Bull. Austral. Math. Soc. Vol. 50 (1994) [523-528]

A CLASS OF SPACES WITH WEAK NORMAL STRUCTURE

BRAILEY SIMS

It has recently been shown that a Banach space enjoys the weak fixed point property if it is ε_0 -inquadrate for some $\varepsilon_0 < 2$ and has WORTH; that is, if $x_n \stackrel{w}{\longrightarrow} 0$ then, $||x_n - x|| - ||x_n + x|| \longrightarrow 0$, for all x. We establish the stronger conclusion of weak normal structure under the substantially weaker assumption that the space has WORTH and is ' ε_0 -inquadrate in every direction' for some $\varepsilon_0 < 2$.

A Banach space X is said to have the weak fixed point property if whenever C is a nonempty weak compact convex subset of X and $T:C\longrightarrow C$ is a nonexpansive mapping; (that is, $||Tx-Ty|| \leq ||x-y||$ for all $x, y \in C$), then T has a fixed point in C.

It is well known that if X fails to have the weak fixed point property then it fails to have weak normal structure; that is, X contains a weak compact convex subset C with more than one point which is diametral in the sense that, for all $x \in C$

$$\sup\{\|y-x\|:y\in C\} = \dim C := \sup\{\|y-z\|:y,\,z\in C\}.$$

Further, if X fails to have weak normal structure then there exists a sequence, (x_n) , satisfying;

(S1)
$$x_n \xrightarrow{w} 0$$

and for $C := \overline{\operatorname{co}}\{x_n : n \in \mathbb{N}\}$

(S2)
$$\lim_{n} ||x - x_n|| = \operatorname{diam} C = 1, \quad \text{for all } x \in C.$$

That is, (x_n) is a non-constant weak null sequence which is 'diameterising' for its closed convex hull. In particular, since $0 \in C$, we have $||x_n|| \to 1$.

Details of these and related results may be found in the monograph by Goebel and Kirk [7] for example.

Received 6th September, 1993

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

For the Banach space X we define $\delta: [0, 2] \times X \setminus \{0\} \longrightarrow |\mathbb{R}|$ by

$$\delta(\varepsilon, x) \ := \ \inf \left\{ 1 - \left\| y + \frac{\varepsilon}{2 \, \|x\|} x \right\| : \|y\| \leqslant 1 \text{ and } \left\| y + \frac{\varepsilon}{\|x\|} x \right\| \leqslant 1 \right\}.$$

We refer to $\delta(\varepsilon, x)$ as the modulus of convexity in the direction x. X is uniformly convex in every direction (UCED) if $\delta(\varepsilon, x) > 0$, for all $x \neq 0$ and all $\varepsilon > 0$ (Day, James and Swaminathan [2]).

The modulus of convexity of X is given by

$$\delta(\varepsilon) := \inf_{x \neq 0} \delta(\varepsilon, x),$$

and X is uniformly convex if $\delta(\varepsilon) > 0$, for all $\varepsilon > 0$.

Following Day, given $\varepsilon_0 \in (0, 2]$ we say X is ε_0 -inquadrate if $\delta(\varepsilon_0) > 0$.

By analogue with this last definition, for $\varepsilon_0 \in (0, 2]$ we shall say X is ε_0 -inquadrate in every direction if $\delta(\varepsilon_0, x) > 0$, for all $x \neq 0$.

It is readily verified that X is ε_0 -inquadrate in every direction if and only if whenever $\limsup_n \|x_n\| \leq 1$, $\limsup_n \|x_n + \lambda_n x\| \leq 1$, and $\|x_n + (\lambda_n/2)x\| \longrightarrow 1$ we have $\limsup_n |\lambda_n| \|x\| \leq \varepsilon_0$.

Note there are also the weaker notions, of X being ε_0 -inquadrate in some subset of directions, and for each $x \neq 0$ there being an $\varepsilon_x \in [0, 2)$ with $\delta(\varepsilon_x, x) > 0$, however; these will not concern us.

