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The transition to chaos in the subcritical regime of counter-rotating Taylor–Couette
flow is investigated using a minimal periodic domain capable of sustaining coherent
structures. Following a Feigenbaum cascade, the dynamics is found to be remarkably well
approximated by a simple discrete map that admits rigorous proof of its chaotic nature.
The chaotic set that arises for the map features densely distributed periodic points that are
in one-to-one correspondence with unstable periodic orbits (UPOs) of the Navier–Stokes
system. This supports the increasingly accepted view that UPOs may serve as the backbone
of turbulence and, indeed, we demonstrate that it is possible to reconstruct every statistical
property of chaotic fluid flow from UPOs.
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1. Introduction
About half a century ago, deterministic chaos theory revolutionised our understanding
of why fluid flows are so challenging to predict, with groundbreaking contributions
such as Lorenz (1963). Since then, the application of dynamical systems theory to
fluid phenomena has developed into a rich and fruitful field (Eckmann 1981; Argyris,
Faust & Haase 1993). However, a significant divide persists between chaos theory and
statistics-based turbulence theory. To help bridge this gap, this paper examines a specific
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flow pattern in the Taylor–Couette system – a classic fluid set-up extensively studied in
theory, experiments and numerical simulations.

One of the major challenges of turbulence resides in understanding the mechanisms
that produce coherent vortical structures, which low-dimensional models struggle to fully
represent. With advancements in computational power, dynamical systems theory analyses
based on numerically solving the Navier–Stokes equations have gained momentum. In
the context of shear flows, research along these lines has enabled significant progress
in the understanding of the physical mechanisms that govern subcritical transition to
turbulence (Kerswell 2005; Eckhardt et al. 2007). Invariant solutions, typically in the
form of travelling waves or unstable periodic orbits (UPOs), enact a fundamental part
(see, for example, Nagata 1990; Clever & Busse 1997; Itano & Toh 2001; Kawahara &
Kida 2001; Faisst & Eckhardt 2003; Waleffe 2003; Wedin & Kerswell 2004; Pringle,
Duguet & Kerswell 2009; Mellibovsky & Meseguer 2009; Gibson, Halcrow & Cvitanovic
2009; Deguchi, Meseguer & Mellibovsky 2014).

Subsequently, the motivation for finding UPOs shifted towards understanding fully
developed turbulence (Kawahara, Uhlmann & van Veen 2012; Suri et al. 2020; Graham &
Floryan 2021; Yalnız, Hof & Budanur 2021; Crowley et al. 2022; Page et al. 2024),
reviving Hopf’s original idea of using recurrent patterns (Hopf 1948). The UPOs
potentially offer a promising path towards comprehending turbulence, as they provide a
deterministic representation of coherent structure dynamics. However, the challenge of
relating the statistical properties of turbulence to UPOs remains an open problem. While
recent studies have shown that turbulent trajectories can be approximated by combinations
of UPOs (Yalnız et al. 2021; Page et al. 2024), such approximations rely on a posteriori
tuning of weighing parameters. Cycle expansion theory (Artuso, Aurell & Cvitanović
1990; Christiansen, Cvitanović & Putkaradze 1997) is the only known systematic method
for deducing statistical quantities of a deterministic system exhibiting stochastic dynamics
from the deterministic properties of its UPOs, but it has yet to be applied successfully to
fluid systems.

Hopf’s idea was not immediately accepted because relating deterministic recurrent
patterns with the inherently probabilistic nature of turbulence statistics appears rather
counterintuitive. However, in simple model dynamical systems, this connection is now
well-established through chaos theory, which has advanced considerably since the seminal
work of Li & Yorke (1975), who introduced the first mathematical definition of chaos.
Among the various definitions of chaos currently in use, Devaney’s is the most widely
spread (Devaney 2022) despite being harder to prove than Li–Yorke’s (Aulbach &
Kieninger 2001). A key insight from Devaney’s definition is that unstable periodic points
are densely distributed within the chaotic set. Accordingly, embracing Hopf’s proposition
is mathematically analogous to approximating real numbers (turbulence) with rational
numbers (UPOs). This paper exposes the phenomenon in the most direct way possible
for a fluid system.

