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Abstract
Failure mode and effects analysis (FMEA) is a critical but labor-intensive process in product
development that aims to identify and mitigate potential failure modes to ensure product
quality and reliability. In this paper, a novel framework to improve the FMEA process by
integrating generative artificial intelligence (AI), in particular large language models
(LLMs), is presented. By using these advanced AI tools, we aim to streamline collaborative
work in FMEA, reduce manual effort and improve the accuracy of risk assessments. The
proposed framework includes LLMs to support data collection, pre-processing, risk iden-
tification, and decision-making in FMEA. This integration enables a more efficient and
reliable analysis process and leverages the strengths of human expertise and AI capabilities.
To validate the framework, we conducted a case studywherewe first usedGPT-3.5 as a proof
of concept, followed by a comparison of the performance of threewell-known LLMs: GPT-4,
GPT-4o and Gemini. These comparisons show significant improvements in terms of speed,
accuracy, and reliability of FMEA results compared to traditional methods. Our results
emphasize the transformative potential of LLMs in FMEA processes and contribute tomore
robust design and quality assurance practices. The paper concludes with recommendations
for future research focusing on data security and the development of domain-specific LLM
training protocols.

Keywords: FMEA–failure mode and effects analysis, Generative artificial intelligence,
LLM–large language model, Product quality, Knowledge management

1. Introduction
Failure mode and effects analysis (FMEA) has been a cornerstone of the product
development process (PDP) for decades, providing a systematic approach to
identifying potential failure modes and their effects. By proactively addressing
these risks during the engineering design phase, FMEA plays a crucial role in
ensuring product quality, reliability and customer satisfaction. Despite its import-
ance, the traditional manual execution of FMEA is labor-intensive, prone to
human error and often insufficient for a comprehensive analysis of complex
designs, highlighting the need for more efficient and accurate methods.
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Recent advances in generative artificial intelligence (AI) offer promising solu-
tions to these challenges. By integrating AI into the FMEA process, it becomes
possible to automate the identification of failure modes, streamline risk assessment
and improve the overall reliability of PDP. Large language models (LLMs) such as
ChatGPT have shown great potential in this domain, demonstrating their ability to
extract, process and generate valuable data from diverse sources, including histor-
ical FMEA reports, product history files, formal complaints and customer reviews
(Zhao et al. 2023). These capabilities significantly reduce manual effort, minimize
errors and enhance the robustness of designs (Dell’Acqua et al. 2023).

While LLMs can efficiently handle knowledge-intensive tasks with prompt
engineering, their application in FMEA requires specialized tools and robust data
management systems. This research proposes a comprehensive framework that
integrates LLMs into the FMEA process and includes a process model and an
information system model that supports data collection, pre-processing, risk
identification and decision-making. The authors of this paper prepared the frame-
work following the guidelines of Gericke et al. (2020), who argue that newmethods
should be developed to a point where the industry can use them alongside existing
methods without requiring the active involvement of method creators.

The key contributions of this research are as follows:

• Development of the framework: A novel process and information system model
that integrates LLMs into FMEA, enhancing automation and collaboration
between AI and human expertise.

• Case study validation: Validation of the framework through a comparative study
of GPT-3.5, GPT-4, GPT-4o and Gemini 1.5 FLASH, demonstrating significant
improvements in analysis speed, accuracy and reliability.

Our findings highlight the transformative potential of LLMs in improving FMEA
processes and contribute to more robust design and quality assurance practices.
The proposed model involves a human-in-the-loop approach, where the results
generated by LLMs are validated and used as input for corrective actions. These
models were compared with expert analysis and previous proof-of-concept results
using GPT-3.5 (El Hassani et al. 2024), demonstrating that LLMs provide scalable,
fast and effective semantic analysis for large datasets. Fully automated processing
would require further testing to ensure the reliability of the results. While the case
study demonstrates the benefits of LLMs in reducing manual effort and improving
accuracy, it also highlights areas that require further refinement and research.

This paper begins with a literature review on the integration of AI into FMEA
and PDP, explores the benefits and limitations of using LLMs in this context, and
presents a proposed framework for integrating LLMs into FMEA. The framework
is validated through a case study, concluding with lessons learned and recom-
mendations for future research.

2. Literature review

2.1. Historical evolution of FMEA

FMEA emerged in the 1950s and 1960s as the aerospace and defense industries
prioritized the identification of potential failuremodes in complex systems. TheUS
Department of Defense formalized it with the MIL-STD-1629A standard, and
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NASA integrated it into mission-critical processes to ensure system reliability and
safety. These early efforts highlighted the need for cross-industry standardization.

In response, the International Electrotechnical Commission (IEC) published
IEC 60812 in 1985, followed by SAE J1739 in 1994, which formalized FMEA
guidelines. Today, standards like IATF 16949:2016 mandate their use to ensure
product safety and quality, particularly in the automotive industry (Huang et al.
2019). Variants such as design FMEA, process FMEA and system FMEAhave since
evolved to meet specific requirements within PDPs (AIAG and VDA 2019;
Soltanali & Ramezani 2023).

Traditional FMEA, though effective, requires meticulous documentation and
analysis, making it resource-intensive (Tavčar & Duhovnik 2014; Thomas 2023).
The challenges in managing and reusing company-specific knowledge have driven
the development of computerized tools and automation techniques to improve
efficiency. Despite progress, face-to-face contacts remain critical for knowledge
sharing and complement IT tools (Dai et al. 2020).

Practical tools such as the Engineering Checksheet improve knowledge reuse,
especially for inexperienced engineers, by providing structured and visualized
descriptions (Stenholm, Catic & Bergsjö 2019). Recent advances in AI, particularly
generative models, have opened up new opportunities for automating FMEA
processes that improve risk assessment and reduce human effort (Wu, Liu &
Nie 2021).

2.2. AI-driven enhancements for FMEA

Numerous studies have explored AI-drivenmethods for improving FMEA and the
associated risk assessment processes. Wirth et al. (1996) were among the early
proponents of a knowledge-based approach to FMEA. They suggested that the use
of various knowledge bases with controlled vocabularies could improve the accur-
acy of product descriptions and facilitate the reuse of knowledge acquired
during FMEA.

