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Uniqueness and Hyers–Ulam’s stability
for a fractional nonlinear partial
integro-differential equation with variable
coefficients and a mixed boundary
condition
Chenkuan Li
Abstract. Introducing a pair-parameter matrix Mittag–Leffler function, we study the uniqueness
and Hyers–Ulam stability to a new fractional nonlinear partial integro-differential equation with
variable coefficients and a mixed boundary condition using Banach’s contractive principle as well
as Babenko’s approach in a Banach space. These investigations have serious applications since
uniqueness and stability analysis are essential topics in various research fields. The techniques used
also work for different types of differential equations with initial or boundary conditions, as well
as integral equations. Moreover, we present a Python code to compute approximate values of our
newly established pair-parameter matrix Mittag–Leffler functions, which extend the multivariate
Mittag–Leffler function. A few examples are given to show applications of the key results obtained.

1 Introduction

In this section, we are going to introduce some basic concepts on fractional calculus,
a pair-parameter (β, γ) matrix Mittag–Leffler function, Babenko’s approach dealing
with a fractional differential equation with a nonlocal initial condition, as well as the
current work on fractional partial differential equations.

Let ω ∈ [0, 1]n ⊂ R
n and χ ∈ [0, 1]. Then we define for β1 , . . . , βn ≥ 0 [4],

Iβ1
1 . . . Iβn

n Λ(χ, ω) = 1
Γ(β1) . . . Γ(βn)

⋅ ∫
ω1

0
⋯∫

ωn

0
(ω1 − τ1)β1−1 . . . (ωn − τn)βn−1Λ(χ, τ1 , . . . , τn)dτn . . . dτ1 ,

where Λ is a continuous mapping from [0, 1] × [0, 1]n to R.
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1378 C. Li

In particular, we have

I0
1 . . . I0

n Λ(χ, ω) = Λ(χ, ω)

from [5].
The partial Liouville–Caputo fractional derivative c ∂α/∂χα of order 2 < α ≤ 3 with

respect to χ is defined in [4] as

( c ∂α

∂χα Λ)(χ, ω) = 1
Γ(3 − α) ∫

χ

0
(χ − τ)2−α Λ′′′χ (τ, ω)dτ.

One of the most essential subjects of differential equations is the stability theory of
Hyers–Ulam [9]. The idea of such stability for differential equations is the substitution
of the equation with a given inequality that acts as a perturbation of the equation.

In this paper, we study the uniqueness and Hyers–Ulam stability for the fol-
lowing new fractional nonlinear partial integro-differential equation (FNPIDE) for
α i j ≥ 0 (i = 1, 2, . . . , n, j = 1, 2, . . . , l ∈ N):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c ∂α

∂χα Λ(χ, ω) +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Λ(χ, ω) = ϕ(χ, ω, Λ(χ, ω)),

Λ(0, ω) = ϕ1(ω), Λ(1, ω) = ϕ2(ω), Λ′(1, ω) = ϕ3(ω),
(1.1)

where (χ, ω) ∈ [0, 1] × [0, 1]n , a j , ϕk ∈ C([0, 1]n) for k = 1, 2, 3, and ϕ ∶ [0, 1] ×
[0, 1]n ×R → R satisfies certain conditions to be given later.

In addition, the operator Iα
χ is the partial Riemann–Liouville fractional integral of

order α with respect to χ, given by

(Iα
χ Λ)(χ, ω) = 1

Γ(α) ∫
χ

0
(χ − τ)α−1Λ(τ, ω)dτ, χ ∈ [0, 1].

Our main techniques are to derive an equivalent integral equation of equation (1.1)
by Babenko’s approach and then to obtain the uniqueness and Hyers–Ulam stability
using Banach’s contractive principle and newly established pair-parameter Mittag–
Leffler functions below.

Assume α i j ≥ 0, α i > 0 for all i = 1, . . . , n, j = 1, . . . , l , and there is 1 ≤ i0 ≤ n such
that α i0 j > 0 for all j = 1, . . . , l . We define

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 . . . α1l α1
α21 . . . α2l α2

. . .
αn1 . . . αnl αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.(1.2)

Definition 1.1 Let β ≥ 0, γ > 0. A pair-parameter (β, γ) matrix Mittag–Leffler func-
tion is defined by

E(β ,γ)
M (ζ1 , . . . , ζ l) =

∞

∑
k=0

1
Γ(βk + γ) ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , kl
)

⋅
ζk1

1 . . . ζk l
l

Γ(α11k1 + ⋅ ⋅ ⋅ + α1l kl + α1) . . . Γ(αn1k1 + ⋅ ⋅ ⋅ + αnl kl + αn)
,
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where ζ i ∈ C for i = 1, 2, . . . , l , and

( k
k1 , . . . , kl

) = k!
k1! . . . kl !

.

It follows that

E(0,1)
M (ζ1 , . . . , ζ l) = E(0,2)

M (ζ1 , . . . , ζ l) = EM(ζ1 , . . . , ζ l),

where EM is a matrix Mittag–Leffler function given in [6].
Since there exists a positive constant θ such that

Γ(βk + γ) ≥ θ ,
Γ(α11k1 + ⋅ ⋅ ⋅ + α1l kl + α1) ≥ θ ,
. . . ,
Γ(αn1k1 + ⋅ ⋅ ⋅ + αnl kl + αn) ≥ θ ,

we claim

∣E(β ,γ)
M (ζ1 , . . . , ζ l)∣

≤ 1
θn

∞

∑
k=0

∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , kl

) ∣ζ1∣k1 . . . ∣ζ l ∣k l

Γ(α i0 1k1 + ⋅ ⋅ ⋅ + α i0 l k l + α i0)

= 1
θn E(α i0 1 , . . . ,α i0 l ),α i0

(∣ζ l ∣, . . . , ∣ζ l ∣) < +∞,

which implies that E(β ,γ)
M (ζ1 , . . . , ζ l) is well defined as the multivariate Mittag–Leffler

function E(α i0 1 , . . . ,α i0 l ),α i0
(∣ζ l ∣, . . . , ∣ζ l ∣) converges [3]. Obviously,

E(0,1)
P (ζ1 , . . . , ζ l) = E(0,2)

P (ζ1 , . . . , ζ l)

=
∞

∑
k=0

∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , kl

)
ζk1

1 . . . ζk l
l

Γ(α i0 1k1 + ⋅ ⋅ ⋅ + α i0 l k l + α i0)
= E(α i0 1 , . . . ,α i0 l ),α i0

(ζ l , . . . , ζ l),

where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 1
. . .

