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ADDITIVE DIVISIBILITY IN COMPACT
TOPOLOGICAL SEMIRINGS

P. H. KARVELLAS

1. Introduction. A topological semiring (S, 4, -) is a nonempty Hausdorff
space .S on which are defined continuous and associative operations, termed
addition (+) and multiplication (-), such that the multiplication distributes
over addition from left and right. The additive semigroup (S, +) need not
be commutative.

We prove that the set 4 of additively divisible elements of a compact
semiring S is a two-sided multiplicative ideal, containing the set E[+] of
additive idempotents, with the property that (4.5)\U (S.4) C E[+].
Several well-known corollaries are immediate consequences. Section one also
extends material from Wallace [11]. The second section is devoted to the
determination of the semiring multiplication when an I-semigroup addition
has been specified on an interval of the real line.

Semigroup nomenclature from [3] will be used throughout. Complex products
are given by

XY ={xy:x€X,y€c¥} and X+ V={x+y:x¢€X,y€ ¥}

The nonempty subset M of a semiring S is a multiplicative ideal if
(S.M)\J (M.S) C M and is an additive ideal if (M + S)\J (S + M) C M.
If the semiring is compact, then minimal ideals (kernels) exist for both the
additive and multiplicative semigroups [10]. The idempotent sets are E[+] =
{x:x =x+ x} and E[] = {x : x = x?}. The union of all additive subgroups
will be denoted by H[-+]. Both idempotents and subgroups exist for the
compact case [10]. Both H[+] and E[+] are two-sided multiplicative ideals
although in general neither set need be closed under addition. For an element x
and positive integer #, interpret nx as the n-fold sum of x.

2. The set of additively divisible elements. An element x of a semiring .S
is said to be additively divisible if for each positive integer % there exists an
element y of .S such that x = ny. The set of additively divisible elements of a
semiring will be denoted by 4 and N shall represent the positive integers.
Nets will be written as {x,} (¢ € D), D being the directed set.

THEOREM 1. Let S be a compact topological semiring. The set A of additively
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divisible elements of S is nomempty and topologically closed. Moreover,
A4.8)VU (8.4) CE[+] CA and, if S has a multiplicative identity, then
E[+] = 4.

Proof. Because (S, +) is a compact topological semigroup, E[+] is nonvoid
[10]. If e = ¢ + ¢, then e = ne for all » in N, implying E[+] C 4. Trivially
A is a closed set.

Leta € A and s € S. For each integer # in N there exists b, € .S such that
a = nb,. Thus as = (nb,)s = b,(ns) for each » € N. From the compactness
of S the net {ns}(n € N) clusters to an additive idempotent e [6, Theorem
1.1.10]. Denoting the convergent subnet by /N’ there is a corresponding subnet
of {b,} (n € N’) which must cluster to some element b of S. Writing this
convergent subnet as N”, {b,} —b (n € N"”) and {ns} —e (n € N"') are
convergent nets. From the continuity of multiplication {b,(ns)} — be (n € N"")
is convergent. But as = b,(ns) for each n € N’ and therefore as = be =
b(e +¢) = be + be € E[+]. Thus A.S C E[+] and similarly S.4A C E[+]
also. Lastly, if the element 1 is an identity for multiplication, 4 = 4 - {1} C
A.S C E[+] C A4, hence 4 = E[+].

The following result was obtained by Selden [9].

COROLLARY 2. Let S be a compact topological semiring, with S = (S.E[-]) \J
(E[].S). Then each additive subgroup of S is totally disconnected.

Proof. For each a € A there exists an element ¢ € E[-] such that either
a = at or a = ta. In either case ¢ € E[+] and thus 4 = E[+]. Let G be an
additive subgroup of .S with additive identity e and let C be the identity
component of e in G. Then the topological closure G* of G is compact and is a
topological group. The identity component C’ of ¢ in G* contains C and (’
is a continuum topological group. From a result of Mycielski [5], C’ is additively
divisible and thus C = C’ = {e}. Since translation is a homeomorphism, G is
totally disconnected.

The corollaries which follow can also be obtained from the results of Wallace
[11]. We omit the proofs. A topological semiring (S, 4, -) is a (topological)
distributive nearring if (S, +) is an algebraic group.

CoRroLLARY 3 [2]. The multiplication on a compact and connected topological
dustributive nearring (R, -+, -) is given by xy = 0, where 0 is the additive identity.

