior, as well as
policy compliance, productivity at home, environmental influences, and other factors that
can drive temporal variation in infectivity. However, these interactions remain implicit, and
future modeling could benefit from explicit causal incorporation of these behavioral effects
and policy interactions. Other potential additions include spatial modeling (Bisin & Moro,
2020, 2022; Bognanni et al., 2020), uncertainty surrounding infectivity (Forsyth, 2020), and
social learning (Davids et al., 2023). While the model employed here has discrete time steps
of a day, more elaborate infectious disease models are often specified in continuous time.
Wacker and Schlüter (2020) show that a discrete-time SIRmodel has the same properties as a
continuous-time SIR model, and that key variables (e.g. the R-number) also have a
comparable interpretation (Wacker&Schlüter, 2020). Furthermore, any difference is always
bounded, and decreases as the time steps of the discrete time SIR model are shorter.
Alternatively, a fully empirical approach could be pursued, for example, to assume inde-
pendence between Epi-econ trends and separately estimate the effects of policy measures.
However, the complex, adaptive nature of both trends would likely reduce the validity of the
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outcomes when analyzed separately. In all cases, a common denominator needs to be
constructed to compare health effects and economic effects. While COVID-19 infections
could be converted to quality-adjusted life years, the incorporation of more general health
effects requires additional efforts.

Despite the shortcomings, the adjusted Epi-econ model does produce policy-relevant
insights. Different lockdown policy approaches would have significantly affected the
epidemiological trends. More strict policies could have reduced peak prevalence, especially
during the first wave. Here, timing is important to reduce both economic damage and health
damage (Cross et al., 2020). Pursuing a policy approach similar to that of Korea’s in the
Netherlands could have resulted in amore evenly distributed number of infections. Given the
high strain on the Dutch healthcare system, especially during the first wave, this could have
been a promising policy strategy. Especially as the model shows a weak tradeoff between
epidemiology and economic development in this scenario, the expected economic decline is
similar to the baseline scenario. Conversely, a less stringent policy approach similar to the
Swedish strategy would have increased infection prevalence without a major effect on
economic trends. Here, keeping the economy working is counterbalanced by increased
disease prevalence and, as a result, endogenous reductions in economic activity. Given the
large strain on the healthcare sector in the baseline scenario, a less stringent lockdown policy
would have been likely undesirable, especially as the effects on the economy would have
been minimal.

Differences between country lockdown policy responses were limited. When larger
lockdown policy changes were assumed, for example, the removal of workplace closings
from the Dutch CHI, large (negative) effects were obtained, showing nonlinear effects and
high model sensitivity. However, the set of realistically attainable policy options may have
been limited as well. Realistically attainable policy strategies may even be country-specific,
suggesting that strategies employed by some countries may not have been a realistic option
for other countries. Furthermore, uncertainty at the moment of decision-making should be
taken into account (Barnett et al., 2023).More research is needed to select policy options that
are realistic and relevant alternatives for observed policies in a given country. The model is
calibrated on the Netherlands, being a small, open economy. In theory, the model is
generalizable to all countries that have sufficient data to calibrate the model. However, once
calibrated, the model produces results unique to the specific country; different countries
likely differ significantly in terms of epidemiological trends and policy effects.

To conclude, while Epi-econ models generate relevant insights into the interaction
between Epi-econ trends, the models are ill-suited to quantitatively evaluate alternative
policy options. We propose a number of fitting steps to improve the usability of Epi-econ
models for this purpose, and show that the model can produce improved qualitative pre-
dictions of alternative policy effects. This could have significant benefits in policy evalu-
ation: the adjusted model produced a more accurate estimate of economic damages and
number of infected and a more realistic tradeoff between the twomain outcomes. Additional
steps are required to produce a valid quantitative prediction. Specifically, the challenge is to
incorporate complex behavioral effects into relatively simple models. Furthermore, useful
policy evaluation requires additional outcomes besides Epi-econ trends, such as the general
health effects of the lockdown policy. The adjusted model could serve as a bridge model to
connect more complex models that focus on a specific outcome (e.g. number of infected or
economic activity). This could render a set of models that would enable a full assessment of
costs and benefits of the lockdown policy. Nevertheless, using relatively simple adjustments
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to existing Epi-econ models, we show that the Netherlands could have benefited from
slightly more stringent policy measures, especially during the first wave.
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A. Appendix A: Epi-econ model description