In recent years, advances in AI have opened up new opportunities to improve
FMEA. Liu et al. (2019) discussed how multi-criteria decision making methods
could support risk assessments within FMEA. Soltanali & Ramezani (2023)
presented an intelligent FMEA platform that integrates uncertainty quantification,
machine learning and multi-criteria decision making to create hybrid FMEA
models. Na’amnh et al. (2021) showed that risk assessment models using fuzzy
inference and neural networks outperform traditional methods, with the fuzzy
model having better decision-making capabilities.

Researchers have also focused on data-driven strategies by using machine
learning to continuously update and predict risk priority numbers (RPNs) for
emerging failure modes (Peddi, Lanka & Gopal 2023). Hassan et al. (2023) used
historical data and convolutional neural networks (CNNs) to automate the pri-
oritization of contract requirements, while Yucesan, Gul & Celik (2021) applied
fuzzy best-worst and fuzzy Bayesian network methods to evaluate risk parameters
in FMEA. The benefits of combining data from past maintenance events with
employee expertise were highlighted by Filz et al. (2021) to improve maintenance
planning. Furthermore, Hodkiewicz et al. (2021) utilized ontological methods to
improve the explicit representation of FMEA concepts.
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Sakwe et al. present an objective study of an FMEA method for investigating
failure risks in high-performance product service systems (PSSs). This method can
provide insights into critical failures and provides a basis for design improvements
(Sakwe, Pereira Pessoa & Hoekstra 2021).

The application of LLMs, in particular ChatGPT, to the FMEA process has
attracted considerable interest. The contextual understanding of ChatGPT and its
ability to learn from new data offer potential benefits for FMEA tasks (Thomas
2023). Diemert & Weber (2023) emphasize that the use of ChatGPT in FMEA
involves leveraging its core capabilities while integrating company-specific know-
ledge.

The synergy between AI tools such as ChatGPT and human expertise can
improve the FMEA process. However, studies combining FMEA with LLM tech-
niques are still limited. Spreafico& Sutrisno (2023) investigated the use of a chatbot
for automated social failure analysis in product sustainability and demonstrated
the potential and limitations of the method using three case studies. Finally, the
broader impact of digitalization on PDPs is also noteworthy, as it forces companies
to adapt to agile and digital workflows, with both operational and managerial
consequences (Cantamessa et al. 2020).

The literature reviewed emphasizes the importance of integrating AI into
FMEA to achieve better results. While significant progress has been made, gaps
remain. Many studies have focused on specific AI techniques for FMEA, but a
comprehensive framework that systematically applies AI throughout the FMEA
process is lacking. Furthermore, the practical challenges of implementing AI in
FMEA are often overlooked. Therefore, there is a need for case studies that
demonstrate the application of LLMs in different FMEA phases in different
contexts.

To address these gaps, this research proposes the development of a framework
(comprising a process model and an information system model) that integrates
generative AI, specifically LLMs, into the FMEA process and illustrates their
practical implementation through a case study.

2.3. Generative AI and LLM

Generative AI refers to a subset of AI models that are able to generate new data
instances that are similar to the training data. Unlike traditional AI systems that
perform classification or prediction tasks based on existing data, generative models
create new content, such as text, images or music, by learning the underlying
patterns and structures in the training data. Techniques such as Generative
Adversarial Networks (GANs), Variational Autoencoders (VAEs) and
transformer-based models are widely used in generative AI. These models have
a wide range of applications, including content creation, data augmentation and
simulation of environments for training other AI systems (Kingma & Welling
2013; Goodfellow et al. 2014).

LLMs are a type of generative AI specifically designed to understand and
generate human language. These models are trained on large amounts of text data
and can perform a variety of tasks such as translation, summarization, question
answering and text completion. Examples of LLMs include OpenAI’s GPT-4,
Google’s Gemini and the open-source GPT-Neo model. They work by predicting
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the next word in a sequence so that they can produce coherent and contextually
relevant text based on the input received (Brown et al. 2020; Rae et al. 2022).

There are several techniques to work with LLMs, including prompting, fine-
tuning and Retrieval-Augmented Generation (RAG). Here you will find a brief
explanation of each technique:

a) Prompt Engineering
Prompt engineering involves the creation of effective prompts to elicit the desired
responses from LLMs. Since LLMs respond to the input text provided, the way a
prompt is structured can significantly affect the output of the model. Effective
prompt engineering can improve the accuracy and relevance of the content
generated. Techniques include using specific keywords, providing detailed context
and iteratively refining prompts based on the model’s responses (Liu et al. 2021).

b) Retrieval-Augmented Generation
RAG combines the strengths of retrieval-based and generative models to improve
the accuracy and relevance of AI-generated content. In a RAG system, a retrieval
component first searches a large corpus of documents to find the most relevant
information based on the input query. This information is then passed to a
generative model that produces a coherent and contextually appropriate response.
This hybrid approach leverages the extensive knowledge stored in specific data-
bases while preserving the generative model’s ability to produce fluent and natural
language responses (Lewis et al. 2020).

c) Fine-Tuning
Fine-tuning is the process of further training a pre-trained generative model on a
particular dataset to adapt it to a specific task or domain. This approach utilizes the
general language understanding capabilities of large, pre-trained models and
refines them to perform better on specific tasks. Fine-tuning involves adjusting
the parameters of themodel based on the new data, improving its performance and
relevance to the intended application (Howard & Ruder 2018; Radford et al. 2019).

LLMs are increasingly explored in product development for tasks such as
knowledge extraction, idea generation and decision-making areas that align with
key objectives of the FMEA process. Their ability to process large amounts of data
and derive actionable insights is inspiring ongoing research to improve structured
engineering methods such as FMEA. For example, patents and scientific articles,
which are rich in design knowledge, serve as valuable resources for building
knowledge graphs to extract relevant information (Siddharth et al. 2021;
Siddharth, Blessing & Luo 2022). While patents use a standardized language
suitable for rule-basedmethods, scientific articles often require a combination of
rule-based, ontology-based and supervised techniques for effective knowledge
extraction.