CoroLLARY 4 [1]. Let R be a compact, connected topological ring. Then
R? = {0}.

COROLLARY 5. A compact topological ring with multiplicative identity is
totally disconnected.

The next result finds particular application in the characterization problem
treated in section two.
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COROLLARY 6. Let S be a compact semiring which is additively divisible. Then
S? C E[+]. If also S is connected and E[+] is totally disconnected, then S? = {e}
for some element ¢ in E[+].

The first example will be used in our later work. The additions correspond
to I-semigroups of types J; and J. [4].

Example 1. Let P be the interval [0, 1] of real numbers with addition
x 4+ y = x xy, where * represents ordinary real number product, and let 4
be the interval [1/2,1] with the addition x + ¥y = max(1/2,x *y). Both
additions are divisible. If both intervals are to be topological semirings, then
P? = {0} or {1}, while Q? = {1/2} or {1}.

3. Additively divisible semirings on intervals. In this section the con-
tinuum .S shall be the interval [z, #] of real numbers, with z minimal and «
maximal in the left to right order on the line. Subcontinua will be written
[x, ], where x < y. Thatis,x =x A yandy = x V y.

An I-semigroup is a topological semigroup which is both isomorphic and
homeomorphic (iseomorphic) to a semigroup on [0, 1], such that 0 and 1 act
respectively as a zero and an identity for the semigroup operation. Pearson
has given characterizations of the semiring addition when an I-semigroup
multiplication has been specified on an interval [7; 8]. In this section we shall
consider the problem of determining the multiplication when an I-semigroup
addition has been defined on the interval S = [z, u].

There exist four possible types of I-semigroup additions (4, Theorem B].
These are listed below, with real number product written as x * y.

J1: The interval [0, 1] with addition x + y = x * y.
J2: The interval [1/2, 1] with addition x + y = max(1/2, x * v).
Js: The interval [z, #] with addition x 4+ y = x A y.
J4: The interval [z, u] with the properties:
(1) zis an additive zero, # an additive identity;
(2) if T is the closure of an interval in S\E[4], T is iseomorphic to
Jior Jo;
(8) if x and y are not in the closure of the same subinterval of
S\E[+],x+y =x A y.

All I-semigroup operations are divisible. In order to refer to an arbitrary
I-semigroup operation on an interval [x, y], either x or y is allowed to assume
the role of the identity element. Henceforth we shall consider (S, 4, -) to be
a topological semiring on the interval [z, #], where (S, +) is one of the
J-additions and # is an additive identity.

If (S, +) is either J; or J,, the results of Example 1 are the only multiplica-
tions compatible with the addition. That is: S? = {z} or S? = {u}. We require
additional examples descriptive of the type of semiring obtainable when
addition is J; or J,.
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Example 2. Let T = [a, b] be an interval with min addition. If the multi-
plicative semigroup (7, -) is an [-semigroup, with either ¢ or b as identity,
the resulting structure is a semiring. Similarly if x + vy = x V y in [a, b] and
multiplication is any I-semigroup, (7, +, ) is again a topological semiring.

The next example exhibits many of the properties derived in the lemma
which follows.

Example 3. Let 7" = [0,1/2] with ordinary multiplication and addition
x 4+ v =x A v. If addition is given by x +v = x V v, (T, +, -) is another
topological semiring on the same set.

Lemma 7. Let T = [a, b] be an interval, with J. addition, endowed with «
multiplication such that E[-] = {a} and (T, +,-) is a topological semiring.
Then:

(1) T is continued in the same subinterval L of E[-+] which contuins the
element a.

(2) If x, vy and w are in T, with x < vy, then xw < yw and wx < wy; if
X # a, then xw, wx < x.

B) Ifx € T, xT = [a,xd], Tx = [a, bx] and T? = [a, b?].

Proof. The J, addition is divisible and thus 7 C E[+]. Since 7? is also
connected and contains @ = a?, 7% is wholly contained in L.

Addition in E[+4] is min. Let x,y € T, with x < y. If either x or y is in
E[+], then x = x + y. For any w € T, xw = xw + yw and wx = wx + wy.
All elements are in E[+], hence xw < yw and wx < wy. The same computa-
tions are also valid if x and y are in different subintervals of S\E[+]. If x
and y are in the same subinterval L of S\E[+], there exists & € L such that
y+h =x Then x +y =y 4+ y 4+ k and, because yw € E[+], we obtain
the result xw + yw = xw = yw.

