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ADDITIVE DIVISIBILITY IN COMPACT 
TOPOLOGICAL SEMIRINGS 

P. H. KARVELLAS 

1. Introduction. A topological semiring (5, + , •) is a nonempty Hausdorff 
space 5 on which are defined continuous and associative operations, termed 
addition ( + ) and multiplication (•), such that the multiplication distributes 
over addition from left and right. The additive semigroup (5, + ) need not 
be commutative. 

We prove that the set A of additively divisible elements of a compact 
semiring S is a two-sided multiplicative ideal, containing the set £ [ + ] of 
additive idempotents, with the property that {AS) U {S.A) C £ [ + ] • 
Several well-known corollaries are immediate consequences. Section one also 
extends material from Wallace [11]. The second section is devoted to the 
determination of the semiring multiplication when an /-semigroup addition 
has been specified on an interval of the real line. 

Semigroup nomenclature from [3] will be used throughout. Complex products 
are given by 

X.Y = {xy :x £ X,y £ Y} and X + Y = {x + y : x G X, y G Y}. 

The nonempty subset M of a semiring S is a multiplicative ideal if 
{S.M) \J {MS) C M and is an additive ideal if {M + S) \J {S + M) C M. 
If the semiring is compact, then minimal ideals {kernels) exist for both the 
additive and multiplicative semigroups [10]. The idempotent sets are E[+] = 
{x : x — x + x) and E[-] = {x : x = x2}. The union of all additive subgroups 
will be denoted by H[+]. Both idempotents and subgroups exist for the 
compact case [10]. Both i f [ + ] and £ [ + ] are two-sided multiplicative ideals 
although in general neither set need be closed under addition. For an element x 
and positive integer n, interpret nx as the n-iold sum of x. 

2. The set of additively divisible elements. An element x of a semiring 5 
is said to be additively divisible if for each positive integer n there exists an 
element y of 5 such that x = ny. The set of additively divisible elements of a 
semiring will be denoted by A and N shall represent the positive integers. 
Nets will be written a s | X(i }{a G D), D being the directed set. 

THEOREM 1. Let S be a compact topological semiring. The set A of additively 
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divisible elements of S is nonempty and topologically closed. Moreover, 
(A.S)\J (S.A) C E[+] G A and, if S has a multiplicative identity, then 
E[+] = A. 

Proof. Because (5, + ) is a compact topological semigroup, E[+] is nonvoid 
[10]. If e = e + e, then e = ne for all n in N, implying £ [ + ] C A. Trivially 
A is a closed set. 

Let a G A and 5 G 5. For each integer n in N there exists bn (E 5 such that 
a = »èn. Thus as = (nbn)s = bn(ns) for each n £ N. From the compactness 
of 5 the net {ws} (w 6 iV) clusters to an additive idempotent e [6, Theorem 
1.1.10]. Denoting the convergent subnet by N', there is a corresponding subnet 
of {bn}(n (E N') which must cluster to some element b of S. Writing this 
convergent subnet as N", {bn\ —» b (n G N") and {ns\ —> e (n £ N") are 
convergent nets. From the continuity of multiplication {bn(ns)} -—> be (n £ iV") 
is convergent. But as = bn(ns) for each n 6 iV/; and therefore as = be = 
b(e + e) = be + be £ £ [ + ] . Thus 4 . 5 C £ [ + ] and similarly S.A C £ [ + ] 
also. Lastly, if the element 1 is an identity for multiplication, A = A • {1} C 
A.S C £ [ + ] C A, hence 4 = £ [ + ] . 

The following result was obtained by Selden [9]. 

COROLLARY 2. Let S be a compact topological semiring, with S = (£.£[•]) KJ 
(E[-].S). Then each additive subgroup of S is totally disconnected. 

Proof. For each a £ A there exists an element t G E[-] such that either 
a = at or a = ta. In either case a G -E[+] and thus A = £ [ + ] . Let G be an 
additive subgroup of 5 with additive identity e and let C be the identity 
component of e in G. Then the topological closure G* of G is compact and is a 
topological group. The identity component C' of e in G* contains C and C 
is a continuum topological group. From a result of Mycielski [5], C is additively 
divisible and thus C = C = {^}. Since translation is a homeomorphism, G is 
totally disconnected. 

The corollaries which follow can also be obtained from the results of Wallace 
[11]. We omit the proofs. A topological semiring (S, + , •) is a (topological) 
distributive nearring if (S, + ) is an algebraic group. 

COROLLARY 3 [2]. The multiplication on a compact and connected topological 
distributive nearring (R, + , •) is given by xy = 0, where 0 is the additive identity. 

COROLLARY 4 [1]. Let R be a compact, connected topological ring. Then 
R2 = {0}. 

