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I. INTRODUCTION 

(R.W. Noyes) 
The scope of Commission 12 has broadened somewhat in recent years, to include not only the 

structure of the solar atmosphere, but that of the solar interior as well. The scientific purview of 
this commission, and of the present report, are complementary to those of Commission 10 (solar 
activity). Rather than attempting to review all progress in solar structure studies over the past 
triennium, this report deals with six topics of great current interest, in which there is a great deal of 
current work. 

Section II, on solar oscillations, emphasizes observational aspects. Reference is made here to 
related reviews of theoretical aspects of stellar oscillations in the reports of Commissions 35 and 27. 

The President of Commission 12 wishes to take this opportunity to thank the authors of the 
remaining sections of this report for their conscientious and effective work in preparing these 
reviews. In addition, he wishes to thank the Organizing Committee of the Commission for their 
support during the past three years. 

II. SOLAR OSCILLATIONS 
(T.R. Duvall, Jr.) 
The study of solar oscillations, now becoming known as helioseismology, is rapidly expanding 

our knowledge of the interior structure of the Sun. Questions addressed include the Sun's internal 
thermal structure, rotation, initial helium abundance, giant cell convection, and gravitational qua­
druple moment. Recent progress has been reviewed by Deubner and Gough (1984) and Brown et 
al. (1984), and a comprehensive bibliography was published (GONG, 1984). Several conference 
proceedings are available (Gough, 1983; Gabriel and Noels, 1984; Belvedere and Paterno, 1984; 
Ulrich, 1984) . 

At least two restoring forces, pressure and gravity, are important for global oscillation modes. 
The p-modes have pressure as the dominant restoring force while the 3-modes have gravity as the 
restoring force. The /-mode, or fundamental, is essentially a surface gravity wave. An oscillation 
mode is described by an eigenfunction of, say, vertical velocity which is a product of a radial func­
tion, a spherical harmonic Y(m(0,^) and a harmonic function of time. The radial function is, in gen­
eral, an oscillatory function of radius in a restricted range of radius, exponentially decaying away 
from this region. This leads to the concept of a resonant cavity in radius in which the wave energy 
is trapped. Waves can propagate in the interior of the cavity and are reflected at the boundaries. 
For p-modes the upper boundary of the cavity is just below the visible surface and the reflection is 
caused by the large density gradient. The inner reflection is caused by the refraction of obliquely 
propagating waves away from the vertical by the increase of sound speed with depth. The inner 
reflection radius is mode-dependent which gives us the basic depth diagnostic capability. 
1. Thermal Structure 

One way to investigate the thermal structure of the Sun is to compare mode frequencies com­
puted for a solar model to those observed. By trial and error, the uncertain input parameters to 
the model are varied to obtain a better agreement with the observed frequencies. In addition, some 
models can be safely excluded because of the large discrepancies between computed and observed 
frequencies. This procedure has been generally successful in obtaining mode frequencies accurate to 
better than 1% (Ulrich and Rhodes, 1983; Shibahashi et al., 1983). The general result is that a rela­
tively standard model fits the data best. In particular, a convection zone depth of 0.3 R0, a helium 
abundance of Y = 0.25 and a heavy element abundance of Z = 0.02 are preferred. 
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Many of the observed mode frequencies have relative accuracies of 0.1% or better, but none 
of the models predict frequencies within the observational uncertainties. This has led to suggestions 
that the physics in the models is incomplete (Gough, 1984). Christensen-Dalsgaard and Gough 
(1984) have shown the differences between the computed (model 1 of Christensen-Dalsgaard, 1982) 
and observed frequencies are similar functions of frequency at constant degree. For the different 
degrees (/ = 1 - 200) the positions of the bottom of the cavities range over a large fraction of the 
solar radius. The only area that these modes have in common is the outer few percent by radius 
and so it was concluded that the dominant error in the models is in this region. A second effect 
seen was a rather abrupt change in the frequency errors between degrees 20 and 40. This suggests 
another error in the model between the bottoms of the / = 20 and / = 40 cavities, or roughly 
r/R0 = 0.6 - 0.7. 