A.1. Epidemiological SIR model

The epidemiological SIR model describes how an epidemic spreads through a population
(Weiss, 2013). It has four epidemiological stages: susceptible, infected, recovered, and
deceased. Initially, the full population is susceptible, and then a small number of individuals
become infected and start infecting others at reproduction rate R. Infected people either
recover from their infection and enter the “recovered” category, or they die and enter the
deceased category. A simplifying assumption is made that recovered people are unable to
become infected again. The model of Eichenbaum et al. (2021) employed a time step of
1 week. To simulate the epidemic adequately, we use a time step of 1 day. The epidemi-
ological SIR model can be described by the following equations:

St + 1 = St�Tt ðsusceptiblesÞ (A.1)

It + 1 = It + Tt�πrIt�πdIt ðinfected; prevalenceÞ (A.2)

Rt + 1 =Rt + πrIt ðrecoveredÞ (A.3)

Dt + 1 =Dt + πdIt ðdeceasedÞ (A.4)

Tt = ρtStIt ðnewly infected; incidenceÞ (A.5)

ρt = π1c
S
t c

I
t + π2n

S
t n

I
t + π3 ðtransmission rateÞ (A.6)

Equation (A.1) states that the number of susceptible people (St) decreases by the number
of new infections (Tt). In Equation (A.2), the number of newly infected people (It + 1) is
equal to the number of people infected in period t (It) plus the new infections (Tt), minus
the recovered and deceased people. Infected people recover with a probability πr per day
or die with a probability πd per day. This affects the number of people recovered (Rt;
Equation (A.3)) and those who died (Dt; Equation (A.4)). The number of new infections
(Tt) depends on the number of susceptible and infected people, mediated by the trans-
mission rate (ρt) (Equation (A.5)). The model does not distinguish between different age
groups, but it does distinguish three “settings” where infections occur, namely infections
through consumption, through work and all other situations. The transmission rate
depends on the chance of becoming infected during consumption (π1), at work (π2) or
elsewhere (π3). Equation (A.6) represents the average transmission rate (ρt) over the entire
population (“macro transmission rate”). Through explicitly modeling the infection risk
at work and during consumption, the Epi-model interacts with the economy: the more
time people spend consuming or working, the faster the epidemic spreads through the
population.
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For further analysis, it is useful to define two additional quantities:

τt = Tt=St = π1 cSt
� �

cIt It
� �� �

+ π2 nSt
� �

nIt It
� �� �

+ π3It (A.7)

Re
t =

ρtSt
πr + πd

(A.8)

τt is the so-called force of infection. It represents the risk of infection of a susceptible person.
Re is the reproduction number of the Epi-econ model.

A.2. Economic choice model

In the economic choice model, a representative consumer chooses work hours and con-
sumption based on a representative utility function:

ujt = u cjt,n
j
t

� �
= lncjt�

1
2
θ njt
� �2

(A.9)

The representative consumer faces a budget constraint that implies that to consume (cjt),
income earned byworking njt hours is required. Spending is restricted by a budget restriction:

cjt =
Anjtϕ

j +Γt

1 + μtð Þ (A.10)