Letx, w € T, with x # a. Then x # x? and x < x? implies that x = x + x2,
hence x? = x% + x% Adding x to both sides, x = x 4+ x® and, by induction,
x = x + «" for all » = 2. But 7" is compact and the net of powers of x must
then cluster to @, implying that x = x 4 «, which is a contradiction. From
« =a+x, a=a*=a+ xe = xa. Similarly xa = xa + x* £ x* < x. Now,
if x = xw, then x = xw" for every integer n = 2 and thus x = xa, a contra-
diction. Now, if x < xw, then x = x + xw, from which xw = xw + xw? and,
using the same procedure as above, x = x + xa, which is another contra-
diction. Consequently xw =< x and similarly wx < x.

For x,y €T, a=a+ 7y and y = b 4+ y, hence x¢ = xy < xb and thus
xT" C [xa, xb]. But xT" is connected and contains both xa and xb, so xT" =
[xa, xb]. If a < xa, there exists a positive integer n such that x" € [a, xa).
Because n % 1, we have the result

X" =x"+xa = x(x"' 4+ a) = xa

which is a contradiction. Analogously one shows that 7x = [a, bx] and
72 = [a, b?].
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Example 4. Let T" = [a, d] with ], addition and let (-) be a continuous
multiplication defined on T such that: (1) E[-] = {a}; 2)ifx < y,andw € T,
then xw =< yw and wx < wy; (3) if x # a, then xw, wx < x forall w € T; (4)
multiplication distributes over addition. Then (7, +, -) is a topological semi-
ring with J, addition.

The existence of such a multiplication is obvious, since 7% = {a} satisfies
the first three postulates and distributes over addition. It would seem that any
solution yielding a complete characterization of the multiplication in Lemma 7
would require a knowledge of the topological semigroups which can exist
on the interval [0, 1/2], in which 0 is the only multiplicative idempotent.

Because J; is a special case of J4, it is only necessary to consider the latter.
The last example is representative of a topological semiring with J, addition.

Example 5. Let S = [z, 4] be a real number interval, with J, addition,
in which u is the additive identity. Choose any four points s, ¢, f and ¢ in the
same subinterval L of E[+], where s < s < e £ f <t £ u. Label the result-
ing intervals as A = [z,¢], K = [¢,f] and B = [ f, u], where 4 is the union
of C = [z,s]and D = [s, e], while B is the union of the subintervals I = [ f, {]
and R = [t, u]. The multiplication on S will be defined so that the set E[-] of
multiplicative idempotents lies entirely in [s, £], S? C L and K is the multi-
plicative kernel with left-trivial multiplication. Addition in E[+] is min and the
subintervals D, K and I will be contained in L. The multiplication is as follows.

InK =[e,f]: xy =xand ks = kfork € K,s € S.

InI=/[f1{: x4y =x Ay and multiplication is an I-semigroup with

identity ¢ and kernel { f }.

InD = [s,e]: x+y=xV yand multiplication is an [-semigroup with

identity s and kernel {e}.
(£, u]: E[-]MN R = {t} and multiplication satisfies the four proper-
ties of Example 4.
In C = [z 5]: E[]MNC={s} and multiplication is the analogue of
Example 4 with {s} acting as the multiplicative kernel.

In F=[fu]: xy =yx =xforx €I,y € R.

In A4 =[z€: xy=yx =vyforx € C,y € D.

Complex Products: B.A = B.K = {f} and A.B = 4.K = {¢}.

The resulting structure (S, +, -) is a topological semiring, with J, addition
and multiplicative kernel K: the subintervals C, D, I, R, A, B and K are sub-
semirings. Since products of elements from different subintervals are either
trivial or left-trivial in K, the multiplication is easily verified to be continuous
and distributive over the addition.

Il

In R

THEOREM 8. Let (S, 4+, -) be a J4 addition topological semiring on the interval
[z, u] of real numbers. Then:

(1) There exist elements s, e, f and t, all in the same subinterval L of E[+],
such that K[] = [e,f], E[-] C [s, t], where 2 < s < e = f £t £ u. Moreover,
xy = x or xy =y for all x and y in K[-].
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Assuming that multiplication n K[-] is left-trivial (xy = x), and labelling
the resulting subintervals as A = [z,¢], B =[f,u], C =[z5], D = [s, ¢,
I =1[ftland R = [¢t, u], then:

2) (A4, +,-) and (B, +, ) are subsemirings of S, with respective multiplica-
tive kernels {e} and { f }.