α i0 1 . . . α i0 l α i0

. . .
0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

E(0,1)
P0

(ζ) = E(0,2)
P0

(ζ) =
∞

∑
k=0

ζ k

Γ(α i0 1k + α i0)
= Eα i0 1 , α i0

(ζ),
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which is the well-known two-parameter Mittag–Leffler function, and

P0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 1
. . .

α i0 1 . . . 0 α i0

. . .
0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Babenko’s approach (BA) [1] is a useful tool for dealing with various integral or
differential equations (including PDEs) with initial or boundary problems. Let f be a
continuous function on [0, 1] ×R with

∥ f ∥ = sup
(x , y)∈[0,1]×R

∣ f (x , y)∣ < +∞.

To demonstrate this method in detail, we convert the following fractional differential
equation with a nonlocal initial condition into an equivalent implicit integral equation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

c Dα Φ(x) + aΦ(x) = f (x , Φ(x)), x ∈ [0, 1],

Φ(0) = β ∫
1

0
Φ(x)dx ,

(1.3)

where 0 < α ≤ 1, a and β are constants.
Evidently, we get by applying the operator Iα to equation (1.3)

Iα(c Dα Φ(x)) + aIα Φ(x) = Iα f (x , Φ(x)),

which infers that

Φ(x) − Φ(0) + aIα Φ(x) = Iα f (x , Φ(x)),

and

(1 + aIα)Φ(x) = Iα f (x , Φ(x)) + β ∫
1

0
Φ(x)dx .

Treating the factor (1 + aIα) as a variable and using BA, we come to

Φ(x) = (1 + aIα)−1 Iα f (x , Φ(x)) + β (1 + aIα)−1
∫

1

0
Φ(x)dx

=
∞

∑
k=0

(−1)k ak Iαk+α f (x , Φ(x)) + β
∞

∑
k=0

(−1)k ak Iαk ∫
1

0
Φ(x)dx

=
∞

∑
k=0

(−1)k ak 1
Γ(αk + α) ∫

x

0
(x − s)αk+α−1 f (s, Φ(s))ds

+ β
∞

∑
k=0

(−1)k ak 1
Γ(αk + 1)xαk ∫

1

0
Φ(x)dx

= ∫
x

0
(x − s)α−1Eα ,α (−a(x − s)α) f (s, Φ(s))ds + β ∫

1

0
Φ(x)dx Eα , 1(−axα),
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by noting that

∣∫
x

0
(x − s)α−1Eα ,α (−a(x − s)α) f (s, Φ(s))ds∣

≤ 1
α
∥ f ∥

∞

∑
k=0

∣a∣k
Γ(αk + α) < +∞,

and

Φ(0) = β ∫
1

0
Φ(x)dx .

In summary, equation (1.3) is equivalent to the following integral equation:

Φ(x) = ∫
x

0
(x − s)α−1Eα ,α (−a(x − s)α) f (s, Φ(s))ds + β ∫

1

0
Φ(x)dx Eα , 1(−axα).

(1.4)

The above integral equation, in fact, plays an important role in studying the uniqueness
of equation (1.3) in the Banach space C[0, 1] with the norm

∥Φ∥ = max
x∈[0,1]

∣Φ(x)∣ < +∞.

We further assume there is a constantL > 0 such that f satisfies the following Lipschitz
condition:

∣ f (x , y1) − f (x , y2)∣ ≤ L∣y1 − y2∣,

and

B = L

α
Eα ,α(∣a∣) + ∣β∣Eα ,1(∣a∣) < 1.

Then equation (1.3) has a unique solution in C[0, 1].
To prove this, we define a nonlinear mapping M over C[0, 1] as

(MΦ)(x)

= ∫
x

0
(x − s)α−1Eα ,α (−a(x − s)α) f (s, Φ(s))ds + β ∫

1

0
Φ(x)dx Eα , 1(−axα).

It follows from the above that (MΦ)(x) ∈ C[0, 1]. We are going to show that M is
contractive. For Φ1 , Φ2 ∈ C[0, 1], we have

(MΦ1)(x) − (MΦ2)(x)

= ∫
x

0
(x − s)α−1Eα ,α (−a(x − s)α) [ f (s, Φ1(s)) − f (s, Φ2(s))]ds

+ β ∫
1

0
[Φ1(x) − Φ2(x)]dx Eα , 1(−axα).

Hence,

∥MΦ1 − MΦ2∥ ≤ (L
α

Eα ,α(∣a∣) + ∣β∣Eα ,1(∣a∣)) ∥Φ1 − Φ2∥ = B∥Φ1 − Φ2∥.
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Since B < 1, we claim that equation (1.3) has a unique solution in C[0, 1] by Banach’s
contractive principle (BCP).

We define S([0, 1] × [0, 1]n) as the Banach space of all continuous mappings from
[0, 1] × [0, 1]n to R with the norm

∥Λ∥ = sup
(χ, ω)∈[0,1]×[0,1]n

∣Λ(χ, ω)∣, for Λ ∈ S([0, 1] × [0, 1]n).