Here, A reflects someone’s productivity, that is, wage. A simple representative business
sector produces Ct consumer goods and services according to the production technology
Ct=ANt, withNt the labor demand by companies. The representative companymaximizes its
profit ANt – wtNt. From this follows wt = A. The factor ϕj reflects productivity loss due to
COVID-19 infections, where ϕS = ϕR = 1 en 0 < ϕI < 1. In addition, everyone receives a lump-
sum benefit Γt. Disposable income (Aϕjnjt + Γt) is taxed at the rate μt. By channeling the
proceeds of the lump-sum tax back to consumers, the combination of μt and Γt acts as an
approximation for the restrictive measures in the economy that the government is taking to
slow down the spread of COVID-19.9 This means that the government also has a budget
restriction: μt Stc

S
t + Itc

I
t +RtcRt

� �
=Γt St + It +Rtð Þ. Finally, there is equilibrium in the labor

market and in the market for goods and services.
People maximize their expected lifetime utility by choosing an optimal level of work

and consumption in each period t. The expected lifetime utility of a susceptible person is
given as:

US
t = u

S
t + β 1� τtð ÞUS

t + 1 + τtU
I
t + 1

� �
(A.11)

with β as the discount factor. Equation (A.11) states that the expected lifetime utility of a
susceptible person is equal to the utility of a susceptible person in the current period (uSt ), plus
the expected lifetime utility from period t + 1 discounted to the current period t. With
probability τt (see Equation (A.7)), a susceptible person will become infected. Becoming

9 This may come across as a somewhat indirect way of modeling the partial closure of economic sectors to fight
COVID-19. In a macroeconomic perspective, however, this works the same as placing restrictions on what you can
and cannot consume, that is, the restrictions raise the shadow price of consumption. An explicit taxwhose lump-sum
revenue is recycled as an income works the same as an implicit tax or restriction on consumption.
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infected may reduce productivity during the period that a person is ill, and thus reduce
consumption opportunities. Moreover, becoming infected may lead to death, which also
reduces future consumption opportunities.

The expected lifetime utility of an infected person is given as follows:

UI
t = u

I
t + β 1�πr�πdð ÞUI

t + 1 + πrU
R
t + 1 + πd �0

� �
(A.12)

An infected person dies fromCOVID-19with probability πd and the expected lifetime utility
of a deceased person is zero. In addition, with probability πr, the infected personwill recover.
The probability that an infected person remains infected is 1�πr�πdð Þ. The economic
behavior of an infected person in the current period does not affect his future epidemiological
status. Choices with regard to consumption and work of an infected person, therefore, only
affect utility in the current period uIt .

Similarly, the current choices of recovered persons do not affect his future epidemiolog-
ical status. The expected lifetime utility of a recovered person is given as follows:

UR
t = u

R
t + βU

R
t + 1 (A.13)

Because the representative consumer values future utility, susceptible individuals take into
account that their economic activities (consuming and working) are associated with an
increased likelihood of infection. Thus, even without policy intervention, it is expected that
economic activity will decline when the infection rate increases. This also has consequences for
the course of the epidemic. The drop in consumption and hoursworked of susceptibles also leads
to a drop in the macro transmission rate, and thus to a drop in the number of new infections Tt.
These two mechanisms form the interaction between epidemiology and economics.

COVID-19 policy is incorporated into the model along two channels. First, preventative
policies such as social distancing, washing hands, wearing face masks, and limiting group
sizes lower the transmission parameters (π1,π2,π3). Second, lockdown policies, such as
closing parts of the economy, are modeled as an explicit tax on consumption (μt). This tax
reduces the attractiveness of consuming, inhibits the level of economic activity, reduces the
number of contacts in consumption and work, and thus slows down the epidemic.