COROLLARY 5. A compact topological ring with multiplicative identity is 
totally disconnected. 

The next result finds particular application in the characterization problem 
treated in section two. 
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COROLLARY 6. Let S be a compact semiring which is additively divisible. Then 
S2 C £ [ + ] • If also S is connected and £ [ + ] is totally disconnected, then S2 — \e\ 
for some element e in £ [ + ] . 

The first example will be used in our later work. The additions correspond 
to /-semigroups of types Ji and J2 [4]. 

Example 1. Let P be the interval [0, 1] of real numbers with addition 
x + y = x * y, where * represents ordinary real number product, and let A 
be the interval [1/2,1] with the addition x + y = max(1/2, x * y). Both 
additions are divisible. If both intervals are to be topological semirings, then 
P2 = {0} or {1}, while Q2 = {1/2} or {1}. 

3. Additively divisible semirings on intervals. In this section the con­
tinuum 5 shall be the interval [z, u] of real numbers, with z minimal and u 
maximal in the left to right order on the line. Subcontinua will be written 
[x, y], where x g y. That is, x = x A y and y = x V y. 

An I-semigroup is a topological semigroup which is both isomorphic and 
homeomorphic (iseomorphic) to a semigroup on [0, 1], such that 0 and 1 act 
respectively as a zero and an identity for the semigroup operation. Pearson 
has given characterizations of the semiring addition when an /-semigroup 
multiplication has been specified on an interval [7; 8]. In this section we shall 
consider the problem of determining the multiplication when an /-semigroup 
addition has been defined on the interval S = [z, u]. 

There exist four possible types of /-semigroup additions [4, Theorem B]. 
These are listed below, with real number product written as x * y. 

Ji : The interval [0, 1] with addition x + y = x * y. 
J2: The interval [1/2, 1] with addition x + y = max(1/2, x * y). 
J3: The interval [z, u] with addition x + y = x A y. 
J4: The interval [z, u] with the properties: 

(1) z is an additive zero, u an additive identity; 
(2) if T is the closure of an interval in S \ £ [ + ] , T is iseomorphic to 

Ji or J2; 
(3) if x and y are not in the closure of the same subinterval of 

•SV^t+L oc + y = x A y. 
All /-semigroup operations are divisible. In order to refer to an arbitrary 

/-semigroup operation on an interval [x, y], either x or y is allowed to assume 
the role of the identity element. Henceforth we shall consider (S, + , •) to be 
a topological semiring on the interval [z, u], where (5, + ) is one of the 
/-additions and u is an additive identity. 

If (5, + ) is either Ji or J2, the results of Example 1 are the only multiplica­
tions compatible with the addition. That is: S2 = \z) or S2 = {u}. We require 
additional examples descriptive of the type of semiring obtainable when 
addition is / 3 or / 4 . 
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Example 2. Let T = [a, b] be an interval with min addit ion. If the mult i­
plicative semigroup (T, •) is an / -semigroup, with either a or b as ident i ty , 
the resulting s t ructure is a semiring. Similarly i f x + 3> = x V 3 > i n [a, b] and 
multiplication is any / -semigroup, (T\ + , •) is again a topological semiring. 

The next example exhibits m a n y of the properties derived in the lemma 
which follows. 

Example 3. Let T = [0, 1/2] with ordinary multiplication and addit ion 
x + y = x A y. If addit ion is given by x + y = xWy, (T, + , •) is another 
topological semiring on the same set. 

LEMMA 7. Let T = [a, 6] be an interval, with J 4 addition, endowed with a 
multiplication such that £[•] = {a} and (T, + , •) is a topological semiring. 
Then: 

(1) T2 is continued in the same subinterval L of £ [ + ] which contains the 
element a. 

(2) If x, y and w are in T, with x ^ y, then xw ^ yw and wx ^ wy; if 
x 9^ a, then xw, wx < x. 

(3) If x G T, xT = [a, xb], Tx = [a, frx] and T2 = [a, b2]. 

Proof. T h e J 4 addit ion is divisible and thus T2 C £ [ + ] • Since T2 is also 
connected and contains a = a2, T2 is wholly contained in L. 

Addition in £ [ + ] is min. Let x, y £ T, with x ^ 3>. If either x or 3/ is in 
£ [ + ] , then x = x + 3/. For any w £ T, xw = xw + 3>w and wx = wx + wy. 
All elements are in £ [ + ] , hence xw ^ yw and wx ^ wy. T h e same computa­
tions are also valid if x and y are in different subintervals of 5 \ E [ + ] . If x 
and y are in the same subinterval L of 5 \ E [ + ] , there exists h £ L such t ha t 
y + h = x. Then x + y = 3 ^ + 3; + ^ and, because yw £ £ [ + ] , we obtain 
the result xw + yw = xw ^ yw. 