Fractional partial differential equations (a generalization of classical PDEs of integer
order) are used to model various phenomena in physics, engineering, and other fields.
There are intensive studies on fractional PDEs using various approaches, such as
integral transforms [8], analytical and numerical solutions [10], homotopy analysis
technique [2, 11], variational iteration method [12] and so on. Very recently, Li et al.
[7] investigated the uniqueness of solutions for the following fractional PDE with
nonlocal initial value conditions for 2 < α ≤ 3, 0 < α1 ≤ 1 and α2 > 0 based on BCP,
BA and the multivariate Mittag–Leffler function for a constant η:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c ∂α

∂χα Λ(χ, ω) + c0(ω) c ∂α1

∂χα1
Λ(χ, ω) + c1(ω)Λ(χ, ω) + c2(ω)Iα2

ω Λ(χ, ω)

= f (χ, ω, Λ(χ, ω)),

Λ(0, ω) = η∫
1

0
Λ(χ, ω)d χ, ∂

∂χ
Λ(0, ω) = ∫

1

0
ψ(χ)Λ(χ, ω)d χ, Λ′′χ(0, ω) = 0,

where (χ, ω) ∈ [0, 1] × [0, b], ψ ∈ C[0, 1] and f ∶ [0, 1] × [0, b] ×R → R satisfies cer-
tain conditions.

We will first convert equation (1.1) into an equivalent implicit integral equation in
a series by BA in Section 2, and then further study the uniqueness of solutions via
BCP in the space S([0, 1] × [0, 1]n). In Section 3, we derive the Hyers–Ulam stability
based on the implicit integral equation and present several examples demonstrating
applications of the key results obtained in Section 4. Finally, we summarize the entire
work in Section 5.

2 Uniqueness

We begin converting equation (1.1) to an implicit integral equation then derive
sufficient conditions for the uniqueness based on Banach’s contractive principle.

Theorem 2.1 Suppose a j , ϕ1 , ϕ2 , ϕ3 ∈ C([0, 1]n) for j = 1, 2, . . . , j, ϕ is a continuous
function on [0, 1] × [0, 1]n ×R with

sup
(χ,ω , y)∈[0,1]×[0,1]n×R

∣ϕ∣ < +∞,

α i j ≥ 0 for all i = 1, . . . , n, j = 1, . . . , l , and there is 1 ≤ i0 ≤ n such that α i0 j > 0 for all
j = 1, . . . , l . Furthermore, we assume that

M j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 . . . α1l α1 j + 1
α21 . . . α2l α2 j + 1

. . .
αn1 . . . αnl αn j + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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and

Q = 1 − ( 1
4
+ 1

α
) 1

Γ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l) > 0.

Then equation (1.1) is equivalent to the following implicit integral equation:

Λ =
∞

∑
k=1
(−1)k ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , k l
)(a1(ω)Iα

χ Iα11
1 . . . Iαn1

n )
k1 ⋅ ⋅ ⋅ (a l(ω)Iα

χ Iα1l
1 . . . Iαnl

n )
k l

⋅ (ϕ1(ω)(1 − 2χ + χ2) + ϕ2(ω)(2χ − χ2) + ϕ3(ω)(χ2 − χ) + Iα−1
χ=1 (χϕ − χ2ϕ)

+ Iα
χ=1(χ2ϕ − 2χϕ) + Iα

χ ϕ +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ − χ2Λ)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ − 2χΛ)).

(2.1)

In addition, Λ is a uniformly bounded function satisfying

∥Λ∥ ≤ 1
Q

E(α ,1)
M0
(A1 , . . . , A l) ⋅ ( max

ω∈[0,1]n
∣ϕ1(ω)∣ + max

ω∈[0,1]n
∣ϕ2(ω)∣ +

1
4

max
ω∈[0,1]n

∣ϕ3(ω)∣)

+ 1
Q

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠

sup
(χ,ω , y)∈[0,1]×[0,1]n×R

∣ϕ∣

< +∞,

where

M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 . . . α1l 1
α21 . . . α2l 1

. . .
αn1 . . . αnl 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof It follows from [7] that

Iα
χ (

c ∂α

∂χα Λ)(χ, ω) = Λ(χ, ω) − Λ(0, ω) − Λ′χ(0, ω)χ − Λ
′′

χ(0, ω) χ2

2
,

where 0 < α ≤ 3.
Applying the integral operator Iα

χ to equation (1.1) and using the condition
Λ(0, ω) = ϕ1(ω), we get

Λ(χ, ω) − ϕ1(ω) − Λ′χ(0, ω)χ − Λ
′′

χ(0, ω) χ2

2

+
l
∑
j=1

a j(ω)Iα
χ Iα1 j

1 . . . Iαn j
n Λ(χ, ω) = Iα

χ ϕ(χ, ω, Λ(χ, ω)).(2.2)
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Setting χ = 1, we come to

Λ(1, ω) − ϕ1(ω) − Λ′χ(0, ω) − Λ
′′

χ(0, ω) 1
2

+
l
∑
j=1

a j(ω)Iα
χ=1Iα1 j

1 . . . Iαn j
n Λ(χ, ω) = Iα

χ=1ϕ(χ, ω, Λ(χ, ω)).(2.3)

Differentiating equation (2.2) with respect to χ, we deduce that for χ = 1,

ϕ3(ω) − Λ′χ(0, ω) − Λ
′′

χ(0, ω)

+
l
∑
j=1

a j(ω)Iα−1
χ=1 Iα1 j

1 . . . Iαn j
n Λ(χ, ω) = Iα−1

χ=1 ϕ(χ, ω, Λ(χ, ω)),(2.4)

by the given initial condition.
From equations (2.3) and (2.4), we derive that

1
2

Λ
′′

χ(0, ω) = ϕ1(ω) − ϕ2(ω) + ϕ3(ω)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n (Iα
χ=1 − Iα−1

χ=1 )Λ(χ, ω) + (Iα
χ=1 − Iα−1

χ=1 )ϕ(χ, ω, Λ(χ, ω)),

and

Λ′χ(0, ω) = 2ϕ2(ω) − 2ϕ1(ω) − ϕ3(ω)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n (Iα−1
χ=1 − 2Iα

χ=1)Λ(χ, ω) + (Iα−1
χ=1 − 2Iα

χ=1)ϕ(χ, ω, Λ(χ, ω)).