The paper is structured as follows. Section 2 presents the formulation of the
Taylor–Couette problem. Section 3 demonstrates that a discrete map, which excellently
approximates the flow dynamics, exhibits chaos in the Li–Yorke sense. Section 4
establishes that the map is, in fact, chaotic in the sense of Devaney. In this section, we
reconstruct the statistical properties of fluid chaos from those of UPOs, independently of
direct numerical simulation (DNS) data. Finally, § 5 concludes the paper.
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Figure 1. Taylor–Couette problem. (a) The spiral turbulence regime visualised by isosurfaces of azimuthal
vorticity. The small parallelogram-annular domain in orange is the minimal flow unit used throughout this
paper, adopted from Wang et al. (2022). (b) Snapshot of the P3 solution in the minimal flow unit at a value
of the inner cylinder Reynolds number Ri = 395.7816 (see definition in the text). (c) The DNS time signal
of inner torque τi . Circles denote crossings of the Poincaré section Σ . The red portion indicates a transient
approach to P3.

2. Minimal box computation for the Taylor–Couette system
We target in our investigation the counter-rotating regime of Taylor–Couette flow, known
for the subcritical onset of seemingly chaotic dynamics. The emergence of alternating
turbulent and laminar helical bands (Coles 1965) has puzzled physicists since its discovery
(Feynman 1964). These peculiar flow structures (figure 1a), which exhibit a clear-cut
mean structure (Wang et al. 2023), act as harbingers of full-fledged turbulence (Andereck,
Liu & Swinney 1986). Constraining the turbulent motions within the stripes to small
computational domains of parallelogram-annular shape (the small orange box in figure 1a
and the domain of figure 1b), which can be regarded as a minimal flow unit (Jimenez &
Moin 1991; Hamilton, Kim & Waleffe 1995) for the small-scale structures – about the
smallest that can sustain turbulence at sufficiently large rotation rates – has been recently
found to significantly tame the dynamics, thereby unveiling simple solutions (Wang et al.
2022). In this domain, and for the right set of dynamical parameters, the route to chaos
begins with a Feigenbaum cascade (Wang et al. 2024) as shown in figure 2(a). We shall
shortly see that, some distance past the accumulation point (R∞), an unstable period-3
orbit (P3, red triangles) can be identified.

Our computational set-up deals with an incompressible fluid of kinematic viscosity ν

confined between two coaxial cylinders of inner and outer radii ri and ro, respectively.
The inner and outer cylinders are independently rotating with respect to their common
axis at angular speeds Ωi and Ωo. The fluid motion is governed by the Navier–Stokes
equations,

∂t v + (v · ∇)v = −∇(p − z f (t)) + ∇2v, (2.1)

expressed in non-dimensional form, using the radial gap d = ro − ri and d2/ν as units
of length and time, respectively. This scaling leads to the inner, Ri = driΩi/ν, and
outer, Ro = droΩo/ν, Reynolds numbers associated with the rotation of the inner and
outer cylinders, respectively. The pressure gradient consists of two components: an axial
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Figure 2. Attractor (from DNS data) and the period-3 orbit (converged with the Poincaré-Newton-Krylov
method, PNK). (a) The bifurcation diagram generating the chaotic set. The green dots show torque τ (on the
Poincaré section Σ) as a function of the inner cylinder Reynolds number Ri for statistically steady states in
DNS. The red triangles indicate the period-3 orbit (P3) at Ri = 395.7816, at some distance beyond the cascade’s
accumulation point R∞. (b) Phase map projection on (τi , τo, κ) of the P3 orbit (red line) and a representation
of the chaotic attractor on the Poincaré section Σ (green dots) at Ri = 395.7816.

forcing term ( f ẑ) that adjusts instantaneously to keep zero-axial net mass flux, and the
rest (∇ p) that constrains the velocity (v) to comply with the incompressibility condition
∇ · v = 0. For convenience, we employ cylindrical coordinates (r, θ, z). The boundary
conditions at the inner and outer cylinder walls r = ri and r = ro are v = Ri θ̂ and
v = Ro θ̂ . Periodicity is enforced to the rest of the boundaries of the parallelogram domain
(see figure 1b, illustrated with a snapshot of P3). In our particular set-up, the radius ratio is
η = ri/ro = 0.883, and the outer cylinder Reynolds number is fixed at Ro = −1200. The
transition scenario for these parameter values and increasing inner cylinder Reynolds
number Ri has been thoroughly studied (Meseguer et al. 2009; Deguchi et al. 2014; Wang
et al. 2022). The DNS is performed using a fourth-order linearly implicit (IMEX) scheme,
and UPOs are computed with the Poincaré–Newton–Krylov (PNK) method detailed in
Wang et al. (2022) and using the same numerical set-up in terms of domain shape, size
and resolution.