Research has highlighted how structuredmodels improve design-specific tasks.
For example, Giordano et al. (2024) have demonstrated the importance of seman-
tic relationships in engineering design processes, while Wang et al. (2023) have
shown that structured models, such as function-behavior-structure models, per-
form better than free-form specifications in generating creative and feasible ideas.
These structured approaches resonate with the requirements of FMEA, where the
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identification of relationships between components and potential failure modes is
crucial.

Furthermore, Ehring et al. (2024) pointed out the importance of domain-
specific training for LLMs to improve classification accuracy and relevance in
technical domains – a finding that is relevant for the adaptation of LLMs for FMEA.
Similarly, research by Mas’udah & Livotov (2024) and Gomez et al. (2024) has
shown that well-designed prompting strategies can provide effective solutions to
complex engineering challenges, comparable to traditional methods. Sarica & Luo
(2024) point out that while AI can expand the technology space by generating new
technological concepts, this expansion raises the bar for future inventors by
increasing the knowledge required for design originality.

Practical applications have demonstrated the strengths and limitations of
LLMs. For example, Girotra et al. (2023) showed that GPT-4 can efficiently
generate high-quality design concepts in collaboration with human designers.
While LLMs show promise in idea generation and optimization, studies such as
those by Ege et al. (2024) and Meron & Tekmen (2023) emphasize that human
supervision remains crucial in tasks that require high levels of creativity or
technical accuracy. These findings emphasize the need for strategic integration
of LLMs into processes such as FMEA, where automation can complement but not
replace human expertise.

The above findings illustrate the potential of LLMs to support structured
decision-making, like in FMEA, by extracting and organizing relevant data,
assessing risks and suggesting solutions. However, achieving these results requires
a tailored approach that leverages the strengths of LLMs while taking into account
their limitations.

2.4. Benefits and challenges of implementing LLMs in the FMEA
process

Drawing from the general advantages and limitations of LLMs as discussed in
existing literature (e.g. Bommasani et al. 2021; Hu et al. 2023; Thirunavukarasu
et al. 2023) and combining these insights with the authors’ expertise in both LLMs
and FMEA, we have compiled a comprehensive set of advantages and limitations
specific to the application of LLMs in the FMEA process.

2.4.1. Benefits and contributions of LLMs to the FMEA process
The integration of LLMs into FMEA brings several potential advantages and
contributions to risk analysis within the PDP. These benefits include:

• Knowledge and expertise: LLMs can be trained on extensive datasets of technical
and engineering information. This enables them to provide accurate and
up-to-date knowledge of FMEA methodologies, best practice and industry
standards. By utilizing LLM’s knowledge base, engineers can gain valuable
insight into FMEA concepts, processes and techniques, improving their under-
standing and application of these methods.

• Data analysis support: LLMs are able to support engineers in analyzing and
interpreting data relevant to FMEA. They can assist in pre-processing data,
identifying patterns and uncovering correlations within the data. This capability
is particularly valuable when it comes to extracting failure-related information

6/28

https://doi.org/10.1017/dsj.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.7


from text data, which is crucial for identifying potential failuremodes. The ability
of LLMs to efficiently process large amounts of data makes them an invaluable
tool in the data-intensive FMEA process.

• Continuous improvement and learning: LLMs can continuously learn and
improve from new data and feedback, which means that the quality of their
results can increase over time. This continuous improvement can lead to more
accurate and reliable FMEAanalyses as themodels adapt to new information and
changing conditions.

• Scalability: The ability of LLMs to process large amounts of data quickly and
efficiently means that FMEA processes can be scaled to handle more complex
systems and larger datasets without a corresponding increase in manual effort.
This scalability is particularly beneficial for large organizations with extensive
product lines and numerous potential failure modes to consider.

• Cost efficiency: By automatingmany labor-intensive aspects of FMEA, LLMs can
help reduce the costs associated with conducting thorough and accurate risk
assessments. These cost efficiencies canmake FMEAmore accessible and feasible
for smaller organizations or projects with limited resources.

By leveraging the capabilities of AI through LLMs, engineers can streamline their
FMEA activities, reduce manual effort and improve the overall quality of the
analysis. The integration of LLMs not only enhances the efficiency of the FMEA
process but also contributes to the development of more robust and reliable
products.

2.4.2. Challenges of LLMs in the FMEA process
Although LLMs provide valuable support in the area of FMEA, it is important to
recognize their limitations and potential drawbacks. These limitations should be
considered when using LLMs in the FMEA process. The following list includes
some notable challenges:

• Security concerns: LLMs may have security-related vulnerabilities, such as
susceptibility to hostile attacks or privacy issues. Ensuring the security of data
and the local LLM model itself is critical when integrating LLMs into FMEA
processes, especially as LLMs are often not used locally and information can be
transferred to external servers or LLM owners. This requires robust measures to
protect the transfer of sensitive data and ensure that external parties, such as LLM
owners, have appropriate security practices in place.

• Lack of contextual understanding: LLMs operate based on patterns and associ-
ations learned from training data that may not provide a deep understanding of
the specific context and nuances of FMEA in different industries or technical
domains. This limitation may result in incomplete or inaccurate answers that
require careful interpretation and review by subject matter experts (SMEs).

• Potential biases: Like any machine learning model, LLMs can unintentionally
produce biased or subjective answers based on the biases present in the training
data. These biases can influence the guidance or recommendations provided by
LLMs in the FMEA process. It is necessary to critically evaluate these results and
compare them with different sources of information to mitigate possible biases.

• Maintenance and updates: LLMs need to be regularly updated andmaintained to
remain effective. This ongoing requirement can be time-consuming and costly

7/28

https://doi.org/10.1017/dsj.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.7


and requires dedicated resources to ensure models remain accurate and up-to--
date.

• Over-reliance on automation: Although LLMs can automate many aspects of
FMEA, there is a risk of over-reliance on these tools, which can lead to human
expertise and judgment being neglected. It is important to find a balance between
automated analysis and human oversight.

By recognizing and addressing these challenges, companies can better leverage
the strengths of LLMs while mitigating their potential drawbacks in the FMEA
process.