Hence,

⎛
⎝

1 +
l
∑
j=1

a j(ω)Iα
χ Iα1 j

1 . . . Iαn j
n

⎞
⎠

Λ(χ, ω)

= ϕ1(ω)(1 − 2χ + χ2) + ϕ2(ω)(2χ − χ2) + ϕ3(ω)(χ2 − χ) + Iα−1
χ=1 (χϕ − χ2ϕ)

+ Iα
χ=1(χ2ϕ − 2χϕ) + Iα

χ ϕ +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ − χ2Λ)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ − 2χΛ).

Using BA, we deduce that

Λ(χ, ω) =
⎛
⎝

1 +
l
∑
j=1

a j(ω)Iα
χ Iα1 j

1 . . . Iαn j
n
⎞
⎠

−1

⋅ (ϕ1(ω)(1 − 2χ + χ2) + ϕ2(ω)(2χ − χ2) + ϕ3(ω)(χ2 − χ) + Iα−1
χ=1 (χϕ − χ2ϕ)
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+ Iα
χ=1(χ2ϕ − 2χϕ) + Iα

χ ϕ +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ − χ2Λ)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ − 2χΛ))

=
∞

∑
k=1
(−1)k ⎛

⎝
l
∑
j=1

a j(ω)Iα
χ Iα1 j

1 . . . Iαn j
n
⎞
⎠

k

⋅ (ϕ1(ω)(1 − 2χ + χ2) + ϕ2(ω)(2χ − χ2) + ϕ3(ω)(χ2 − χ) + Iα−1
χ=1 (χϕ − χ2ϕ)

+ Iα
χ=1(χ2ϕ − 2χϕ) + Iα

χ ϕ +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ − χ2Λ)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ − 2χΛ))

=
∞

∑
k=1
(−1)k ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , k l
)(a1(ω)Iα

χ Iα11
1 . . . Iαn1

n )
k1 ⋅ ⋅ ⋅ (a l(ω)Iα

χ Iα1l
1 . . . Iαnl

n )
k l

⋅ (ϕ1(ω)(1 − 2χ + χ2) + ϕ2(ω)(2χ − χ2) + ϕ3(ω)(χ2 − χ) + Iα−1
χ=1 (χϕ − χ2ϕ)

+ Iα
χ=1(χ2ϕ − 2χϕ) + Iα

χ ϕ +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ − χ2Λ)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ − 2χΛ)) = T1 + ⋅ ⋅ ⋅ + T8 ,

where

T1 =
∞

∑
k=1

(−1)k χαk

Γ(αk + 1) (1 − 2χ
1 + αk

+ 2χ2

(2 + αk)(1 + αk)) ∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)

⋅ (a1(ω)Iα11
1 . . . Iαn1

n )k1 ⋅ ⋅ ⋅ (a l(ω)Iα1l
1 . . . Iαnl

n )k l ϕ1(ω),

T2 = 2
∞

∑
k=1

(−1)k χαk+1

Γ(αk + 2) (1 − χ
αk + 2

) ∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)

⋅ (a1(ω)Iα11
1 . . . Iαn1

n )k1 ⋅ ⋅ ⋅ (a l(ω)Iα1l
1 . . . Iαnl

n )k l ϕ2(ω),

T3 =
∞

∑
k=1

(−1)k χαk+1

Γ(αk + 2) ( 2χ
αk + 2

− 1) ∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)

⋅ (a1(ω)Iα11
1 . . . Iαn1

n )k1 ⋅ ⋅ ⋅ (a l(ω)Iα1l
1 . . . Iαnl

n )k l ϕ3(ω),

T4 =
∞

∑
k=1

(−1)k ∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)(a1(ω)Iα11
1 . . . Iαn1

n )k1 ⋅ ⋅ ⋅ (a l(ω)Iα1l
1 . . . Iαnl

n )k l

⋅ Iαk
χ Iα−1

χ=1 (χ − χ2)ϕ,

T5 =
∞

∑
k=1

(−1)k ∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)(a1(ω)Iα11
1 . . . Iαn1

n )k1 ⋅ ⋅ ⋅ (a l(ω)Iα1l
1 . . . Iαnl

n )k l

⋅ Iαk
χ Iα

χ=1(χ2 − 2χ)ϕ,
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T6 =
∞

∑
k=1

(−1)k ∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)(a1(ω)Iα11
1 . . . Iαn1

n )k1 ⋅ ⋅ ⋅ (a l(ω)Iα1l
1 . . . Iαnl

n )k l

⋅ Iαk+α
χ ϕ,

T7 =
l
∑
j=1

a j(ω)
∞

∑
k=1

(−1)k ∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)

⋅ (a1(ω)Iα11
1 . . . Iαn1

n )k1 ⋅ ⋅ ⋅ (a l(ω)Iα1l
l . . . Iαnl

n )k l Iαk
χ Iα1 j

1 . . . Iαn j
n Iα−1

χ (χ − χ2)Λ,

and finally,

T8 =
l
∑
j=1

a j(ω)
∞

∑
k=1

(−1)k ∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)

⋅ (a1(ω)Iα11
1 . . . Iαn1

n )k1 ⋅ ⋅ ⋅ (a l(ω)Iα1l
l . . . Iαnl

n )k l Iαk
χ Iα1 j

1 . . . Iαn j
n Iα

χ=1(χ2 − 2χ)Λ.

Let

max
ω∈[0,1]n

∣a j(ω)∣ = A j , j = 1, 2, . . . , l ,

max
χ∈[0,1]

∣1 − 2χ + χ2∣ = 1, max
χ∈[0,1]

∣2χ − χ2∣ = 1, max
χ∈[0,1]

∣χ2 − χ∣ = 1
4

.