We characterise flow states by the inner τi and outer τo cylinder torques. We also use
the spatially averaged kinetic energy κ of velocity deviation from the laminar circular
Couette flow whenever a third observable is necessary. All quantities are normalised by
their laminar value, such that τi = τo = 1 and κ = 0 for circular Couette flow. We use the
torques to define the Poincaré section as

Σ =
{

ṽ ∈X

∣∣∣∣ τi (ṽ) = τo(ṽ),
dτi

dt
>

dτo

dt

}
, (2.2)

where ṽ is the velocity field v, duly shifted with the method of slices (Willis, Cvitanovic &
Avila 2013; Wang et al. 2023) to remove the degeneracy induced by the spatial drift
of the solutions, both in the axial and azimuthal directions, and X is the corresponding
phase space. The bifurcation diagram shown in figure 2(a) records the torque, on Σ ,
of statistically steady states. Beyond the accumulation point of the cascade, R∞, the
seemingly chaotic attractor forms banded structures in the bifurcation diagram that
progressively widen and successively merge in pairs.
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Hereafter, we will focus on Ri = 395.7816. The energy and torque DNS signals
occasionally produce nearly periodic timestamps at this value of the parameter (figure 1c).
States taken from selected pseudo-periodic lapses converge onto UPOs when fed to
the PNK scheme. A phase map projection of one such UPO is shown in figure 2(b).
The trajectory pierces three times the Poincaré section every period, hence our naming
it P3 (see figure 1b for a snapshot of P3 on Σ).

3. P3 implies chaos
It is well-known in chaos theory that for 1-D (one-dimensional) maps generated by
continuous functions f : I → I , where I ⊂R is an interval, the advent of period-3 orbits
holds a special significance. Specifically, as established by Li & Yorke (1975), it implies
chaos in the sense that the map enhances a swift mixing of the points in the interval.
Moreover, according to Sharkovskii’s theorem (Sharkovskii 1964), the presence of a
period-3 point entails also the existence of infinitely many periodic points.

The presence of P3 in our system therefore renders the application of the Li–Yorke and
Sharkovskii theorems highly enticing. However, the theorems hinge upon an imperative
condition: the map must be 1-D and continuous. These theorems might not hold true for
higher dimensional systems, even if period-3 orbits were in existence. While instances of
period-3 solutions abound in the fluid dynamics literature (Moore et al. 1983; Knobloch
et al. 1986; Kreilos & Eckhardt 2012), no study has positively checked, to the best of our
knowledge, the conditions for the validity of these theorems.

A very long DNS (over 500 viscous time units) was conducted, with the solution ṽ(t j )

recorded at the chronologically ordered discrete times t j , j = 0, 1, 2, . . . , at which the
phase map trajectory crosses the Poincaré section Σ . The approximately 2500 data points
we collected are shown as green dots in figure 2(b). All points are tightly clustered on
a very narrow band, akin to a 1-D curve. This holds for any projection of X one might
choose, which indicates a highly restricted dimensionality of the first return (Poincaré)
map Φ : Σ −→ Σ . Strictly speaking, the dimension cannot be exactly one in the case of
reversible maps but, as demonstrated by well-known examples such as the Hénon map or
the Lorenz system, it can approach one. Indeed, since our system is at a relatively low
Reynolds number, it is plausible that the dimension of the inertial manifold (Temam 1989;
Ding et al. 2016; Haller et al. 2023) might be particularly low. Figure 3(a) shows the
return map in terms of the torque τ( j) ≡ τi (ṽ(t j )) = τo(ṽ(t j )). The multivaluedness of
the map hinders direct application of standard 1-D dynamical systems theory, but this can
be readily addressed by simple identification of the selection rule among branches. The
curve in figure 3(a) is naturally split at the cusp point τ = τc into two main branches: A
(grey scale) and B (orange). Branch A is then further split in two sub-branches, A1 (dark)
and A2 (light), for convenience. The diagram in the inset summarises the selection rule
among branches. A point on branch A1 might be mapped onto itself or sent to branch A2
and thence immediately to branch B. Then branch B instantly repels the trajectory, but
whether A1 or A2 is to follow depends on the landing location along the branch.