Another approach to the investigation of the thermal structure is to attempt to obtain the 
internal structure directly from the observed frequencies. This procedure, known as inverse theory, 
has been successfully employed in terrestrial seismology and should be applicable to the solar prob­
lem. The initial attempts to invert the observed frequencies utilize asymptotic relations for the fre­
quencies (Gough, 1984; Christensen-Dalsgaard et al., 1984) that are not as accurate as the full eigen-
mode calculations. The initial conclusions are that the dominant errors in the models are very near 
the surface. 
2. Rotation 

The rotation of the solar interior has intrigued investigators for nearly two decades since the 
suggestion of Dicke (1974) that a rapidly rotating solar interior would influence the relativistic 
interpretation of the precession of planetary orbits through an enhanced solar gravitational quadru-
pole moment. In addition, differential rotation is thought to drive the eleven-year activity cycle 
and so radial and latitudinal profiles of rotation are needed to understand this phenomenon. The 
oscillation modes are sensitive to the interior rotation in a well-defined way. For p-modes a mode 
frequency is shifted by an amount proportional to the product of the azimuthal order, m, and the 
integral of a kernel function multiplied by the rotation frequency, over the interior of the star. 
Since different modes sample different parts of the star, we can in principle obtain the interior rota­
tion from the measurements of a sufficient number of frequency shifts. 

The initial attempts to measure subsurface rotation utilized sectoral modes (\ m | = / ) of 
high degree / (Deubner et al., 1979). These are the natural modes to start with, as the frequency 
shifts are large (and thus easily measurable) due to the large value of | m | . The sectoral modes of 
high / are confined to the equatorial zone and so information is obtained on the depth dependence 
of the equatorial rotation. Modes of high degree are confined to a rather shallow layer near the sur­
face and so the depth range covered is small. The original depth variation seen by Deubner et al. 
(1979) was not confirmed by subsequent observations (Rhodes et al., 1983) although Hill et al. 
(1983) have argued that giant cell convection may cause time variations in the observed rotational 
splitting. 

At low degrees, the observational problems are magnified although the information content 
in the modes is much higher. An / = 1 p-mode with a period near 5 minutes is confined in a cav­
ity that ranges over 95% of the Sun's radius. An / = 1 (/-mode is confined mostly to the deep 
interior and is actually a much better probe of that region. The frequency shifts of the low-degree 
modes are, however, much smaller because of the reduced value of | m \ . In addition, most of the 
effort at low degrees have been on observations with little or no spatial resolution and hence the 
prograde and retrograde modes are not clearly separated as they are in the high-degree case. The 
initial rotational splitting observations for low-degree p-modes in the five-minute band (Claverie el 
al., 1981) have not been confirmed by the later observations of Woodard (1984). And, in fact, Woo-
dard has made a powerful argument that the / = 1 and 2 p-mode splitting cannot be resolved 
without spatial resolution because of the finite lifetime of the modes with periods near five minutes. 

The advantage of spatial resolution has been demonstrated by the sectoral mode splittings of 
low to intermediate degree (/ = 1 - 100) observed by Duvall and Harvey (1984). These data have 
been used to derive a radial rotation profile by Duvall et al. (1984). The results show that over 
most of the radius (r/R0 > .4) the rotation rate is close to the surface rate with a slight decline 
with radius. The gravitational quadrupole moment, J2, calculated from this rotation profile makes 
a negligible contribution to the precession of planetary orbits. 
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3. g-modes 
Measurements of p-modes would be an important step in helioseismology. The p-mode fre­

quencies are determined mainly by conditions in the deep interior (where internal gravity waves can 
propagate) in contrast to the p-modes, whose frequencies are very sensitive to the structure near the 
surface. Several observational problems are associated with the detection of p-modes. Theoretical 
calculations tell us that the evanescent region in the convection zone will reduce the eigenfunctions 
of high-degree p-modes to an unobservable level at the surface and so we would probably only be 
able to observe the lowest few values of spherical harmonic degree / . 

The frequencies of p-modes are low (v < 0.3 mHz) and for moderate resolution 
Aw ?» 0.1 mHz the temporal power spectrum of these low - / modes should be crowded. The solar 
background (active regions, supergranulation, granulation) may contribute significant power at the 
frequencies in question. In contrast, the lifetimes of the p-modes could be considerably longer than 
any of the data strings currently being analyzed and so progress could be made with longer data 
sequences. Several groups claim to have detected p-modes (Delache and Scherrer, 1983; van der 
Raay et al., 1984; Frohlich and Delache, 1984; Kotov et al., 1984; Hill et al., 1982). The different 
observations are not in agreement (where there is overlap) on the frequencies of modes present and 
the mode identifications. For a given spherical harmonic degree, the p-modes are asymptotically 
(high n) equally spaced in period as a function of radial order n (Berthomieu et al., 1978). There is 
also not general agreement on the fundamental period spacing. 