Thus,

∥Λ∥ ≤
∞

∑
k=0

1
Γ(αk + 1) ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , kl
)

⋅
Ak1

1 . . . Ak l
l

Γ(α11k1 + ⋅ ⋅ ⋅ + α1l kl + 1) . . . Γ(αn1k1 + ⋅ ⋅ ⋅ + αnl kl + 1)

⋅ ( max
ω∈[0,1]n

∣ϕ1(ω)∣ + max
ω∈[0,1]n

∣ϕ2(ω)∣ + 1
4

max
ω∈[0,1]n

∣ϕ3(ω)∣) + T21 + T22 + T23 ,

where

T21 =
1
4
+ 1

α
Γ(α)

∞

∑
k=0

1
Γ(αk + 1) ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , kl
)

⋅
Ak1

1 . . . Ak l
l

Γ(α11k1 + ⋅ ⋅ ⋅ + α1 l kl + 1) . . . Γ(αn1k1 + ⋅ ⋅ ⋅ + αnl kl + 1) sup
(χ,ω , y)∈[0,1]×[0,1]n×R

∣ϕ∣,

T22 =
∞

∑
k=0

1
Γ(αk + α + 1) ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , kl
)

⋅
Ak1

1 . . . Ak l
l

Γ(α11k1 + ⋅ ⋅ ⋅ + α1 l kl + 1) . . . Γ(αn1k1 + ⋅ ⋅ ⋅ + αnl kl + 1) sup
(χ,ω , y)∈[0,1]×[0,1]n×R

∣ϕ∣,
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and

T23 = ∥Λ∥
4 Γ(α)

l
∑
j=1

A j
∞

∑
k=0

1
Γ(αk + 1) ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , kl
)

⋅
Ak1

1 . . . Ak l
l

Γ(α11k1 + ⋅ ⋅ ⋅ + α1l kl + α1 j + 1) . . . Γ(αn1k1 + ⋅ ⋅ ⋅ + αnl kl + αn j + 1)

+ ∥Λ∥
Γ(α + 1)

l
∑
j=1

A j
∞

∑
k=0

1
Γ(αk + 1) ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , kl
)

⋅
Ak1

1 . . . Ak l
l

Γ(α11k1 + ⋅ ⋅ ⋅ + α1l kl + α1 j + 1) . . . Γ(αn1k1 + ⋅ ⋅ ⋅ + αnl kl + αn j + 1)

= ∥Λ∥
4 Γ(α)

l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l) +
∥Λ∥

αΓ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l)

= ∥Λ∥ ( 1
4
+ 1

α
) 1

Γ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l).

Using our assumption

Q = 1 − ( 1
4
+ 1

α
) 1

Γ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l) > 0,

we claim that

∥Λ∥ ≤ 1
Q

E(α ,1)
M0
(A1 , . . . , A l) ⋅ ( max

ω∈[0,1]n
∣ϕ1(ω)∣ + max

ω∈[0,1]n
∣ϕ2(ω)∣ +

1
4

max
ω∈[0,1]n

∣ϕ3(ω)∣)

+ 1
Q

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠

sup
(χ,ω , y)∈[0,1]×[0,1]n×R

∣ϕ∣

< +∞,

which indicates that Λ is a uniformly bounded function. This completes the proof of
Theorem 2.1. ∎

Theorem 2.2 Suppose a j , ϕ1 , ϕ2 , ϕ3 ∈ C([0, 1]n) for j = 1, 2, . . . , j, ϕ is a continuous
and bounded function on [0, 1] × [0, 1]n ×R, satisfying the Lipschitz condition for a
positive constant C

∣ϕ(χ, ω, y1) − ϕ(χ, ω, y2)∣ ≤ C∣y1 − y2∣, y1 , y2 ∈ R,

α i j ≥ 0 for all i = 1, . . . , n, j = 1, . . . , l , and there is 1 ≤ i0 ≤ n such that α i0 j > 0 for all
j = 1, . . . , l . Furthermore, we assume that

M j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 . . . α1l α1 j + 1
α21 . . . α2l α2 j + 1

. . .
αn1 . . . αnl αn j + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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and

q = ( 1
4
+ 1

α
) 1

Γ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l)

+ C

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠
< 1,

where

M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 . . . α1l 1
α21 . . . α2l 1

. . .
αn1 . . . αnl 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then equation (1.1) has a unique uniformly bounded solution in the space S([0, 1] ×
[0, 1]n).

Proof We define a nonlinear mapping F over S([0, 1] × [0, 1]n) as

(FΛ)(χ, ω)

=
∞

∑
k=0
(−1)k ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , k l
)(a1(ω)Iα

χ Iα11
1 . . . Iαn1

n )
k1 ⋅ ⋅ ⋅ (a l(ω)Iα

χ Iα1l
1 . . . Iαnl

n )
k l

⋅ (ϕ1(ω)(1 − 2χ + χ2) + ϕ2(ω)(2χ − χ2) + ϕ3(ω)(χ2 − χ) + Iα−1
χ=1 (χϕ − χ2ϕ)

+ Iα
χ=1(χ2ϕ − 2χϕ) + Iα

χ ϕ +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ − χ2Λ)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ − 2χΛ)).

It follows from the proof of Theorem 2.1 that (FΛ) ∈ S([0, 1] × [0, 1]n). We shall show
that F is contractive. Indeed, for Λ1 , Λ2 ∈ S([0, 1] × [0, 1]n), we have

(FΛ1)(χ, ω) − (FΛ2)(χ, ω)

=
∞

∑
k=1
(−1)k ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , k l
)(a1(ω)Iα

χ Iα11
1 . . . Iαn1

n )
k1 ⋅ ⋅ ⋅ (a l(ω)Iα

χ Iα1l
1 . . . Iαnl

n )
k l

⋅ (Iα−1
χ=1 (χϕ(χ, ω, Λ1) − χ2ϕ(χ, ω, Λ1)) − Iα−1

χ=1 (χϕ(χ, ω, Λ2) − χ2ϕ(χ, ω, Λ2))
+ Iα

χ=1(χ2ϕ(χ, ω, Λ1) − 2χϕ(χ, ω, Λ1)) − Iα
χ=1(χ2ϕ(χ, ω, Λ2) − 2χϕ(χ, ω, Λ2))