A single-valued version of the map can then be constructed by applying the change of
variable

τ̃ ( j) =
{

2τc − τ( j) if τ( j − 1) > τm
τ( j) otherwise , (3.1)

where τm ≈ 1.250 is the location of the local minimum of the multivalued function, whose
immediate surroundings are mapped to the vicinity of τc ≈ 1.212. This change of variable
corresponds effectively to the unfolding of the map, shown in figure 3(b), which now
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Figure 3. Return map analyses based on the Poincaré map on Σ at Ri = 395.7816. (a) Return map of the
chaotic attractor (green dots) and of P3 (red triangles). The cusp (τc) and minimum (τm ) points split the map in
three distinct branches: B (orange), A1 (black) and A2 (grey). (b) The same return map, now unfolded following
(3.1). The A1 and A2 branches are now labelled as A (black). The inset diagrams in (a) and (b) indicate branch
selection rules.
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Figure 4. The PDF for the spline dynamical system (black), the normalised histogram for DNS data of the
chaotic attractor (green), and the prediction from periodic points (grey).

admits standard cob-webbing to monitor the dynamics. By interpolating the DNS data
points and P3 using splines, it is possible to construct a continuous function S : I → I ,
where I ≈ [1.185, 1.271]. The spline dynamical system τ̃ ( j + 1) = S(τ̃ ( j)) is chaotic in
the Li–Yorke sense, because it contains the P3 points, which in this case appear at the
vertex and endpoints of the continuous function S.

A natural question follows regarding the extent to which iteration of the spline map
reproduces DNS results, an issue that needs assessing. To this end, we compare the
probability density functions (PDFs) in figure 4. The PDF corresponding to the spline
dynamical system (black curve), with its Lyapunov exponent of approximately 0.47,
excellently matches the DNS results (green curve). The emergence of peaks in the PDF
around the period-3 points is a common feature of the intermittency route to chaos
(Pomeau & Manneville 1980; Eckmann 1981).
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Figure 5. Complete set of periodic points up to period n = 8 for (a) the spline map approximation and (b) the
Navier–Stokes system. The inset shows a phase map projection of P5a analogous to that of P3 in figure 3(a).

4. Probability density function computed from unstable periodic solutions
The inherent relation between the spline dynamical system and the Navier–Stokes
dynamics becomes all the more evident through the comparison of periodic solutions.
For the 1-D spline map, Sharkovskii’s theorem guarantees the existence of periodic points
of period n for every n ∈N. Figure 5(a) shows the complete set up to n = 8. We have been
able to find the Navier–Stokes counterpart to each and every one of the spline periodic
points employing PNK (see figure 5b). The discrepancy in terms of torque between spline
map and the Navier–Stokes solutions is consistently below 0.25 %.
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Figure 6. Topological conjugacy of the tent and spline maps. (a) The tent map T (x) with all periodic points
up to period n ≤ 8. (b) Correspondence between tent map (ordinate) and spline map (abscissa) periodic points.
The piecewise linear curve connecting the points provides an approximation of the conjugacy homeomorphism
h(τ̃ ). Symbols and colours, representing periodic orbits, follow the legend used in previous figures.

The fluid flow scenario we have chosen is accurately described by a map of great
mathematical simplicity, whose elegant attributes make it possible to infer the PDF of
chaotic dynamics from the underlying periodic points in a clear and straightforward
manner. First we note that the branch selection of the unfolded map, shown in the inset
of figure 3(b), is extremely simple, with B and A representing the branches to the left
and right of the maximum, respectively. The diagram is nothing but the topological
Markov chain over the alphabet {A, B}, whose topological entropy is known to be the
natural logarithm of the golden ratio φ = (1 + √

5)/2 (see Cvitanović et al. (2016) for the
derivation). The spline map being an interval map of strictly positive entropy, one can
conclude that it must be chaotic in the sense of Devaney (Li 1993; Devaney 2022). The
periodic points are, therefore, densely distributed within the chaotic set, which supports
the recurring assertion among fluid dynamicists that UPOs form the skeleton of turbulence
(Kawahara et al. 2012; Graham & Floryan 2021; Crowley et al. 2022; Avila, Barkley &
Hof 2023). The 100 periodic points we have computed cover the map effectively, thus
suggesting that UPOs indeed encode the dynamics and, consequently, hold the key to
predicting the statistical properties inherent to chaos.

