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1. Introduction. A fundamental problem in combinatorial 
analysis is the classification of the permutations of 1, 2, . . . , n 
which satisfy a system of constraints . Thus one may ask such 
questions as how many permutations are there which have exactly 
r k-cycles ; how many have at least s cycles regardless of 
cycle length. Again, one may ask how many permutations are 
there in which k ascending sequences appear; or how many 
permutations are there in which specified numbers may not 
appear in specified places or at specified distances from other 
numbers . The l i terature on these problems is quite extensive. 
References [1 ,2 ,5 ,7 ,10 ,14 ,17 ] give an indication of the present, 
status of these problems. 

If the elements permuted are considered as elements of 
a mathematical system, then the permutations which leave 
invariant the relat ions, or par t of the relat ions, of the system 
yield various automorphism groups of the mathematical system. 
The collineation groups of finite geometries or of statist ical 
designs belong to this type. 

In this paper we are interested in the following type of 
problem. Let G be an abelian group with elements 
a^, a^t - . -> a n . A permutation P of a^, a^, . . ., a n , where the 
image of a^ is denoted by a^P, is said to have displacements 
b^ ,b£ , . . . , b n where b^ = a^P - a^. Questions of interest a r e : 
given a set of n elements of G can they be arranged so that 
they are the displacements of some permutation P ; also how 
many distinct permutations have the same set of displacement 
elements? It is even real is t ic to ask such questions in the more 
general cases where G is a non-abelian group o r even a loop 
or quasigroup. In the par t icular case where the elements 
^1*^2' • * • *^n a r e a ^ distinct it has been shown in the case 
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where G is a group by Johnson, Dulmage and Mendelsohn in 
[12] that the problem of constructing such permutations is 
equivalent to the problem of constructing latin squares orthogonal 
to a given square. Also, it is known that at least one such 
permutation exists for any group G except when G is of even 
order and has a cyclic Sylow 2-subgroup. 

Returning to the general case where G is abelian a simple 
necessary condition exists that a set of n elements of G form 
the displacements of a permutation. Let P be a permutation 
and bi (i = i , 2, . . . , n) be i ts displacements. Then 

2 . b = E . J a .P - Z. a = 0. 
i = l i i = l i i = l i 

A remarkable theorem of Marshal l Hall [3] shows that the 
necessary condition S^?^b: = 0 is also sufficient. In this paper 
Hall obtains an algorithm for the construction of a suitable pe r ­
mutation P. However, the problem of computing or even 
estimating the number of distinct permutations associated with 
a given set of displacements is still unsolved. 

In this paper the following type of problem is solved. Let 
S be a subset of a cyclic group G of order n. Find the number 
of permutations all of whose displacements lie in S. More 
generally, the problem of determining the number of permuta­
tions in which exactly k of the n displacements lie in S is 
solved for certain subsets S. Exact and asymptotic formulae 
are determined. Surprisingly, the Fibonacci numbers and a 
generalization of them make their way into the formulae. The 
case where G is non-cyclic is not t reated he re , but the methods 
used can be applied without serious modification. 

^" Notation. The following notation is used throughout. 
The symbol 4> (n, r) is used to represent the number of pe r ­
mutations of 0 , l , 2 , 3 , . . . , n - 1, with displacements all amongst 
the set 0, 1, 2 , . . . (r - 1), (mod n); 4> (n, r, s) r ep resen t s the 
number of permutations of 0, 1, 2, . . . , n with n - s displacements 
in the set 0 , l , 2 , . . . , r - 1 and s displacements in the set 

r, r + 1, . . . ,n - 1; i\*(n, r) = ~ represen ts the probability 

that a permutation has i ts displacements in the range 

0 , 1 , 2 , . . . , r - 1; 4i(n,r, s) = **%*' S ) ; f^ is the r - th o rder 
Fibonacci number, defined by the relation that each t e r m of the 
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sequence i s the sum of the previous r t e r m s , with a suitably-
ass igned set of va lues for the f irs t r t e r m s . In particular, we 
take the sequence f ^ to be 1, 2, 3, 5, 8, 13, . . . and f^) to be 
1 , 2 , 4 , 7 , 1 3 , 2 4 , . . . . We a l so use the difference operators E 
and A defined by Eg(n) = g(n + 1) and A g(n) = g(n + 1) - g(n). 
For the above symbols the following obvious relat ions hold: 
<t>(n, r) =4>(n, r, 0); i|j(n, r) = ^(n, r, 0); <{>(n, r, s) = 4>(n,n- r, n - s); 
i)j(n, r, s) = v|i(n,n- r , n - s) . 

We note here , that for fixed r, ^(ni1*- r» s ) i s a probability 
distribution function of the variable s whose range i s 
0, 1, 2, . . . , n^. Mendelsohn [10] has shown that a s n -*• oo, 
4^(n,n- r, s) approaches a P o i s s o n distribution. 