+ Iα
χ ϕ(χ, ω, Λ1) − Iα

χ ϕ(χ, ω, Λ2) +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ1 − χ2Λ1)

−
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ2 − χ2Λ2) +

l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ1 − 2χΛ1)

−
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ2 − 2χΛ2))
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=
∞

∑
k=1
(−1)k ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , k l
)(a1(ω)Iα

χ Iα11
1 . . . Iαn1

n )
k1 ⋅ ⋅ ⋅ (a l(ω)Iα

χ Iα1l
1 . . . Iαnl

n )
k l

⋅ (
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χ − χ2)(Λ1 − Λ2) +

l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1

⋅ (χ2 − 2χ)(Λ1 − Λ2) + Iα−1
χ=1 (χ − χ2)(ϕ(χ, ω, Λ1) − ϕ(χ, ω, Λ2))

+ Iα
χ=1(χ2 − 2χ)(ϕ(χ, ω, Λ1) − ϕ(χ, ω, Λ2)) + Iα

χ (ϕ(χ, ω, Λ1) − ϕ(χ, ω, Λ2))).

Therefore,

∥FΛ1 − FΛ2∥

≤ ( 1
4
+ 1

α
) 1

Γ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l)∥Λ1 − Λ2∥

+ C

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠
∥Λ1 − Λ2∥

= q∥Λ1 − Λ2∥.

Since q < 1, equation (1.1) has a unique uniformly bounded solution in S([0, 1] ×
[0, 1]n) by BCP. The proof is completed. ∎

3 The Hyers–Ulam stability

In this section, we are going to derive the Hyers–Ulam stability of equation (1.1) using
the implicit integral equation from Section 2.

Definition 3.1 We say that the FNPIDE (1.1) is Hyers–Ulam stable if there exists a
constant K > 0 such that for all ε > 0 and a continuously differentiable function Λ
satisfying the three boundary conditions and the inequality

,,,,,,,,,,,
c ∂α

∂χα Λ(χ, ω) +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Λ(χ, ω) − ϕ(χ, ω, Λ(χ, ω))
,,,,,,,,,,,
< ε,

then there exists a solution Λ0 of equation (1.1) such that

∥Λ(χ, ω) − Λ0(χ, ω)∥ < Kε,

where K is a Hyers–Ulam stability constant.

Theorem 3.1 Suppose a j , ϕ1 , ϕ2 , ϕ3 ∈ C([0, 1]n) for j = 1, 2, . . . , j, ϕ is a continuous
function on [0, 1] × [0, 1]n ×R satisfying the Lipschitz condition for a positive constantC

∣ϕ(χ, ω, y1) − ϕ(χ, ω, y2)∣ ≤ C∣y1 − y2∣, y1 , y2 ∈ R,

https://doi.org/10.4153/S0008414X24000348 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000348


1390 C. Li

α i j ≥ 0 for all i = 1, . . . , n, j = 1, . . . , l , and there is 1 ≤ i0 ≤ n such that α i0 j > 0 for all
j = 1, . . . , l . Furthermore, we assume that

M j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 . . . α1l α1 j + 1
α21 . . . α2l α2 j + 1

. . .
αn1 . . . αnl αn j + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

and

q = ( 1
4
+ 1

α
) 1

Γ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l)

+ C

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠
< 1,

where

M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 . . . α1l 1
α21 . . . α2l 1

. . .
αn1 . . . αnl 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then equation (1.1) is Hyers–Ulam stable in the space S([0, 1] × [0, 1]n).
Proof Let

Λ1(χ, ω) = c ∂α

∂χα Λ(χ, ω) +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Λ(χ, ω) − ϕ(χ, ω, Λ(χ, ω)).

Then

c ∂α

∂χα Λ(χ, ω) +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Λ(χ, ω) = ϕ(χ, ω, Λ(χ, ω)) + Λ1(χ, ω),

and from our assumption
∥Λ1∥ < ε.

It follows from the proof of Theorem 2.1 that
Λ(χ, ω)

=
∞

∑
k=0
(−1)k ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , k l
)(a1(ω)Iα

χ Iα11
1 . . . Iαn1

n )
k1 ⋅ ⋅ ⋅ (a l(ω)Iα

χ Iα1l
1 . . . Iαnl

n )
k l

⋅ (ϕ1(ω)(1 − 2χ + χ2) + ϕ2(ω)(2χ − χ2) + ϕ3(ω)(χ2 − χ) + Iα−1
χ=1 (χϕ − χ2ϕ)

+ Iα
χ=1(χ2ϕ − 2χϕ) + Iα

χ ϕ +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ − χ2Λ)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ − 2χΛ)

+ Iα−1
χ=1 (χΛ1 − χ2Λ1) + Iα

χ=1(χ2Λ1 − 2χΛ1) + Iα
χ Λ1),
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and

Λ0(χ, ω)

=
∞

∑
k=0
(−1)k ∑

k1+ ⋅ ⋅ ⋅ +k l=k
( k

k1 , . . . , k l
)(a1(ω)Iα

χ Iα11
1 . . . Iαn1

n )
k1 ⋅ ⋅ ⋅ (a l(ω)Iα

χ Iα1l
1 . . . Iαnl

n )
k l

⋅ (ϕ1(ω)(1 − 2χ + χ2) + ϕ2(ω)(2χ − χ2) + ϕ3(ω)(χ2 − χ) + Iα−1
χ=1 (χϕ − χ2ϕ)

+ Iα
χ=1(χ2ϕ − 2χϕ) + Iα

χ ϕ +
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 (χΛ0 − χ2Λ0)