The PDF of the spline map can be obtained from that of the tent map, T (x) =
φ(1 − |2x − 1|)/2, with the scale parameter tuned to induce the appropriate topological
Markov chain, i.e. having the same topological entropy φ. Its PDF has a piecewise-constant
closed analytical expression (Cvitanović et al. 2016):

ρT (x) =

⎧⎪⎪⎨
⎪⎪⎩

2φ

2φ − 1
if

φ − 1
2

≤ x <
1
2
,

2φ

3 − φ
if

1
2

≤ x ≤ φ

2
.

(4.1)

Remarkably, the tent T and spline S maps share a common list of periodic solutions,
appearing in the exact same order along the curve (figure 6a). This implies the existence
of a homeomorphism h such that h(S(τ̃ )) = T (h(τ̃ )), i.e. the two maps are topologically
conjugate in the sense that they are dynamically equivalent (Yuan et al. 2000). A discrete
sampling of h emerges naturally when plotting corresponding periodic points of the two
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maps on the τ̃–x plane (figure 6b). A straightforward calculation shows that the PDF
of the spline and tent maps are related by ρS(τ̃ ) = ρT (h(τ̃ ))|h′(τ̃ )|, where the prime
denotes ordinary differentiation. The prediction, the grey shaded region shown in figure 4,
is obtained from a piecewise linear approximation of h based on the available periodic
points. The agreement with the spline and DNS data are fair despite the roughness of the
estimation, as attested by the accurate reproduction of the three salient peaks.

The prediction error in the PDF occurs primarily at high frequencies, thus having a
small impact on the lower-order statistical moments. The expectation E and variance
V of the torque computed from the PDFs are (E, V ) = (1.2294, 6.9341 × 10−4),
(1.2288, 7.1341 × 10−4) and (1.2289, 6.9144 × 10−4), for the spline dynamical system,
DNS and the UPOs prediction, respectively. Replacing the spline periodic points by
the Navier–Stokes UPOs yields nearly the same results, as expected from the excellent
agreement exhibited by figure 5. Furthermore, the 1-D assumption of the return map
implies that the PDF for the full velocity field ṽ can be determined in a similar manner.
Therefore, all widely used turbulence statistics can, in principle, be computed using UPOs.

5. Conclusion
We have analysed, in the Taylor–Couette system, a subcritical parameter regime exhibiting
dynamics that can be approximated by a simple discrete map. The map has exceptionally
neat mathematical properties, which allow to rigorously establish its chaotic nature as well
as the existence of infinitely many UPOs. Remarkably, the fluid system and the discrete
map share a common catalogue of unstable periodic solutions with the tent map, a clear
indication of topological conjugacy. A sufficient number of these solutions enables the
construction of a conjugacy homeomorphism, which can be used to predict the PDF to be
expected from DNS.

Our informed choice of scenario purposely aims at greatly simplifying the theoretical
analysis. For more general cases, the topological properties of chaotic fluid systems could
be approximated by simple Markov maps (Yalnız et al. 2021). As demonstrated in this
paper, UPOs serve precisely as the link between such Markov maps and the Navier–Stokes
system. Our theory differs from cycle expansion theory (Artuso et al. 1990; Cvitanović &
Eckhardt 1991; Christiansen et al. 1997; Cvitanović et al. 2016) and offers a more intuitive
understanding of how the PDF can be constructed from UPOs. On the other hand, cycle
expansion theory has the advantage of permitting the computation of statistically averaged
quantities in a simpler manner by applying prescribed formulas.

A complete understanding of turbulence is still a long way off from both the applied and
the mathematical stand points. Whether Hopf’s idea can be extended to high-Reynolds-
number turbulence remains an open question. Furthermore, our results, depending on
numerical approximations, do not guarantee that the Navier–Stokes solutions exhibit
chaotic behaviour in the sense of Devaney. Nonetheless, we expect that our demonstration
of how chaos theory applies to fluid flows under certain conditions will encourage future
research on this important yet difficult problem.
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CVITANOVIĆ, P., ARTUSO, R., MAINIERI, R., TANNER, G. & VATTAY, G. 2016 Chaos: Classical and

Quantum. Niels Bohr Institute.
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