B. Appendix B: Calculating the implied macro transmission rate

By combining prevalencewith the SIR part of the Epi-econmodel (Equations (A.1)–(A.8) of
Appendix A), we can reverse calculate the macro transmission rate ρ. Next, rewriting
Equation (A.2) as:

Tt = It + 1� It + πrIt + πdIt (B.1)

The first two terms at the right-hand side of Equation (B.1) are the prevalence onDay t + 1 and
the prevalence onDay t.We solve for the number of people recovering from infection onDay t
using the calibrated value of πr (0.124, see Table 1). As the number of recovered people (R) is
zero at the start of the pandemic, the trend in the number of recovered people (Rt) in 2020 can be
reverse calculated. Analogously, for the number of deaths, we use πr = 6.25 × 10E – 4.10

10 In principle, we can also use the recorded number of Corona deaths. That would imply a time-varying πd.
Although interesting insights arise from that in itself (the CFR peaks at the beginning of the epidemic), a time-
varying πd has no significant effect on the development of prevalence.
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As a robustness check, we compare the implied recovery rate to the estimated seroprev-
alence from the different rounds of the Pienter Corona survey and end-of-the-year estimates
from the RIVM (Figure B1). These external measurements are in accordance with the
implied recovery rate from our model.

Next, we calculate the implied number of new infections (Tt, incidence), the population
share of susceptible people (St), and the evolution of ρt in 2020. If we run the Epi-econmodel
with π1 = π2 = 0 (i.e. no interaction between the economy and the epidemic) with the
observed macro transmission rate as input for π3, then the model exactly simulates the
observed prevalence and the simulated transmission rate is also equal to the observed macro
transmission rate. After all, this is how the macro transmission rate is calculated.

C. Appendix C: sensitivity analyses

Figure C1 shows the results when π1 = π2 = 0, implying no feedback loop between
epidemiology and the economy. The value of π3 was adjusted to compensate for the
omission of other transmission channels. As expected, prevalence is higher and economic
decline lower, implying that the economy reduces infectivity through voluntary action at the
cost of economic activity.

Next, we examine how the outcomes of the model change if we choose a lower value for
the transmission rate (ρ), a lower value for the discount factor (β), a higher value for the
productivity loss of infected (ϕI), a lower value for the removal rate (πr + πd), and a higher
value for the CFR (πd/(πr + πd)).

C.1. Transmission rate

Using the base reproduction rate of 1.5 of Eichenbaum et al. (2021) implies a transmission
rate ρ of 0.1875. Using the best estimate of 2.3 for the Netherlands, a transmission rate of
0.2875 is obtained. A lower transmission rate reduces peak prevalence and economic
damage (Figure C2a).
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Figure B1. The number of recovered persons (Rt) modeled (blue line) compared to official
measurements (red). The x-axis shows the days of 2020.
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C.2. Discount rate

Using the original discount rate of 4% fromEichenbaum et al. (2021) results in a less deep
recession (Figure C3). It follows that the epidemic is somewhat more severe. The
difference is small, implying a weak elasticity of the epidemiological growth to economic
decline.
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Figure C1. The influence of interaction between epidemic and economy on economic and
epidemiological development (the horizontal axis is the number of days since the start of the

pandemic).
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C.3. Productivity loss of infected persons

The productivity loss of those infected (ϕI) is calibrated at 26 % for the Epi-econ model.
A lower (20 %) or substantially higher (50 %) productivity loss when infected has a very
limited effect on model outcomes (Figure C4). This is due to counteracting effects: on the
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Figure C3. Using a 4 % discount rate. The horizontal axis is the number of days since the
start of the pandemic.
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one hand, a larger loss of productivity means that infected persons experience a larger
consumption loss and a larger utility loss than in the original calibration. This implies that it
becomes more costly for susceptible individuals to become infected. On the other hand, the
reduced consumption of infected people also means that the probability of a susceptible
person meeting an infected person reduces. Thus, the consequences of getting infected are
more severe, but the probability of becoming infected is reduced (see Box C1 for details).

Box C1. The influence of ϕI on cs: an exercise in comparative statics.