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1(χ2Λ0 − 2χΛ0)),

by noting that ϕ is a continuous and

sup
(χ,ω)∈[0,1]×[0,1]n

∣ϕ(χ, ω, Λ(χ, ω))∣

= sup
(χ,ω)∈[0,1]×[0,1]n

∣ϕ(χ, ω, Λ(χ, ω)) − ϕ(χ, ω, 0) + ϕ(χ, ω, 0)∣

≤ C∥Λ∥ + sup
(χ,ω)∈[0,1]×[0,1]n

∣ϕ(χ, ω, 0)∣ < +∞,

if Λ ∈ S([0, 1] × [0, 1]n).
Hence,

∣Λ(χ, ω) − Λ0(χ, ω)∣

≤
∞

∑
k=0

∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)Ak1
1 . . . Ak l

l Iαk
χ Iα11 k1+ ⋅ ⋅ ⋅ +α1l k l

1

. . . Iαn1 k1+ ⋅ ⋅ ⋅ +αnl k l
n ⋅ (Iα−1

χ=1 ∣(χ − χ2)(ϕ(χ, ω, Λ) − ϕ(χ, ω, Λ0))∣
+ Iα

χ=1∣(χ2 − 2χ)(ϕ(χ, ω, Λ) − ϕ(χ, ω, Λ0))∣ + Iα
χ ∣(ϕ(χ, ω, Λ) − ϕ(χ, ω, Λ0))∣

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα−1
χ=1 ∣(χ − χ2)(Λ − Λ0)∣

+
l
∑
j=1

a j(ω)Iα1 j
1 . . . Iαn j

n Iα
χ=1∣(χ2 − 2χ)(Λ − Λ0)∣

+ Iα−1
χ=1 ∣(χΛ1 − χ2Λ1)∣ + Iα

χ=1∣(χ2Λ1 − 2χΛ1)∣ + Iα
χ ∣Λ1∣),

which implies that

∥Λ − Λ0∥

≤
∞

∑
k=0

∑
k1+ ⋅ ⋅ ⋅ +k l=k

( k
k1 , . . . , k l

)Ak1
1 . . . Ak l

l Iαk
χ Iα11 k1+ ⋅ ⋅ ⋅ +α1l k l

1

. . . Iαn1 k1+ ⋅ ⋅ ⋅ +αnl k l
n

⋅ (Iα−1
χ=1 ∣(χΛ1 − χ2Λ1)∣ + Iα

χ=1∣(χ2Λ1 − 2χΛ1)∣ + Iα
χ ∣Λ1∣)
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+ ( 1
4
+ 1

α
) 1

Γ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l)∥Λ − Λ0∥

+ C

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠
∥Λ − Λ0∥

= q∥Λ1 − Λ0∥ +
⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠
∥Λ1∥.

Finally, we have

∥Λ(χ, ω) − Λ0(χ, ω)∥

≤ 1
1 − q

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠
∥Λ1∥

< Kε,

where

K = 1
1 − q

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠

.

This completes the proof. ∎
Remark 3.2 We should point out that Theorem 3.1 does not require the condition
that ϕ is a bounded function. Moreover, Λ0 is not a uniformly bounded function in
general, which is different from Theorem 2.2. Since Ω = [0, 1] × [0, 1]n is bounded and
closed (compact) the Hyers–Ulam stability is guaranteed by noting the fact that all
continuous functions reach their maximum and minimum over Ω. The Hyers–Ulam
stability constant K obtained above is the best possible in our approach. There is a
possible lower bound on the Hyers–Ulam stability constant but it would be tough and
difficult to find it.

4 Examples

We will present two examples demonstrating applications of key theorems obtained
from previous sections.

Example 4.1 The following fractional differential equation with a nonlocal initial
condition:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c D0.5Φ(x) + 2Φ(x) = 1
513

sin(xΦ(x)), x ∈ [0, 1],

Φ(0) = 1
1349 ∫

1

0
Φ(x)dx ,

(4.1)

has a unique solution in C[0, 1].
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Proof Clearly,

f (x , y) = 1
513

sin(x y)

is bounded and

∣ f (x , y1) − f (x , y2)∣ ≤
1

513
∣x y1 − x y2∣ ≤

1
513

∣y1 − y2∣,

if x ∈ [0, 1]. It remains to find the value

B = L

α
Eα ,α(∣a∣) + ∣β∣Eα ,1(∣a∣) =

2
513

E0.5,0.5(2) + 1
1349

E0.5,1(2)

≈ 0.851641 + 0.0807568 < 1.

Hence, equation (4.1) has a unique solution in the Banach space C[0, 1]. ∎

Example 4.2 The following FNPIDE with a mixed boundary condition:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c ∂2.5

∂χ2.5 Λ(χ, ω) +
4
∑
j=1

a j(ω)Iα1 j
1 . . . Iα4 j

4 Λ(χ, ω)

= 1
59

cos(χω + Λ(χ, ω)) + 1
χ2 + ω2 + 2

,

Λ(0, ω) = ω2 + 1, Λ(1, ω) = 1
9

ω, Λ′(1, ω) = 1
6

ω3 ,

(4.2)

where

a1(ω) = ω
3

, a2(ω) = 1
2

ω2 , a3(ω) = ∣ω∣
3

, a4(ω) = 1
9

,

and

(α i j)1≤i , j≤4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.1 1.3 0.7 1.4
1.3 2.3 3.1 2
0.7 1.6 2.1 1.2
2 3.1 4.1 2.2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

has a unique uniformly bounded solution and the Hyers–Ulam stability in the space
S([0, 1] × [0, 1]4).

Proof Clearly, a j for j = 1, 2, 3, 4, ϕ1 , ϕ2 , ϕ3 ∈ C([0, 1]4) and

ϕ(χ, ω, Λ) = 1
59

cos(χω + Λ(χ, ω)) + 1
χ2 + ω2 + 2

is a continuous and bounded function on [0, 1] × [0, 1]4 ×R, satisfying the Lipschitz
condition with C = 1/59:

∣ϕ(χ, ω, y1) − ϕ(χ, ω, y2)∣ ≤
1

59
∣ cos(χω + y1) − cos(χω + y2)∣ ≤

1
59

∣y1 − y2∣.