Garkavi [5] showed that spaces which are UCED have weak normal structure and hence enjoy the weak fixed point property. An essentially similar argument establishes the result for spaces which are ε_0 -inquadrate in every direction for some $\varepsilon_0 \in (0, 1)$. To see this, suppose that X fails weak normal structure and so contains a sequence (x_n) satisfying (S1) and (S2). Choose m so that $||x_m|| > \varepsilon_0$, then putting $x = x_m$ we have $||x_n|| \longrightarrow 1$, $||x_n - x|| \longrightarrow 1$ and, since $0 \in C$, so $x/2 \in C$, $||x_n - x/2|| \longrightarrow 1$ contradicting the assumption that X is ε_0 -inquadrate in every direction.

In general the situation when $1 \leqslant \varepsilon_0 < 2$ remains unresolved, even in the ε_0 -inquadrate case.

Two other 'classical' conditions known to be sufficient for weak normal structure are:

(1) The condition of Opial, whenever $x_n \xrightarrow{w} 0$ and $x \neq 0$ we have

$$\limsup_{n} ||x_n|| < \limsup_{n} ||x_n - x||.$$

The conditition was introduced by Opial [10], and shown to imply weak normal structure by Gossez and Lami Dozo [8]. The condition is unchanged if both lim sups are

0

replaced by $\liminf s$. We say X satisfies the non-strict Opial condition if the condition holds with strict inequality replaced by \leq .

(2) ε_0 -Uniform Radon-Reisz (ε_0 -URR), for some $\varepsilon_0 \in (0, 1)$; there exist $\delta > 0$ so that whenever $x_n \xrightarrow{w} x$, with $||x_n|| \leq 1$ and $sep(x_n) := \inf\{||x_n - x_m|| : n \neq m\} > \varepsilon_0$ we have $||x|| < 1 - \delta$. When the condition holds for all $\varepsilon_0 > 0$ we say X is URR. The condition is essentially due to Huff [9], and was shown to imply weak normal structure by van Dulst and Sims [4].

Gossez and Lami Dozo [8] showed that Opial's condition follows from the nonstrict version in the presence of uniform convexity, however a careful reading of their argument establishes the following.

PROPOSITION 1. If X is UCED and satisfies the non-strict Opial condition then X satisfies the Opial condition.

PROOF: Suppose X fails the Opial condition, then there exists a sequence $x_n \stackrel{w}{\longrightarrow} 0$ and $x \neq 0$ with

$$\liminf_{n} \|x_n\| \not< \liminf_{n} \|x_n - x\|.$$

By the non-strict Opial condition we must have equality, and without loss of generality we may assume that $||x_n|| \longrightarrow 1$. Let $y_n := x_n - x$, then $||x_n||, ||y_n|| \longrightarrow 1$ and $x_n - y_n = x$. Thus, by UCED we must have that

$$\liminf_{n} \|x_n - x/2\| = \liminf_{n} \|(x_n + y_n)/2\| < 1 = \liminf_{n} \|x_n\|,$$

contradicting the non-strict Opial condition.

In Sims [12], the notion of weak orthogonality (WORTH); if $x_n \xrightarrow{w} 0$ then for all $x \in X$ we have

$$||x_n-x|| - ||x_n+x|| \longrightarrow 0,$$

was introduced (also see Rosenthal [11]), and it was asked whether spaces with WORTH have the weak fixed point property. WORTH generalises the lattice theoretic notion of 'weak orthogonality' introduced by Borwein and Sims [1] and shown to be sufficient for the weak fixed point property in Sims [12].

PROPOSITION 2. The non-strict Opial condition is entailed by WORTH.

PROOF: If $x_n \xrightarrow{w} 0$ then for any $x \in X$ we have

$$\begin{split} \lim\sup_{n}\|x_{n}\| &\leqslant \frac{1}{2} \left(\limsup_{n}\|x_{n} - x\| + \limsup_{n}\|x_{n} + x\| \right) \\ &= \limsup_{n}\|x_{n} - x\| \,, \quad \text{as } \lim_{n}\|x_{n} - x\| - \|x_{n} + x\| = 0, \text{ by WORTH.} \end{split}$$

Combining this with proposition 1 we obtain the following.

COROLLARY 3. A Banach space which has UCED and WORTH satisfies the Opial condition.

Recently García Falset [6] working through the intermediate notion of the ACM-property has shown that spaces which are ε_0 -inquadrate for some $\varepsilon_0 < 2$ and have WORTH have the weak fixed point property.