3. Methodology

3.1. Systematic framework for integrating LLMs into FMEA

Building on the advantages of integrating LLMs into FMEA, we propose a
comprehensive process model and an information system model. This framework
is designed to streamline the FMEA process and enhance its effectiveness. The
framework was developed based on a comprehensive literature review and the
authors’ experience. The proposed process model comprises the following steps:

1. Data collection: Relevant data is gathered from a variety of sources, including
design data, historical failure records and other contextual information. This
data forms the foundation for training AI algorithms and provides critical
insights for risk analysis.

2. Data pre-processing: The collected data undergoes thorough pre-processing to
ensure its quality and compatibility with the LLM. This stage may involve data
cleaning, normalization, feature extraction and handling of missing values or
outliers. The aim is to automate pre-processing with computerized tools to
ensure efficiency and accuracy.

3. Model training: Various subsets of data (such as previous FMEAs, external
reviews, etc.) are labeled with expected outputs (failure modes, effects, risk
assessments, corrective actions, etc.).
In this step, we can use prompt engineering, fine-tuning or RAG. In this work,

we used prompt engineering techniques to help the LLM generate relevant results.
To do this, we had to formulate precise prompts and queries to extract the
necessary information from the model. By carefully crafting these prompts, we
wanted to improve the model’s ability to understand and accurately respond to the
specific context and details of the FMEA. Through this process, we evaluated the
effectiveness of the prompt engineering in achieving satisfactory accuracy. The
goal was to determine if the prompt engineering method alone could make the
necessary improvements or if additional steps were needed in the future.

Had fine-tuning or RAG been applied, this would have required formal
training of the model, including the use of a loss function (e.g. cross-entropy loss)
to guide the optimization process and a parameter tuning strategy (e.g. grid search)
to determine the best hyperparameters, like learning rate and batch size. However,
since prompt engineering was used in this work, these training-specific compo-
nents were not required.

After several iterations, the prompt forGPT, shown inFigure 4, wasdesigned. The
prompt was the same for all LLMs, but different APIs require some format changes.
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4. Application – extraction of specific information for FMEA: Once the system
is trained, it is applied to the entire dataset. The LLM then suggests failure
modes, effects, risk assessment calculations and corrective actions based on
the data.

5. Integration of LLMs tools into the FMEA process; regular data analyses,
improvement of the FMEA process and decision support on the system level:
The generated FMEA information is incorporated into PDP and the Knowledge
Management system (KMS). The LLMs tools can produce FMEA reports,
visualizations, comprehensive summaries and trends for supporting decision-
making. Beyond FMEA, a good overview of data can contribute to the com-
pany’s quality assurance system, helping to identify competency needs, recur-
ring failure modes, process bottlenecks and more.

The information system model for integrating LLM tools includes data collection,
extraction, knowledgemanagement and application within an industrial setting, as
depicted in Figure 1. It leverages company-specific knowledge extracted from key
documents in the product lifecycle management (PLM) system, such as previous
FMEAs, engineering changes (ECs), and product history files (Tavčar, Benedičič&
Žavbi 2019). In addition, AI analysis incorporates external sources related to the
company’s production program and technology-specific information. This is
particularly important when developing new products, as external knowledge
sources are often crucial. Selected documents are analyzed by AI, and the extracted
information is reused in FMEA activities and other PDPs. Systematic data analysis
is conducted at regular intervals and leads to the definition of corrective actions for
PDP, EC management (ECM), and the FMEA process (Figure 1). LLM tools are
exceptionally powerful in analyzing large amounts of data, as they can identify
patterns and insights that human analysts might missed. By implementing this
framework, organizations can significantly enhance the efficiency and effectiveness

Figure 1. Information system model for LLM application in FMEA (upgraded from El Hassani et al. 2024).
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of their FMEA processes and leverage the strengths of LLMs to improve risk
analysis and decision-making.

The implementation of the process model and the information system model
within the proposed framework must align with the specific phase of the product
life cycle. The maturity level of a product plays a crucial role in determining the
optimal support required for the FMEA process. For new products where the
company has limited experience, external sources of knowledge are prioritized.
These sources provide valuable insights and data that are essential for identifying
potential failure modes and accurately assessing risks.

However, for more mature products that have several years of development,
manufacturing and sales experience, internally generated knowledge sources
becomemore important. This internally collected data, including historical FMEA
reports, ECs and product history files, provides a rich information base that can be
used to improve the FMEA process. Utilizing this internal knowledge allows for
more accurate and informed risk assessments, as it is based on the company’s own
experience and lessons learned over time.

3.2. Mapping FMEA challenges to framework solutions

The proposed framework systematically addresses the key challenges in the FMEA
process as highlighted in the literature review. Table 1 lists the challenges and the
corresponding solutions provided by the framework.

The proposed framework addresses key challenges identified in existing research
by using LLMs to automate data pre-processing, failure mode identification and risk

Table 1. Mapping FMEA challenges to solutions.

Challenge Proposed solution in framework

Manual effort in processing
FMEA data

The framework uses LLMs to automate data collection, pre-processing and
analysis, significantly reducing the manual workload required in
traditional FMEA processes.

Prone to human error By integrating AI tools, the framework ensures more consistent and
accurate identification of failure modes and risk assessments, thereby
minimizing the errors associated with human intervention.

Inefficient reuse of
knowledge

A dedicated KMS integrated into the framework facilitates the systematic
reuse of FMEA results and finding and ensures that past analyses are
incorporated into future processes.

Difficult handling of
unstructured data

The framework utilizes the advanced natural language processing
capabilities of LLMs to handle unstructured data such as customer
reviews and informal reports and transform them into structured inputs
for FMEA.

Challenges with scalability The ability of LLMs to process large datasets quickly enables the
framework to scale to complex systems and process extensive data inputs
without compromising efficiency.