3. Statement of resu l t s . 

(a) Exact formulae : 

( i ) 

(2) 

(3) 

(4) 

(5) 

4>(n, 1 

4>(n, 2 

4>(n, 3 

4>(n. 4 

4>(n, n 

(6) 4>(n,n - 1 

(7) <j>(n,n - 2 

(8) i|*{n,a - 1, s 

(9) +(n ,n - 2 , s 

= 1 

= 2 

n - L 

= 4 ( f ( 3 ) f O ) (3) f Q r n > 5 

n - 1 n - 3 n - 4 — 

_ n k 2n /2n - k \ , 

1 /n \ n - s^ t 1 . 1 1 
+ . . . + 

(-D' 
(n - s)! 7 > 

_ n J t k + s 2n / 2n - k̂  K * ) ' ^ -
(b) Asymptot ic formulae with respect to n: 

(10) A/ *\ 3 n - 1 <j>(n, 3 ) ^ j ^ <* where a = 
7? + 1 
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(11) <(>(n, 4 ) — 41 J a - 4 

3 2 
where a i s the root between 1 and 2 of x - x - x - 1 = 0. 

(12) c>(n,r)_ K(r)cr 

where K(r) i s a constant depending on r only and a i s the root 
r r - 1 

of x - 2x + 1 = 0 in the interval 1 < a < 2 

(13) + ( n , n - 1 , 5 ) - ^ -
S: 

(14) » ( n . n - 2 , , ) S ^ - ' { l . ( ' - y - 4 > 
si 4n 
s 4 - 1 4 s 3 + 5 1 s 2 - 38s - 16 > „, - 3 , 

+ J^TTT) } + ° ( n > 
e ~ V 1 2 

(15) + ( n . n - 3. s)=^-~-{i - — (s - 7s + 9) S! 3n 
4 3 2 

3s - 5 0 s + 231s - 3 8 2 s + 8 1 , _ - 3 , 
+ 54n(n - 1) ? + ° ( n > 

- r s 
(16) i|»(n.n - r, s) = —f- + 0 (n" ). 

Si 

A short table of <j>(n, r) i s appended 

n \ r 1 2 3 

1 i 
2 1 
3 1 
4 i 
5 i 
6 i 
7 i 
8 i 
9 1 

10 4 

L 2 
L 2 
L 2 
L 2 
L 2 
L 2 
L 2 
L 2 
L 2 

6 
9 
12 
18 
27 
42 
66 
105 

24 
44 
80 
144 
256 
472 
872 
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4. Derivation of the formulae. The formulae stated in 
the last section were obtained by the use of three techniques 
which can be labelled as follows: 

(i) The method of permanents; 

(ii) The difference operator and chessboard techniques as 
given by Riordan [14], Kaplansky [5] and Mendelsohn [ l l ] ; 

(iii) The method of converting recurrences for operator poly­
nomials into asymptotic series as described by 
Mendelsohn in [10]. 

The method of expressing the number of permutations of 
a set of elements subject to certain types of restriction as the 
value of a permanent is well known, but the literature is 
practically non-existent, mainly because the evaluation of a 
permanent is a formidable problem. 

Let A be an n by n matrix with entries a--, (i, j = 0, 1, 2, 
. . . ,(n - 1)). By the permanent of A is meant the number 

perm A = E, . a a i a^ . . . a. . 
( q q . . . q ) o,q 1, q 2, q ( n - l ) , q 

o i n - 1 o \ ù n - l 
the sum being taken over all permutations q , q^,. . . , q * of 
0 , l , 2 , . . . , n - l . In what follows we will use for the evaluation 
of a permanent the following rules which are similar to those 
for the evaluation of a determinant. The permanent of a matrix 
is unchanged by any permutation of its rows or columns or by an 
interchange of rows and columns. The Laplace expansion is 
slightly modified in that all signs used are positive and no 
distinction is made between minor and co-factor. 

Let Q be the number of permutations o f 0 , l , 2 , . . . , n - l 
subject to a number of restrictions of the following type: 
! i -+ j is forbidden1 . Let A be an n by n matrix whose entries 
are exclusively 0 and 1, the entry â : = 0 if i -*• j is forbidden, 
and ay =1 if i -** j is permitted. Then Q =perm A. If each 0 
of A is replaced by a variable t to form the matrix A(t), then 
perm A(t) is a polynomial in t with the property that the 
coefficient of t s is equal to the number of permutations in which 
exactly s of the forbidden images occur. For a permutation in 
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which only the displacements 0 , l , 2 , . . . , r - l a re permit ted, the 
only allowable images of i a re i , i + l , i + 2 , . . . , i + r - l(mod n). 