We give a direct and elementary proof that the stronger conclusion of weak normal structure follows from the substantially weaker premises of WORTH and ε_0 -inquadrate in every direction for some $\varepsilon_0 < 2$. That ε_0 -inquadrate in every direction is genuinely weaker than ε_0 -inquadrate follows since spaces which are ε_0 -inquadrate, for an $\varepsilon_0 < 2$ are necessarily superreflexive (van Dulst [3]) while every separable Banach space has an equivalent norm which is UCED [2], and hence ε_0 -inquadrate in every direction for $0 < \varepsilon_0 < 2$.

DEFINITION: We say a Banach space X has property (k) if there exists $k \in [0, 1)$ such that whenever $x_n \xrightarrow{w} 0$, $||x_n|| \longrightarrow 1$ and $\liminf_n ||x_n - x|| \le 1$ we have $||x|| \le k$. Note: By considering subsequences we see that the property remains unaltered if in the definition we replace $\liminf_n ||x_n|| \le k$.

Property (k) is an interesting condition which clearly exposes the uniformity in Opial's condition. Indeed Opial's condition corresponds to propery (k) with k = 0.

PROPOSITION 4. If X has property (k) then X has weak normal structure.

PROOF: Suppose X fails weak normal structure, then there is a sequence (x_n) satisfying (S1) and (S2). Choosing m sufficiently large so that $||x_m|| > k$ (see the remark following S2) and taking $x := x_m$ we have that property (k) is contradicted by the sequence (x_n) .

We now turn to conditions sufficient for property (k), and hence also for weak normal structure.

PROPOSITION 5. If X is ε_0 -URR, for some $\varepsilon_0 \in (0,1)$ then X has property (k).

PROOF: Suppose $x_n \xrightarrow{w} 0$, $||x_n|| \longrightarrow 1$ and $\limsup_n ||x_n - x|| \le 1$. Choose m so that $||x_m|| > \varepsilon_0$, then, since $\liminf_n ||x_n - x_m|| \ge ||x_m||$, we may extract a subsequence, which we continue to denote by (x_n) , with $||x_n - x_m|| > \varepsilon_0$ for all n. Continuing in this way we obtain a subsequence, still denoted by (x_n) , with $\sup(x_n) > \varepsilon_0$. But, then $x_n - x \xrightarrow{w} x$ is a sequence in the unit ball with a separation constant greater than ε_0 and so $||x|| \le 1 - \delta$, where δ is given by the definition of ε_0 -URR. Thus X has property (k) with $k = 1 - \delta$.

PROPOSITION 6. If X is ε_0 -inquadrate in every direction for some $\varepsilon_0 \in (0,1)$ and satisfies the non-strict Opial condition then X has property (k).

PROOF: Suppose $x_n \xrightarrow{w} 0$, $||x_n|| \longrightarrow 1$ and $\limsup_n ||x_n - x|| \le 1$. If x = 0 there is nothing to prove, so we assume that $x \neq 0$. Then x_n and $y_n := x_n - x$ are two sequences in the unit ball with $x_n - y_n = x$ a fixed direction, so

$$\left\|\frac{x_n+y_n}{2}\right\| \leqslant 1-\delta(\|x\|,x)$$

$$<1, \quad \text{if } \delta(\|x\|,x)>0.$$

But, then $\limsup_n \|x_n - x/2\| < 1 = \limsup_n \|x_n\|$, contradicting the non-strict Opial condition. Thus we must have $\delta(\|x\|, x) = 0$ and this requires $\|x\| \leqslant \varepsilon_0$. So X has property (k) with $k = \varepsilon_0$.

The case when X is ε_0 -inquadrate in every direction for an $\varepsilon_0 \in [1,2)$ is handled by the following proposition which in conjunction with proposition 3 yields our main result.

PROPOSITION 7. If X is ε_0 -inquadrate in every direction for some $\varepsilon_0 \in (0,2)$ and has WORTH then X has property (k).

PROOF: Suppose $x_n \xrightarrow{w} 0$, $||x_n|| \longrightarrow 1$ and $\limsup_n ||x_n - x|| \le 1$. Let a_n : $x_n - x$ and $b_n := x_n + x$. Then by WORTH $||a_n|| - ||b_n|| \longrightarrow 0$, so $\limsup_n ||b_n|| = x_n - x$ $\limsup_n \|a_n\| = \limsup_n \|x_n - x\| \leqslant 1$, and $b_n - a_n = 2x$. Therefore we have

$$\limsup_{n} \|x_{n}\| = \limsup_{n} \|(a_{n} + b_{n})/2\| \leqslant 1 - \delta(2 \|x\|, x) < 1,$$

0 a contradiction, unless $2||x|| \le \varepsilon_0$. Thus X has property (k) with $k = \varepsilon_0/2$.