Limited contextual
understanding of AI

Through prompt development and fine-tuning, the framework ensures
that LLMs deliver contextually relevant and domain-specific results
tailored to FMEA tasks.
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analysis to reduce manual effort and minimize human error. To tackle inefficient
reuse of knowledge, KMS was integrated to systematically capture and reuse findings
from previous analyses. In addition, the framework uses LLMs to effectively process
unstructured data and improve data processing and analysis. Scalability and context-
ual understanding have been improved through prompt development and fine-
tuning to ensure adaptability and efficiency in various FMEA tasks. These improve-
ments directly overcome the limitations highlighted in previous research and provide
a more robust approach.

4. Practical case study and evaluation
The applicability of the proposed framework is validated by a case study using
publicly available data from the automotive industry, in particular data from
vehicle reviews by private individuals. This type of data is less structured compared
to company FMEA reports and other product-specific documents and therefore
poses a greater challenge. This also allows the first steps of the framework process
model to be implemented and tested without the security issues that would arise
when using proprietary company data. Although this approach has limitations
(e.g. the incomplete representation of the company context and the inability to
extract corrective actions as it is limited to the design FMEA), it still provides a
valuable opportunity to evaluate various aspects such as automatic data pre-
processing, model training and information extraction.

In this case study, we aimed to test two key aspects where LLMs can be
beneficial for FMEA:

• Accuracy of information extraction with training:
The aim was to assess how accurately an LLM can extract relevant information
from the data when themodel has been trained specifically for the task. For this, we
used a model for extracting negative reviews and identifying associated compo-
nents (the part finder model) as described in Section 4.2 and achieved an accuracy
of 98–99%.

• Accuracy of information extraction without training:
Here we evaluated the performance of the LLMs in extracting information from the
data without specific training. Table 2 shows a summary of the results of a semantic
comparison between different LLMs using only prompt engineering. Human-
identified error modes (gold standard) were compared with GPT-4o, GPT-4 and
Gemini 1.5 FLASH. The comparison included 100 reviews and focused on the
similarity scores.

These aspects were tested using the five-step framework process model. First,
the preprocessing of the data was tested, then the extraction of the failure modes
and finally the relevance of the effects suggested by the LLM. The detailed process
flow applied is shown in Figure 2 and the result in Figure 3.

Figure 3 shows an example centered on design FMEA (DFMEA), which is the
specific focus of our case study. While DFMEA is a type of FMEA that deals
specifically with design-related failures, the underlying principles of risk identifi-
cation, analysis and mitigation apply broadly to other types of FMEA, including
process FMEA (PFMEA). Therefore, the DFMEA example effectively demon-
strates the utility of LLMs in systematically analyzing failure modes, which is
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representative of FMEA activities in general. We believe that this example provides
valuable insights that are applicable to a wider range of FMEA scenarios.

For the case study, we initially used GPT-3.5 as a proof of concept to evaluate
the feasibility of the approach (El Hassani et al. 2024). After validating this concept,
we moved on to using GPT-4, GPT-4o and Gemini 1.5 FLASH to enhance the

Table 2. Results of semantic comparison between different LLMs and human analysis.

LLM (published)
Average

similarity level
Standard
deviation

No. of cases
similarity = 1; 2

No. of cases
similarity = 6; 7; 8;

9; 10

GPT–4o (May, 2024) 8.07 2.34 6 87

GPT–4 (March, 2023) 8.35 2.04 4 91

Gemini 1.5 FLASH (May, 2024) 7.13 2.73 11 80

Figure 2. Process flow of the automated FMEA framework.
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performance. We compared these models based on their accuracy and overall
effectiveness. The summarized results can be found in Table 2.

The steps involved in the case study are as follows:

1. Data collection
We used a dataset of car reviews from the Kaggle platform (www.kaggle.com),
which included fifty different datasets of customer reviews for 50 vehicle brands
(AnkurJain 2019), totaling about 227,000 reviews.

2. Data pre-processing
This process was carried out in two main steps:

Figure 3. Example of an automatically generated FMEA table.
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a) Filtering out reviews without identified parts (part finder model)
First, we performed a string comparison to filter out reviews without identified
parts. The data was cleaned, formatted and merged into a single dataset. As the
FMEA focused on vehicle parts, reviews that contained no references to parts had
to be excluded. To facilitate this, we compiled a list of parts by scouring websites
such asWikipedia (“List of auto parts,” 2023) and List Explained (Kan 2022). Using
a string comparison, ratings without identified parts were removed. However, this
method had its limitations (e.g. spelling errors, incomplete data and use of different
languages). Therefore, we developed a model using LLMs to extract reviews with
parts more accurately. The model was trained with GPT-3 (text-avinci-002) and
achieved 98–99% accuracy, including reviews in French and Spanish. This refined
dataset included about 100,000 reviews.

To perform fine-tuning, we first formatted our data according to the require-
ments for fine-tuning a text-davinci-003model. Our dataset was streamlined into
two columns: a “Prompt” column containing the reviews and a “Completion”
column containing the names of the extracted parts determined via string com-
parison. We added special tokens “- >” at the end of each prompt to indicate that
the prompt has concluded and that the model can begin the completion and
“END” to signal that the completion is finished and that the model should stop.

Subsequently, we converted our dataset into a JSONL file, which is the required
format for fine-tuning an OpenAI model. After preparing the JSONL file, we
uploaded it to OpenAI’s fine-tuning platform using the OpenAI CLI. We config-
ured specific training parameters, such as the number of epochs and batch size,
optimizing them to prevent overfitting. During the fine-tuning process, the model
adapted to our dataset, enhancing its performance.

Finally, we evaluated the fine-tuned model by testing it on a separate validation
set, measuring its accuracy and observing its behavior on unseen prompts. Upon
completion of the fine-tuning process, we obtained a results file from the OpenAI
API containing detailed evaluation metrics, including loss, accuracy and other key
indicators. These metrics enabled us to assess the effectiveness of the fine-tuning,
determining how well the model had adapted to the dataset and whether it was
suitable for the task or required further adjustments.

b) Extracting negative reviews (sentiment analysis model)
Next, we focused on identifying negative reviews, as they often contain valuable
information about potential problems and concerns related to automotive com-
ponents and systems. The reviews were divided into negative and positive ratings
using an existing labeled dataset (Maas et al. 2011) for training. Several deep
learning algorithms were tested. TensorFlow’s CNN (Abadi et al. 2016), which uses
bidirectional short-term memory (BiLSTM), achieved an accuracy of 87%. Fine-
tuning with GPT-3 (Curie model) improved the accuracy to 97%. The model
obtained by GPT-Curie was then used to classify the reviews into negative and
positive categories. Only the negative reviews were used to extract failuremodes for
the FMEA. This pre-processed dataset included about 18,000 reviews, all of which
were negative and contained names of automotive parts.