Hence 

(17) 4>(n» r) = pe rm 

1 1 1 . . . 1 0 0 . . . . . . 0 
0 1 1 . . . 1 i 0 . 0 
0 0 1 . . . 1 1 1 . . . . . . 0 

i i 1 . . . 0 0 . . . 0 1 1 
1 1 1 . . . 0 0 . . . 0 0 1 

Also, 

(18) n f (t) = 2 4>(n, r , s)t = pe rm A(t) 
s=0 

where the right hand member of (17) is pe rm A. 

As a sample calculation, we consider the case where r = 1, 
Putting 

f (t) = pe rm 
n-

1 t t t 

t 1 t t 

t t 1 t 
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and 
t t t 

t 1 t . . . t 

t t 1 . . . t 

t t t . . . 1 I 

and expanding each of the permanents along the top row it 
fol lows that 

(19) f ( t ) = f 4{t) + ( n - l ) t* , ( t ) 
n n - 1 n - 1 

and 

(20) 4> ( t ) = t f (t) + ( n - l)t<|> (t). 
n n - 1 n - 1 

Eliminating 4> from (19) and (20), one obtains the recurrence 

(21) f (t) = (1 + nt)f (t) + nt(t - l ) f , ( t ) . 
n + 1 n n - 1 

2 
Equation (21) together with the initial polynomials f^(t) = 1 + t , 
f3(t) = 1 + 3t^ + 2t^ de termines fn(t) for a l l n and it i s easily-
ver i f i ed that 

f < t ) » = " < ) > ( n , l , s ) t S = Z " f n
n

s ) A S 0 i t S . n s="0 s = 0 \ n - s / 

This y i e l d s formulae (1), (6) and (8). In the same way (but with 
considerably m o r e complication) formulae (3) and (4) were 
obtained. Also the asymptot ic formulae (10), (11), (12), (13) 
are obtainable from the expl ic i t formulae or from the difference 
equations. 

F o r fixed r 2> 5, the calculation of the difference equations 
b e c o m e s impract icable , and even if these equations were 
attained, they would be so compl icated that it s e e m s unlikely 
they would be of any use for obtaining expl ic i t formulae. It i s 
for this reason that no attempt to es t imate the K(r) of formula 
(12) was made . 

<(> (t) = perm 
n 

35 

https://doi.org/10.4153/CMB-1961-005-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-005-4


For n - r small , the chessboard method becomes valuable. 
The method can be described as follows. Let A be the mat r ix 
corresponding to a permutation problem on the integers 0 ,1 ,2 , 
. . . , n - 1 with res t r ic t ions of the type ! i -*> j is forbidden' . Let 
X(n, s) be the number of permutations with exactly s violations 
of the res t r ic t ions . Let u(n, s) be the number of ways of 
putting s non-attacking rooks on the z^ros of the ma t r i x A. 
Then 

(22) X ( n , s ) = Z n ( - l ) k + % ( n , s ) ( k ) (n - k)î 
k=s s 

and the generating function tyn(t)
 = ^ s = 0 ^ n ' S ^ S *s a * s o g^ v e n 

by 

4» (t) = 2 % ( n , s ) ( t - l ) S ( n - s): . 
n s = 0 

(See Mendelsohn [10] p. 235. ) 

The direct evaluation of u(n, s) can be quite difficult, but 
if one wri tes equation (22) in the form X(n, s) = P n (E)g s (0) where 
P n (E) is a polynomial of degree n, and gs(t) = ( - l ) s ( s ) ( n - t)! if 
t > s and gs(t) =0 if t < s, then one can obtain a l inear recur ­
rence for P n(E) in many cases . Asymptotic formulae can be 
obtained for X(n, s) directly without solving the recur rence for 
P n (E) as given in [10]. Formulae (7), (8), (9), (14), (15), (16) 
were obtained in this manner . The computation of formula (15) 
was formidable and there is a small measure of doubt as to the 
co r rec tness of the last e r r o r t e rm. The actual r ecur rence 
formula for P n(E) corresponding to 4>(n, n - 3, s) is given by 

(23) P (E) =(1 - 3E)P (E) - 4 E 2 P (E) 
n n - 1 n - 2 

- (E + 3E )P (E) + (2E - 8E + 2E )P (E) 
n - 3 n - 4 

with P o (E) = 1, P d (E) = 1 - 3E, P 2(E) = 1 - 6E + 5E 2 . Any m i s ­

take in the computation would be due to a mistake in computing 

equation (23). 

*̂ Concluding r e m a r k s . For the distribution of the 
var iable s the var ious factorial moments can be obtained by the 
method given in [10] and from these the usual stat is t ical 
p a r a m e t e r s may be obtained if desired. 
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