In this box, we analyze the effect of productivity loss of infected persons ϕI on the
consumption of susceptibles cs using comparative statics. For simplicity, we do not
consider policy: μt = Γt = 0. For notational convenience, we replace ϕI by ϕ. It is useful to
note that in this box, we analyze an increase in ϕ (dϕ>0), which amounts to higher
productivity of infected persons and fewer hours lost due to illness. Furthermore, in this
box, we refer to Lagrange multipliers (the λ’s). These reflect the shadow prices of the
restrictions, such as budget constraints (λb for each consumer type S, I, or R) and the
intertemporal restriction implied by the epidemic (λτ).

First, we assess how ϕ affects the behavior and utility of the infected persons. An
infected person maximizes utility uI = ln(cI) – ½θ(nI)2 with a budget constraint cI = AnI.
First-order conditions are nI = cI/ϕA, cI = 1/λb

I en λb
I = θnI/ϕA. This yields expressions for

nI, cI , and λb
I and their derivatives to ϕ:

cI =
ϕAffiffiffi
θ

p ¼)dcI

dϕ
=

Affiffiffi
θ

p , nI =
1ffiffiffi
θ

p ¼)dnI

dϕ
= 0, and λIb =

1

Aϕ
ffiffiffi
θ

p ¼)dλIb
dϕ

= � 1

Aϕ2
ffiffiffi
θ

p

Rearranging implies that duI/dϕ = 1/ϕ.Lifetime utilityUI
t = u

I
t + β(1 – πr – πd)U

I
t + 1 + βπr

UR
t + 1 implies that dU

I
t

dϕ = 1
ϕ 1�β 1�πr�πdð Þ½ � > 0 is time independent (NB dUR/dϕ = 0). Using

these insights, we turn to susceptibles. First-order conditions and their derivatives to ϕ are:

1
cS

= λSb� λτπ1Ic
I¼)dcS

dϕ
= � cS

� �2 d 1
cS

dϕ
= � cS

� �2 dλSb
dϕ

�dλτ
dϕ

π1Ic
I � λτπ1I

dcI

dϕ

� �
,

nS =
cS

A
¼)dnS

dϕ
=
1
A
dcS

dϕ
,

λSb =
θnS� λτπ2InI

A
¼)dλSb

dϕ
=
θ
A
dnS

dϕ
=

θ

A2

dcS

dϕ
, using

dnI

dϕ
= 0 and

λτ = β UI
t + 1�US

t + 1

� �¼)dλτ
dϕ

=
β

ϕ 1�β 1�πr�πdð Þ½ ��β
dUS

t + 1

dϕ

Substitution of the expression for dλSb
dϕ in dcS

dϕ yields dcS
dϕ = � cSð Þ2 θ

A2
dcS
dϕ +

cSð Þ2 dλτ
dϕ π1Ic

I + λτπ1I dc
I

dϕ

h i
. Define σ =

cSð Þ2
1 + cSð Þ2 θ

A2

� � > 0(a). It follows that
dcS
dϕ = σ

h
dλτ
dϕ π1Ic

I + λτπ1I dc
I

dϕ

i
.

34 Gerbert Romijn, Niek Stadhouders and Johan Polder

https://doi.org/10.1017/bca.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2025.10


C.4. Removal rate

The removal rate is calibrated at 1/8, which signifies that an infected person stays infectious
for 8 days on average and then recovers or dies. Figure C5 shows the effect of an increase in
mean infectivity from 8 to 12 days, as assumed by Eichenbaum et al. (2021). A significant
increase in peak prevalence results, while the economic effects are smaller. The reason for
this is that although there are more infected persons, which increases the likelihood of

The second termwithin the square brackets of this last expression shows how a change
in the consumption of infected persons affects the consumption of susceptible people.
This effect is negative because λτ < 0. In other words, a higher ϕ leads to a higher
consumption by infected persons (dc

I

dϕ = Affiffi
θ

p > 0Þ, which suppresses the consumption of
susceptibles. And that, in turn, is because higher consumption of infected persons
increases the likelihood of infection through the consumption channel, which will make
susceptible people more cautious.