For training the TensorFlow models, we split the dataset into training, testing
and validation sets. Specifically, 80% of the data was used for training, with 20% of
the training set reserved for validation, while 20% was allocated for testing. We
employed cross-validation to optimize hyperparameters. Throughout training, we
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monitored loss curves to compare validation against training, mitigating over-
fitting. For certain models, TensorFlow’s EarlyStopping method was implemented
to stop training early, preventing overfitting or excessive adjustment to the
training data.

3. Model training
In this step, we could use prompt engineering, fine-tuning or RAG. In this work, we
used prompt engineering techniques to help the LLM generate relevant results.
This required us to formulate precise prompts and queries to extract the necessary
information from the model. By carefully crafting these prompts, we wanted to
improve the model’s ability to understand and accurately respond to the specific
context and subtleties of the FMEA. Through this process, we evaluated the
effectiveness of the prompt engineering in achieving satisfactory accuracy. The
goal was to determine if the prompt engineering method alone could make the
necessary improvements or if additional steps were needed in the future.
After several iterations, the prompt for GPT, shown in Figure 4, was designed. The
prompt was the same for all LLMs, but different APIs require some format changes.

Figure 4. Prompt for search of failure modes and effects, which is formatted for
GPT-4 and GPT-4o.
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4. Extraction of specific information for FMEA and validation of results
A total of 100 reviews were randomly selected using the sentiment analysis model
and the part finder model: 20 reviews each for the parts “door,” “tire,” “seats,”
“wheel” and “window.” The LLM was prompted to extract failure modes as
accurately as possible, while also making suggestions for other FMEA information
elements. To create the files, we need structured responses (in JSON format) so that
we can programmatically retrieve the necessary values and insert them into the
Excel file.

Similar to coding methods in qualitative research (e.g. Campbell et al. 2013),
the failuremodes were first analyzedmanually and evaluated independently by two
experts. They compared their results one-to-one and reached a consensus after
discussion to ensure accuracy andminimize bias. As the data were user reviews and
not technical reports, the failure modes reflected the users’ perspective, which
might not always match the technical definitions.

Semantic analysis was used to compare the results of the different LLMs.
Semantic analysis is a process in natural language processing (NLP) that focuses
on understanding the meaning of words and texts in context. It goes beyond the
simple matching of keywords and interprets the actual meaning, relationships and
nuances between words, such as synonyms, antonyms or hierarchical relation-
ships. By capturing the context and subtle differences in meaning, semantic
analysis helps us to create a more accurate assessment for the FMEA of each LLM.

LLMs outperform traditional NLP methods in semantic analysis because they
use deep learning techniques, especially transformer architectures, to dynamically
understand context and meaning. Unlike traditional methods that rely on fixed
word embeddings and statistical correlations, LLM model words as vectors in a
high-dimensional space where their positions are influenced by the words around
them, capturing relationships, meanings and nuances more accurately. LLMs
achieve this by learning from huge datasets and using attention mechanisms to
focus on different parts of a sentence and understand word meanings in context
rather than in isolation. This allows them to capture complex language patterns,
disambiguate meanings and provide more accurate and flexible interpretations.
This is particularly useful when comparing the FMEA provided by each model to
the “golden standard,” as this requires a deep understanding of nuanced or
contextual information (Xu et al. 2024).

We compared the results of different LLMs and the failure modes found by
experts. The used prompt for the semantic comparison of failure modes is
presented in Figure 5.

An example of the numerical semantic analysis is shown in Figure 6, which
contains input data, numerical results and reasoning for the evaluation.

The semantic comparison of the failure modes was carried out separately for
each review. The results of the semantic analysis were not deterministic. For the
upper example from Figure 6, we could obtain a similarity score of 8/10 or 9/10.
The variation is within a predictable range and acceptable according to the authors.

Application of LLM for semantic comparison hasmany advantages. The results
of the comparison are understandable and logical for human criteria. The com-
parison can be performed on a much larger amount of data, which is not possible
for humans.

There are several LLMs on themarket. One of the objectives was to compare the
results between different models for the specific task – the search of failure modes
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in reviews. The results of the semantic comparison are summarized in Table 2.

Results of comparison:
Explanation of the semantic comparison parameters:

• Average similarity level: Represents how close the failure modes identified by
LLMare semantically to the “golden standard” created by humans. This results in
an overall performance score for each model.

• Standard deviation: Highlights the variability of semantic similarity level
between different reviews, where a lower standard deviation reflects greater
consistency.

• Number of cases (similarity = 1; 2): Indicates instances of significant deviation
or poor performance, useful for identifying model weaknesses.

• Number of cases (similarity = 6; 7; 8; 9; 10): Indicates the ability of the LLM to
achieve high semantic relevance, closely matching the failure modes extracted by
humans.

The visual differences when comparing the text output of different LLMs are
significant. However, if we perform a deeper comparison on a semantic level, the
differences are smaller. GPT-4o andGPT-4 providemore similar results compared
to Gemini, and this is in line with expectations. In particular, Gemini represents
error modes with different words.

Based on recommendations from the literature (Landis and Koch, 1977) and
manual comparisons, a similarity level of 6 or more is considered a substantial
agreement. GPT-4 and GPT-4o have a degree of similarity with substantial
agreement of 91 and 87%, respectively. Gemini 1.5 is still good with 80%.

Table 2 shows that a large percentage of the ratings have no or only a very low
similarity with rating 1 or 2. A manual comparison has shown that no similarity is
found if the manual search has found a failure mode but the LLM has not or vice
versa.

It can be critical if the failure mode is not recognized in the text. For example,
GPT-4o did not recognize a failure mode in the sentence: “No way can you fit 3 car
seats in the back row,” and the similarity was scored as 1.