(8) BA =BK[]=1{f}and A.B = A.K[] = {e}.

4) I, +,-) and (D, +, -) are subsemirings of S, contained in L, and have
min addition and I-semigroup multiplications.

b)) R, +,-) and (C, +,:) are subsemirings, with E[[]MN R = {i} and
E[-] M C = {s}; the multiplication is given by Example 4.

(6) Forx ¢ C,y€eE D,xy=vyx =y,forx € I,y € R, xy = yx = x.

(7) S* C L C E[+].

Proof. Because (S, -) is a compact and connected semiring, the multiplica-
tive kernel K[-] must be a closed subinterval of .S contained in E[+4]. Denote
the kernel by K[-] = [e, f ]. Connectivity requires that the kernel be contained
in a single component L of E[+]. Similarly E[-] is closed, requiring that
elements s and ¢ exist such that s = s A x and ¥ = x A ¢ for all x € E[].
Because K[], unless trivial, has a cutpoint, multiplication in the kernel is
either left- or right-trivial from [6, Corollary to Theorem 2.4.6]. We assume
the former. Thus for k € K[-], s €S, ks = k(ks) =k and K[-] C E[-],
requiring thatz £ s £ e =f =t = u.

Consider the subinterval A4 = [z,¢] = {x:x = x + e}. Because (4, +)
is a subsemigroup we need only demonstrate closure under multiplication.
For x,y € A we obtain

xy=(@x+e)y+e) =xy+ey+xete
=xy+ey+xete
implying that xy = xy 4+ ¢ € A. Note that ex,xe € K[-]MN A = {e}, and
therefore {e} is the multiplicative kernel. Similarly (B, +, +) is a subsemiring
with multiplicative kernel { f }.
Recall that Bf = {f} and bk € K[-] for b € B,k € K[-]. Since f = b + f,
we obtain
bk =bk +f=0k+fk=0+f)k=fk=f
and thus B.K[-] = { f}. Analogously 4.K[-] = {e}.
For elements a € 4 and DE B, e=¢eb=b-+e¢=aqae and a = a + e.
Consequently
ab+e=ab+eb = (a+ e)b =ab
=ab+ae=a+e) =ae=c¢

and hence A.B = {e}. Similarly B.A = { f} from the equations

ba +f=ba+bf =bla+f) =ba
=ba+fa= (b+fa=fa=f
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Of the nine set products possible from 4, B and K[-], K[-], B*and 4? are yet
to be determined. Consider the subsemiring B = [ f, #], which is the union
of I =[f,tJand R = [t,u]. Since I = {x:f=f+x,x =x 4+ ¢} and I.f =
fI=1{f}, {f, ¢ CGI)N (It) and therefore I = {I = It. The element ¢
is a two-sided multiplicative identity for I.

Noting that ([s, ¢])? contains both s and ¢, and that S* C E[+], [s, ¢{] C E[+]
and, indeed, [s, t{] C L. Therefore forx, y € I, x +y = x A y. Now

xy=@x+)y+)=xy+ity+axt+it=xy+y+x+4¢

so xy = t. But xy € B so (I, +,.) is a subsemiring. Since [ is irreducibly
connected between the multiplicative zero element f and the multiplicative
identity ¢, (I, .) must be an I-semigroup from the analysis in [4]. In a similar
fashion (D, 4, -) is a subsemiring, where (D, ) is an I-semigroup with multi-
plicative identity element s.

Because s, ¢t € E[+], both R = [t,u] and C = [z, s] are additive subsemi-
groups. Let x,y € R. Thent =¢+x =t + y and

t=(0C4+x)t+y)=t+at+ty+xy=¢t-+xy

which proves closure of R under multiplication. Analogously one shows that
(C, -) is a subsemigroup. Lemma 7 can now be applied.

For elements x € I, y € R, we have that x = xt and ¢{ = ¢y and therefore
xy = (xt)y = x(ty) = xt = x = yx. A similar result holds for multiplication
between C and D.

Lastly, S? C E[+] as remarked earlier and is a connected set. Consequently
S* C L.
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