Furthermore,

A1 = 1/3, A2 = 1/2, A3 = 1/3, A4 = 1/9.
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We need to compute the value

q =( 1
4
+ 1

α
) 1

Γ(α)
l
∑
j=1

A jE(α ,1)
M j

(A1 , . . . , A l)

+ C

⎛
⎜⎜
⎝

1
4
+ 1

α
Γ(α) E(α ,1)

M0
(A1 , . . . , A l) + E(α ,α+1)

M0
(A1 , . . . , A l)

⎞
⎟⎟
⎠

=( 1
4
+ 1

2.5
) 1

Γ(2.5)
4
∑
j=1

A jE(2.5,1)
M j

(1/3, 1/2, 1/3, 1/9)

+ 1
59

⎛
⎜⎜
⎝

1
4
+ 1

2.5
Γ(2.5) E(2.5,1)

M0
(1/3, 1/2, 1/3, 1/9) + E(2.5,3.5)

M0
(1/3, 1/2, 1/3, 1/9)

⎞
⎟⎟
⎠

,

where

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.1 1.3 0.7 1.4 2.1
1.3 2.3 3.1 2 2.3
0.7 1.6 2.1 1.2 1.7
2 3.1 4.1 2.2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.1 1.3 0.7 1.4 2.3
1.3 2.3 3.1 2 3.3
0.7 1.6 2.1 1.2 2.6
2 3.1 4.1 2.2 4.1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

M3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.1 1.3 0.7 1.4 1.7
1.3 2.3 3.1 2 4.1
0.7 1.6 2.1 1.2 3.1
2 3.1 4.1 2.2 5.1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

M4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.1 1.3 0.7 1.4 2.4
1.3 2.3 3.1 2 3
0.7 1.6 2.1 1.2 2.2
2 3.1 4.1 2.2 3.2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

and finally

M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.1 1.3 0.7 1.4 1
1.3 2.3 3.1 2 1
0.7 1.6 2.1 1.2 1
2 3.1 4.1 2.2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the following Python codes to get

q = 6.49406088226196 ∗ 10−293 < 1.
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Hence, equation (4.2) has a unique uniformly bounded solution in the space S([0, 1] ×
[0, 1]4) by Theorem 2.2, and it is Hyers–Ulam stable by Theorem 3.1. ∎
# beginning codes for Example 8
import math
from sympy import gamma

def partition(n, m):
if m == 1:

yield (n,)
else:

for i in range(n+1):
for j in partition(n-i, m-1):

yield (i,) + j

def ME(M, z, alpha , beta): # (alpha , beta)-Matrix
#Mittag -Leffler function

m = len(M)
zl = len(z)
result = 0
for l in range(0, 20): #approximate value

for l_partition in partition(l, zl):
if all(map(lambda x: x >= 0, l_partition )):

combination = 1
for i in range(zl):

combination *= math.factorial(l_partition[i])
combination = math.factorial(l) / combination
gamproduct = 1
for i in range(m):

gaminput = sum([M[i][j] * l_partition[j]
for j in range(zl)]) + M[i][zl]
gamproduct *= gamma(gaminput)

numerator = 1
for i in range(zl):

numerator *= z[i] ** l_partition[i]
result += (numerator / gamproduct) * combination
result *= (1/ gamma(alpha * l + beta)) * result

return result

#The following is our calculation of q value
alpha = 2.5
beta = 1
M1 = [[1.1, 1.3, 0.7, 1.4, 2.1], [1.3, 2.3, 3.1, 2, 2.3],
[0.7, 1.6, 2.1, 1.2, 1.7], [2, 3.1, 4.1, 2.2, 3]]
M2 = [[1.1, 1.3, 0.7, 1.4, 2.3], [1.3, 2.3, 3.1, 2, 3.3],
[0.7, 1.6, 2.1, 1.2, 2.6], [2, 3.1, 4.1, 2.2, 4.1]]
M3 = [[1.1, 1.3, 0.7, 1.4, 1.7], [1.3, 2.3, 3.1, 2, 4.1],
[0.7, 1.6, 2.1, 1.2, 3.1], [2, 3.1, 4.1, 2.2, 5.1]]
M4 = [[1.1, 1.3, 0.7, 1.4, 2.4], [1.3, 2.3, 3.1, 2, 3],
[0.7, 1.6, 2.1, 1.2, 2.2], [2, 3.1, 4.1, 2.2, 3.2]]
M0 = [[1.1, 1.3, 0.7, 1.4, 1], [1.3, 2.3, 3.1, 2, 1],
[0.7, 1.6, 2.1, 1.2, 1], [2, 3.1, 4.1, 2.2, 1]]
z = [1/3, 1/2, 1/3, 1/9]

result1 = ME(M1, z, alpha , beta)
result2= ME(M2, z, alpha , beta)
result3 = ME(M3, z, alpha , beta)
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result4 = ME(M4, z, alpha , beta)
result5 = ME(M0, z, alpha , beta)
result6 = ME(M0, z, alpha , alpha + 1)
result = (1/4 + 1/2.5) * (1/ gamma (2.5))*(1/3 * result1 +
1/2 * result2 + 1/3 * result3 + 1/9 * result4)
+ 1/59 * ((1/4 + 1/2.5)/ gamma (2.5)) * result5
+ 1/59 * result6
print("The q value is", result)
#end codes

Remark 4.3 We have used the Python language to find approximates values of
our newly established pair-parameter matrix Mittag–Leffler functions to study the
uniqueness of solutions to equation (1.1). Slightly changing the codes we can compute
values of the multivariate Mittag–Leffler functions. As far as we know from current
research related to computation of the Mittag–Leffler functions, this approach is
efficient and simple.

5 Conclusion

We have studied the uniqueness and Hyers–Ulam stability to the new equation (1.1)
based on the pair-parameter matrix Mittag–Leffler functions, Banach’s contractive
principle as well as Babenko’s approach. A few examples were provided to demonstrate
applications of main results derived. The methods used in the current work are also
suitable for different types of differential equations with various initial or boundary
conditions, as well as integral equations with variable coefficients, which cannot be
handled by any existing integral transforms.
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