4. Conclusions 

Much has been learned in the study of global solar oscillations and much remains to be done. 
Interesting physical problems, such as how the latitudinal differential rotation varies with depth, 
have not yet begun to be attacked. Observationally there are several impediments to further pro­
gress, including the day-night cycle, the need for two-dimensional imaging and atmospheric seeing. 
Atmospheric seeing is a problem only for the high-degree modes which require high spatial resolu­
tion to observe. The day-night cycle introduces spurious peaks into the spectra from a single 
mid-latitude observing site. This difficulty can be adequately overcome with a network of 
mid-latitude sites judiciously placed around the globe. The Birmingham group has been operating a 
two-station network with considerable success during the last several summers. The Birmingham 
and Nice groups are proposing to build extensive networks of stations for the study of oscillations in 
unimaged sunlight. A network of imaging stations that would observe the low and intermediate 
degree modes is being proposed by the Global Oscillation Network Group (GONG). The problem of 
seeing as well could be solved by going to space, and both the European (ESA, 1983) and US (Noyes 
and Rhodes, 1984) space agencies are studying the possibilities. Major advances in helioseismology 
should come from the implementation of any or all of the network or space proposals. 
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III. SOLAR ROTATION 
(Robert F. Howard) 
1. Spectroscopic Studies 
The study of solar rotation using the Doppler effect in solar spectrum lines continues to be 

an active and fruitful area of research. Duvall (1982) has confirmed a slower rotation rate for the 
photosphere than for sunspots, which bears on an earlier controversy regarding this point between 
the Stanford Solar Observatory and some other observatories. The issue is not settled, however. 

The analysis of Doppler data has been discussed by Kubicela and Karabin (1983), who have 
proposed a new vector formulation for the reduction of solar disk data, including the effects of the 
Earth's orbit on the velocity signal. Snodgrass et al. (1983) have discovered an error in the calibra­
tion of the Mt. Wilson velocity signal which resulted from an error in the published wavelengths of 
the solar spectrum lines that have been used in calibrating the observations. This error, which was 
present in the Stanford Solar Observatory data as well, resulted in an over-estimate of the rotation 
velocity in all earlier published results from these observatories of 0.55%. 

A comprehensive summary of the Mt. Wilson Doppler rotation results starting in 1967 was 
published by Howard et al. (1983). This work gives the rotation rate and latitude dependence over 
the time interval in one-rotation averages. Other characteristics of the large-scale velocity fields are 
also listed in this paper. 

Balthasar (1983) has analyzed the depth dependence of the solar rotation rate using 63 
Fraunhofer lines observed with the Fourier transform spectrometer at the National Solar Observa­
tory in the visible region of the spectrum. He finds, in agreement with other observers in earlier 
years, that the rotation rate is slightly higher at higher elevations in the solar atmosphere. This 
result still remains a puzzle, with no theoretical explanation. 

The rotation rate of a faintly discernible pattern of polar velocity field — large-scale cellular 
pattern centered on the pole — ith a rotation period of 30 days was found in Doppler observations 
by Cram, Durney, and Guenther (1983). This is the first evidence of any such pattern. This 
interesting result, which would have profound implications in the study of interior structure and 
dynamics, deserve verification and further study. 

Variations with time of the Doppler velocity signal were the topic of a study by Kuveler and 
Wbhl (1983). These authors detected a decrease of nearly 2% in the equatorial rotation rate of the 
Sun between 1981 and 1982, in agreement with unpublished results from other observatories. The 
variations seen on a daily basis and the absolute value of the rotation are not in such good agree­
ment between the various sites. Evidently instrumental effects affect the daily determinations of 
rotation rate significantly at most or all observatories. To what extent long-term averages of rota­
tion rate are affected by instrumental effects is not yet known. The measurement of the rotation 
rate of the Sun by spectroscopic techniques is still a very uncertain process, and systematic errors 
are evidently not yet totally negligible. 
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