Let x, w G 7", with x 9^ a. Then x ^ x2 and x < x2 implies t h a t x = x + x2, 
hence x2 = x2 + x3. Adding x to both sides, x = x + x3 and, by induction, 
x = x + xn for all n ^ 2. B u t T is compact and the net of powers of x must 
then cluster to a, implying t h a t x = x + a, which is a contradict ion. From 
a = a + x, a = a2 = a + xa ^ xa. Similarly xa = xa + x2 ^ x2 < x. Now, 
if x = xw, then x = xw11 for every integer n ^ 2 and thus x = xa, a contra­
diction. Now, if x < xw, then x = x + xw, from wiiich xw = xw + xw2 and, 
using the same procedure as above, x = x + xa, w7hich is another contra­
diction. Consequently xw ^ x and similarly wx ^ x. 

For x j G 2", a = a -\- y and y = fr + y, hence xa S xy S xb and thus 
xT C [xa, xb]. B u t xT is connected and contains both xa and xfr, so xT = 
[xa, xa]. If a < xa, there exists a positive integer n such t h a t xw 6 [a, x a ) . 
Because w ^ 1, we have the result 

xn = xn + xa = x(xw _ 1 + a) = xa 

which is a contradict ion. Analogously one shows t h a t Tx = [a, &x] and 
T2 = [a, 62]. 
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Example 4. Let T = [a, b] with J4 addition and let (•) be a continuous 
multiplication denned on Tsuch that: (1) £[•] = {a} ; (2) ifx^y, and w £ T, 
then xw ^ yw and TO ^ w;y; (3) if x 9^ a, then xw, wx < x for all w £ T; (4) 
multiplication distributes over addition. Then (7", + , •) is a topological semi­
ring with J4 addition. 

The existence of such a multiplication is obvious, since T2 = {a} satisfies 
the first three postulates and distributes over addition. It would seem that any 
solution yielding a complete characterization of the multiplication in Lemma 7 
would require a knowledge of the topological semigroups which can exist 
on the interval [0, 1/2], in which 0 is the only multiplicative idempotent. 

Because J3 is a special case of J4, it is only necessary to consider the latter. 
The last example is representative of a topological semiring with J4 addition. 

Example 5. Let S = [z, u] be a real number interval, with J4 addition, 
in which u is the additive identity. Choose any four points s, e, f and t in the 
same subinterval L of -E[+], where z ^ s ^ e ^ f ^ t ^ u . Label the result­
ing intervals as A = [z, e], K = [e,f] and B = [/, u], where A is the union 
of C = [z, s] and D = [s, e], while B is the union of the subintervals / = [ / , / ] 
and R = [t, u]. The multiplication on 5 will be defined so that the set E[-] of 
multiplicative idempotents lies entirely in [s, /] , S2 C L and K is the multi­
plicative kernel with left-trivial multiplication. Addition in £ [ + ] is min and the 
subintervals D, K and I will be contained in L. The multiplication is as follows. 

In K = [e,f]: xy = x and ks = k for k G K, s Ç S. 
In I = [/, t]: x + y = x A y and multiplication is an /-semigroup with 

identity / and kernel { / }. 
In D = [s, e]: x + y = x V y and multiplication is an /-semigroup with 

identity s and kernel {e}. 
In R = [t, u]: E[-] P\ R = {t} and multiplication satisfies the four proper­

ties of Example 4. 
In C = [z, s]: E[-] r\ C = {s\ and multiplication is the analogue of 

Example 4 with {s} acting as the multiplicative kernel. 
In F = [/, u]: xy = yx = x for x £ / , y G R-
In A = [z, e]: xy = yx = y for x Ç C, 3/ Ç P . 
Complex Products: 5 .4 = £.2£ = {/ } and A.B = A.K = {*}. 
The resulting structure (5, + , •) is a topological semiring, with J4 addition 

and multiplicative kernel K: the subintervals C, D, I, R, A, B and K are sub-
semirings. Since products of elements from different subintervals are either 
trivial or left-trivial in K, the multiplication is easily verified to be continuous 
and distributive over the addition. 

THEOREM 8. Let (S, + , •) be a J4 addition topological semiring on the interval 
[z, u] of real numbers. Then: 

(1) There exist elements s} e, f and t, all in the same subinterval L of £ [ + ] , 
such that K[-] = [e,f], E[-] C [s, t], where z ^ s ^ e ^ f S t ^ u . Moreover, 
xy = x or xy — y for all x and y in K[-]. 
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Assuming that multiplication in K[-] is left-trivial (xy = x), and labelling 
the resulting subintervals as A = [z, e], B = [/, u], C = [z, s], D = [s, e], 
I — [ft l] an& R = [ty u]y then: 

(2) (A, +, -) and (B, + , •) are sub semirings of S, with respective multiplica­
tive kernels {e} and {f } . 