The first term within the square brackets shows that a higher ϕ reduces the expected
loss of utility (λτ = β UI

t + 1�US
t + 1

� �
) due to infection (dλτdϕ > 0). This stimulates the

consumption of susceptibles as the cost of getting infected decreases.
In short, a rise of ϕ increases the risk of becoming infected (cS ↓) but reduces the

consequences (cS ↑). Which of these two counteracting effects dominates overall is an
empirical matter. To our knowledge, conclusive empirical evidence is still lacking.

(a)Please note that σ is not a constant but we suppress the time index to simplify notation.
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Figure C5. The effect of a longer infectious period (12 days instead of 8 days). The
horizontal axis is the number of days since the start of the pandemic.
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becoming infected in general, but because infected persons work and consume less, the
chance of getting infected while consuming or working is actually less.

C.5. Case fatality rate

The CFR is calibrated at 0.5 %, c.q. Eichenbaum et al. (2021). A higher CFR reduces peak
prevalence at the cost of a bigger recession (Figure C6). This is because the cost of
contracting an infection is now greater and, therefore, people are scaling back their economic
activities of their own accord.

C.6. Disaggregation of endogenous effects and policy effects

Figure C7 shows the effects of (a) epi only, (b) Epi-econ and (c) Epi-econ + policy, with
equal parameters otherwise. This allows gauging the relative contribution of policy on
outcomes. Figure C7a shows that mean annual infections were 1.90, 1.71 and 0.35 %,
respectively, indicating that policy contributed 87 % to the reduction in infectivity, and
endogenous responses contributed 13 %. Figure C7b shows that mean annual consumption
declined by �0.85, �4.62, and �13.50 %, respectively. This translates to policy contrib-
uting 70 % to economic decline and endogenous responses contributing 30 %.

D. Appendix D: nonlinear policy effects

To assess the effect of nonlinear policy effects at the margin, we evaluate the derivatives (dρ/
dCHI) at CHI 2020 data mean, median, and double-sided 10 and 25 % intervals.

Table D1 suggests that, compared to the quadratic model, the linear model overstates
effects of policy somewhat. It also interesting to note that the quadratic model hardly
differentiates across the spectrum of policy interventions in terms of its effect on outcomes.
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Figure C6. The impact of a higher case fatality rate. The horizontal axis is the number of
days since the start of the pandemic.
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Also interesting is that the exponential specification implies a slightly more responsive
reaction of outcomes to policy and with responses higher at the higher end of the interven-
tions. Differences are small across the spectrum. The different nonlinear approaches point to
higher or lower elasticities compared to a linear model.

Cite this article:Romijn, Gerbert, Niek Stadhouders, and Johan Polder. 2025. “Application of an Epi-Econ-Model
to Analyze COVID-19 Lockdown Policies in the Netherlands: Lessons and Limitations.” Journal of Benefit-Cost
Analysis, doi:10.1017/bca.2025.10

Table D1. Effect of CHI on ρ for different models at different positions in the frequency
distribution of CHI

Population
values

Derivative of CHI

1. Linear
effect only

2. Squared
nonlinear effect

3. Exponential
nonlinear effect

Regression
equation

�0.004 �0.001 to 0.00357
CHI/100

0.003–0.00472
eCHI/100

CHI mean 0.527 �0.004 �0.003 �0.005
CHI median 0.566 �0.004 �0.003 �0.005
10 % interval 0.435 �0.004 �0.003 �0.004
25 % interval 0.499 �0.004 �0.003 �0.005
75 % interval 0.625 �0.004 �0.003 �0.006
90 % interval 0.637 �0.004 �0.003 �0.006
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Figure C7. Simulation of the number of infectious people (a) and aggregate consumption
(b), comparing the epi-model with the epi-econ model void of policy and the epi-econ model

including policy measures .
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