If X is ε_0 -inquadrate then the calculations of the previous proof allow some flexibility. If we measure the 'degree of WORTHwhileness' of a Banach space X by

$$w:=\sup\{\lambda:\lambda\liminf_n\|x_n+x\|\leqslant\liminf_n\|x_n-x\|\,,\,\, ext{whenever}\,\,x_n\overset{w}{\longrightarrow}0\,\, ext{and}\,\,x\in X\},$$

(so X has WORTH if and only if w=1) then we can adapt the above calculations to verify the following.

PROPOSITION 8. X has property (k) if

$$w > \max\{\varepsilon_0/2, 1 - \delta(\varepsilon_0)\}$$

for some positive ε_0 .

We close by noting that many spaces have WORTH, including all Banach lattices which are 'weakly orthogonal' in the sense introduced by Borwein and Sims [1]. In particular for $0 < \alpha < 1$ the space ℓ_2 with the equivalent norm $\|x\| := \max\{\alpha \|x\|_2, \|x\|_{\infty}\}$ has WORTH and hence satisfies the non-strict Opial condition, but fails to satisfy the Opial condition for any α .

However, many important spaces do not enjoy WORTH, for example with the exception of p=2 all the spaces $\mathcal{L}_p[0,1]$ fail to satisfy the non-strict Opial condition (see the details of the example given in Opial [10]) and hence also fail to have WORTH. They do however enjoy property (k); for example, when p>2 it follows from Clarkson's inequality that we may take $k=(1-2^{-p})^{1/p}$.

REFERENCES

- [1] J.M. Borwein and B. Sims, 'Non-expansive mappings on Banach lattices and related topics', Houston J. Math 10 (1984), 339-355.
- [2] M.M. Day, R.C. James and S. Swaminathan, 'Normed linear spaces that are uniformly convex in every direction', Canad. J. Math. 23 (1971), 1051-1059.
- [3] D. van Dulst, Reflexive and superreflexive Banach spaces, M.C. Tract 102 (Mathematical Centre, Amsterdam, 1978).
- [4] D. van Dulst and B. Sims, 'Fixed points of nonexpansive mappings and Chebyshev centres in Banach spaces with norms of type KK', in *Banach space theory and its applications*, Lecture Notes in Maths. 991 (Springer Verlag, Berlin, Heidelberg, New York, 1983), pp. 35-43.
- [5] A.L. Garkavi, 'The best possible net and the best possible cross-section of a set in a normed linear space', Izv. Akad. Nauk. SSSR Ser. Mat 26 (1962), 87-106. Amer. Math. Soc. Trans. Ser. 39 (1964), 111-131.
- [6] J. García Falset, 'The fixed point property in Banach spaces whose characteristic of uniform convexity is less than 2', J. Austral. Math. Soc. 54 (1993), 169-173.
- [7] K. Goebel and W.A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics 28 (Cambridge University Press, New York, 1990).
- [8] J.-P. Gossez and E. Lami Dozo, 'Some geometric properties related to the fixed point theory for nonexpansive mappings', *Pacific J. Math.* 3 (1972), 565-573.
- [9] R. Huff, 'Banach spaces which are nearly uniformly convex', Rocky Mountain J. Math. 10 (1980), 743-749.
- [10] Z.O. Opial, 'Weak convergence of the sequence of successive approximations for non-expansive mappings', Bull. Amer. Math. Soc 73 (1967), 591-597.
- [11] H.P. Rosenthal, 'Some remarks concerning unconditional basic sequences', Longhorn Note
 Uni of Texas, Texas Functinal Analysis Seminar (1982-3), pp. 15-47.
- [12] B. Sims, 'Orthogonality and fixed points of nonexpansive maps', Proc. Centre Math. Anal. Austral. Nat. Univ. 20 (1988), 178-186.

Department of Mathematics The University of Newcastle Newcastle NSW 2308 Australia