(3) B.A = B.K[-] = {f}andA.B = A.K[-] = {e}. 
(4) ( / , + , - ) and (D, + > •) are sub semirings of S, contained in L, and have 

min addition and I-semigroup multiplications. 
(5) (R, + , •) and (C, + , •) are sub semirings, with E[-] P\ R = {t\ and 

£[•] C\ C = {s}; the multiplication is given by Example 4. 
(6) For x G C, y <E D, xy = yx = y; for x (E 7, y £ R, xy = yx = x. 
(7) 5 2 C L C £ [ + ] . 

Proof. Because (S, •) is a compact and connected semiring, the multiplica­
tive kernel K[-] must be a closed subinterval of S contained in £ [ + ] . Denote 
the kernel by K[-] = [e,f]. Connectivity requires that the kernel be contained 
in a single component L of £ [ + ] . Similarly £[•] is closed, requiring that 
elements 5 and t exist such that s = s A x and x = x A t for all x £ £[•]• 
Because K[-], unless trivial, has a cutpoint, multiplication in the kernel is 
either left- or right-trivial from [6, Corollary to Theorem 2.4.6]. We assume 
the former. Thus for k Ç 2£[-], s £ S, ks = fe(ib) = fe and #[•] C £[•], 
requiring that z ^ s ^ e ^ f S t ^ u . 

Consider the subinterval 4̂ = [s, e] = {x : x = x + e}. Because (A, + ) 
is a subsemigroup we need only demonstrate closure under multiplication. 
For xf y £ A we obtain 

:ry = (x + e) (3/ + e) = x;y + e;y + xe + e2 

= xy + ej + xe + e 

implying that xy = xy + e £ A. Note that ex, xe £ !£[•] P\ 4̂ = {e}} and 
therefore {e} is the multiplicative kernel. Similarly (B, + , •) is a subsemiring 
with multiplicative kernel { / }. 

Recall that Bf = {f } and bk £ #[•] for & £ 5 , fe G #[•] . Since f = b + f, 
we obtain 

bk = bk +f = bk +fk = (b +f)k =fk =f 
and thus B.K[-] = { /} . Analogously 4.X[-] = {e}. 

For elements a £ A and b £ B, e = eb = b-{-e = ae and a = a + e. 
Consequently 

ab + e = ab + eb = (a + e)fr = afr 

= ab + ae = a(& + e) = ae = e 

and hence A.B = {e}. Similarly i?.̂ 4 = { / } from the equations 

ba +f = ba + bf = b(a + / ) - 6a 
= ba+fa = (b+f)a = fa = / . 
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Of the nine set products possible from A, B and K[-], K[-], B2 and A2 are yet 
to be determined. Consider the subsemiring B = [/, u], which is the union 
of I = [/, /] and R = [t, u\. Since I = {x : / = / + x, x = x + t] and / . / = 
f-I = ( / ! > {/» }̂ C (^ ) H (It) and therefore I = tl = It. The element / 
is a two-sided multiplicative identity for J. 

Noting that ([>, t})2 contains both 5 and t, and that S2 C E[+], |>, *] C E[+] 
and, indeed, [s, t] C -£• Therefore for x, y £ I, x -{- y = x A y. Now 

X3; = (# + t) (y + 0 = xy + ty -{- xt -\r t = xy + y + x -\- t, 

so x;y g /. But xy £ B so ( / , + , . ) is a subsemiring. Since / is irreducibly 
connected between the multiplicative zero element / and the multiplicative 
identity /, (J, .) must be an /-semigroup from the analysis in [4]. In a similar 
fashion (D, + , •) is a subsemiring, where (D, •) is an /-semigroup with multi­
plicative identity element s. 

Because s, t Ç £ [ + ] , both R = [t, u] and C = [z, s] are additive subsemi-
groups. Let x, y G R. Then t = t + x = t + y and 

/ = (t + x)(t + y) = t + xt + ty + xy = t + xy 

which proves closure of R under multiplication. Analogously one shows that 
(C, •) is a subsemigroup. Lemma 7 can now be applied. 

For elements x G / , y G R, we have that x = xt and t = ty and therefore 
X3> = (x/)y = x(ty) = xt = x = yx. A similar result holds for multiplication 
between C and D. 

Lastly, S2 C -£[+] as remarked earlier and is a connected set. Consequently 
S2 C i . 
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