Figure 5. Prompt for semantic comparison of failure modes with GPT-4o.
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On the other hand, in the sentence: “The car does not handle well on rain or
snow,” the expert did not identify a failure mode, but the LLM did, and therefore
the similarity was rated 1. However, from the end user’s point of view, it is a
problem, and we can agree that the LLM is right.

In some cases, a failure mode was not understandable to the LLM, and the
answer was N/A. The expert was able to identify a failure mode.

Figure 6. Example of a semantic comparison with numerical evaluation.
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GPT-4o recognized a failure mode in the sentence: “There is no window bar
between the front and back window,” but the expert did not.

A general conclusion is that different LLMs provide useful results. More
advanced LLMs such as GPT-4o generally provide better results. However, the
results sometimes differ from the expert’s pragmatic assessment. This is the reason
why the similarity of GPT-4o is worse than the similarity of GPT-4.

The conclusion may be that the search with LLMs is not perfect. However, the
search enables a computer-aided search in large datasets. So LLMs enable some-
thing that is simply not possible for humans. We can expect better results when
searching in professional documents with a more consistent document structure
and more precise language.

Finally, the system was asked to generate potential causes, current controls,
severity, occurrence and detection for a given failure mode (examples can be found
in Figure 3, right). Several suggested values were consistent with the reviews, but no
quantitative analysis was performed as there was no specific data to justify the
proposed numbers.

5. Integration of LLMs tools into the FMEA process, regular data analyses,
improvement of the FMEA process and decision support.
5.1 Integration of the LLM application into the FMEA process.
The supporting tools and methods must be well integrated into the key processes.
The data elements obtained from the sentiment analysis model and the parts finder
model were systematically organized to facilitate the subsequent FMEA. Using a
well-formulated prompt, the LLM generated a comprehensive table of relevant
information and an FMEA table for each review. The extracted FMEA information
is shown in Figure 3. This illustrates the capabilities of the LLM as an integral part
of a KMS.

In the case study, we investigated the identification of failure modes from
individual review texts. However, in a more realistic scenario, we may need to
analyze failure modes for a given component in multiple reviews simultaneously.
Thismore complex task leads to several considerations regarding the approach and
response time.

In the context of searching for all potential failure modes associated with a
particular component in a large set of reviews, two possible approaches can be
considered:

• Extraction of all data with subsequent filtering: In this method, the system first
extracts all relevant failure modes from the entire set of reviews. Once the data is
collected, it is filtered by component within the FMEA table.While this approach
ensures comprehensive coverage of all possible failure modes, it can significantly
increase processing time as large amounts of data are processed before filtering
by component.

• Component-specific prompts for targeted extraction: Another, more tar-
geted approach is to design prompts that explicitly request the extraction of
failure modes for a specific component across all documents. By specifying the
component in the initial prompt, the LLM can limit its search to the relevant
data, which could improve response time and reduce unnecessary processing.
This approach could increase efficiency when working with large datasets as it
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directly targets the information that is relevant to the component under
investigation.

There are other strategies that can be used to optimize the process:

• Batch processing of reviews: Instead of processing all reviews at once, the data
could be split into smaller batches, with each batch focusing on a specific
component. This would distribute the computational load and could lead to
faster response times while maintaining accuracy.

• Pre-classification of reviews by component: A pre-processing step could
classify reviews based on the components they mention. This classification
would allow the LLM to focus only on the subset of reviews that are relevant
to a particular component, further reducing the data load and speeding up the
extraction process.

The data used in the case study – end-user reviews – is not reliable data to
determine effects, failure mechanisms and probability of severity, occurrence and
detection. We were not able to assess the quality of the predictions. However,
according to the experts, the answers were appropriate for the given context. At this
point, we would like to highlight the technical possibilities of integrating applica-
tions and the next steps for industrial implementation.

5.2 Periodic data analysis (LLM) for decision making and corrective actions.
The integration of FMEA into the PDP using LLMs can significantly improve
decision support by streamlining information extraction and risk management. In
this proposed framework (Figure 1), a knowledge base serves as a central repository
for the systematic organization and storage of FMEA results and related docu-
ments. This integration provides comprehensive access to information on failure
modes and associated risk mitigation strategies, supporting different phases of the
product development cycle.

Effective knowledge management is based on continuous learning and system
improvement. Regular reviews of product development data and FMEA results by
senior engineers are crucial, with corrective action taken where necessary
(Figure 1). Obtaining key information can be time-consuming but is essential
for informed decision-making and the implementation of effective corrective
actions. This is where LLMs offer a powerful solution. Their advanced NLP
capabilities enable fast and accurate data extraction, significantly reducing the
time and effort required for these tasks.

Although regular data analysis using LLMs is beyond the scope of this paper, we
have conducted an example of data analysis to demonstrate the practical applica-
tion of these tools and illustrate the steps described in the framework (Figure 1).
Figure 7 shows a visual representation of the statistical data generated by LLM tools
and illustrates their efficiency in processing large volumes of documents. The visual
representation of data, such as the frequency of parts involved in customer reviews
or the frequency of particular failure modes, can be of great help in long-term
decision-making. Only systematic and statistical processing of data can identify
trends and show the big picture that is not visible in day-to-day work. Traditional
manual methods for searching, collecting and summarizing large datasets are not
only time-consuming but also costly. LLMs can effectively automate these tasks,
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Figure 7. The periodic analysis supported by LLM and visual presentation as a tool for corrective actions.
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enabling continuous data analysis and the improvement of processes and products
based on this data.

The ability of LLMs to scale FMEA analyzes across multiple tests and compo-
nents and integrate the results into a knowledge base underscores their potential to
revolutionize engineering processes. By automating these aspects of FMEA, com-
panies can significantly speed up the analysis process and improve decision
making. This automation reduces the burden of manual data analysis and allows
engineers and decisionmakers to focus onmore strategic and challenging tasks. As
a result, overall productivity and innovation are increased as more resources are
available for exploring new ideas and optimizing product design.

In summary, the use of LLMs in FMEA and product development offers
significant benefits. They enable the rapid extraction of relevant information,
support decision-making processes and facilitate the continuous improvement
of products and systems. By using these tools, companies canmakemore informed
decisions, implement effective risk mitigation strategies and ultimately drive
innovation and quality in product development.

5. Discussion
The proposed framework effectively addresses several key challenges in the FMEA
process, as shown in Table 1. Through the use of LLMs, the framework automates
labor-intensive tasks such as data collection, pre-processing and failure mode
identification, significantly reducing manual effort and minimizing human error.
It also includes a KMS to improve the reuse of FMEA findings and ensure that past
analyses are incorporated into future processes. In addition, the framework’s
ability to process unstructured data and scale to complex systems increases
efficiency, while customized prompt engineering ensures that outputs are context-
ually relevant and aligned with FMEA-specific requirements. These solutions
demonstrate that the framework is able to overcome traditional FMEA limitations
and streamline the overall process.

Additionally, the proposed framework has demonstrated its potential to
address several key challenges in the integration of LLMs into the FMEA process,

Table 3. Mapping LLM challenges to potential solutions.

LLM callenge Potential solution

Security concerns Use of locally deployed LLMs or encrypted data transfer protocols for sensitive
information.

Lack of contextual
understanding

Use of advanced prompt engineering techniques and validation to SMEs to
improve the relevance of results.

Potential bias Iterative review and validation of results by SMEs to mitigate bias and ensure
objective results.

Maintenance and
updating

Structured model maintenance with regular retraining using domain-specific
data for relevance.

Over-reliance on
automation

Clear division of tasks, with critical decision-making reserved for human
experts to complement automation.
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particularly through the application of prompt engineering. As shown in Table 3,
the study effectively tackled the challenge of contextual understanding by employ-
ing tailored prompt engineering techniques and validation by SMEs. This ensured
that the outputs were both relevant and tailored to the specific requirements of the
FMEA tasks. In addition, the framework addressed the risk of over-reliance on
automation by maintaining a clear division of tasks, reserving critical decisions for
human experts to complement the automated analysis.

Despite this progress, some challenges remain partially or fully unaddressed
and require further investigation. For example, security concerns, such as protect-
ing sensitive data and mitigating vulnerabilities in external LLM deployments,
could be addressed by using locally deployed LLMs or encrypted data transfer
protocols. Although contextual understanding was only partially addressed, fur-
ther studies could improve the accuracy and relevance of the results through
domain-specific training. Dealing with potential biases in LLM results requires
iterative assessment and the use of different training datasets to ensure fairness and
objectivity. Finally, the challenge of maintaining and updating LLMs requires the
development of structured maintenance protocols, including regular retraining
with relevant data.

Future research should focus on implementing these solutions in real industrial
environments to evaluate their effectiveness. This would provide a more compre-
hensive understanding of the integration of LLMs into FMEA and strengthen the
robustness of the proposed framework. Furthermore, investigating these chal-
lenges in diverse contexts and industries could uncover new insights and applica-
tions and further advance the practical utility of LLMs in structured engineering
processes such as FMEA.

6. Conclusion and prospects for future research
This study addresses two major gaps in the literature: the lack of a comprehensive
framework for the integration of LLMs into the FMEA process and the limited
research on the practical challenges of such integration. The proposed framework
combines a process model and an information system model to streamline FMEA
activities and demonstrate the benefits of LLMs in improving efficiency, scalability
and accuracy.

Key findings

• Framework contributions:
� Development of a systematic framework that uses LLMs to automate data pre-
processing, failure mode identification and risk analysis to reduce manual
effort and minimize human error.

� Use of a KMS to improve the reuse of knowledge to ensure that past analyses
are incorporated into future FMEA processes.

� Demonstrate the ability to process unstructured data, such as user reviews, and
transform it into structured input for FMEA.

� Improved scalability through the ability of LLMs to process large datasets
quickly and efficiently.

• Insights from the case study:
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� Minimal programming and no fine-tuning were required, with effective results
achieved through prompt engineering in just 2–3 iterations.

� The generated FMEA tables highlighted the potential of LLMs for organizing,
documenting and visualizing information to improve risk assessment and
decision-making.

� Working with company-specific FMEA reports could lead to even greater
precision in the extraction of failure modes.

• Limitations:
� Generalization of outputs: LLMs occasionally extrapolate failure modes
beyond the input data, which raises questions about the desired level of detail
for specific FMEA tasks.

� Reliance on SMEs:Outputs had to be validated and refined by SMEs, limiting
the scalability of fully automated processes.

� Domain-specific focus: The study was focused on automotive parts, lever-
aging LLMs’ pre-existing knowledge in this area. The extension to less com-
mon products or industries has yet to be tested.

� Confidentiality of data: Security concerns, such as risks associated with
external LLMs, were not fully addressed in this study.

Future research directions

• Extension of the framework: Inclusion of additional FMEA elements, such as
the selection of corrective actions and the evaluation of risk mitigation strategies.

• Improve generalization control: Explore training and prompting strategies to
minimize undesirable generalizations while retaining the ability to infer relevant
context.

• Dynamic data management: Integrate real-time updates that link extracted
information to source documents and dynamically refresh results as new data
becomes available.

• Testing in diverse domains:Apply the framework to lesser-known products and
industries to evaluate its robustness and adaptability.

• Improve security and privacy: Deploy locally hosted LLM infrastructures or
explore open access models, such as OpenLLaMA (Geng & Liu 2023), to
safeguard sensitive proprietary data.

• Industrial validation:Conduct large-scale evaluations in real industrial contexts
tomeasure the impact of the framework on efficiency, time savings and accuracy.
For example, Dell’Acqua et al. (2023) have shown that LLMs improve the quality
of tasks by over 40% and reduce task duration by 25%, which is promising for
FMEA applications.

This study illustrates the transformative potential of LLMs in automating
labor-intensive and time-consuming FMEA processes. Although the framework
offers significant benefits, such as faster pre-processing and better data organiza-
tion, future efforts should focus on addressing the identified challenges to enable
broader industrial application. By refining the framework and expanding its scope,
LLMs can unlock their full potential in engineering processes and pave the way for
more efficient, accurate and innovative solutions.
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