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Abstract

In the design of integrated circuits, one critical metric is the maximum delay introduced by
combinational modules within the circuit. This delay is crucial because it represents the time
required to perform a computation: in an Arithmetic Logic Unit, it represents the maximum
time taken by the circuit to perform an arithmetic operation. When such a circuit is part of
a larger, synchronous system, like a CPU, the maximum delay directly impacts the maximum
clock frequency of the entire system. Typically, hardware designers use static timing analysis to
compute an upper bound of the maximum delay because it can be determined in polynomial
time. However, relying on this upper bound can lead to suboptimal processor speeds, thereby
missing performance opportunities. In this work, we tackle the challenging task of computing the
actual maximum delay, rather than an approximate value. Since the problem is computationally
hard, we model it in answer set programming (ASP), a logic language featuring extremely
efficient solvers. We propose non-trivial encodings of the problem into ASP. Experimental results
show that ASP is a viable solution to address complex problems in hardware design.

KEYWORDS: answer set programming applications, hardware design, answer set programming
encodings, integrated circuit maximum delay

1 Introduction

In the design of integrated circuits, one critical metric is the maximum delay introduced

by combinational modules within the circuit (Hitchcock 1982; Agrawal 1982; Kundu 1994;
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Gharaybeh et al. 1998; Lu et al. 2004; Chadha and Bhasker 2009; Andres et al. 2013a,

2013b; Wang and Robinson 2019; Shi et al. 2024). For example, in digital synchronous

circuits, the maximum delay in the combinational (i.e., acyclic) logic blocks is necessary

to determine the clock period. For instance, an Arithmetic Logic Unit (ALU) is a crucial

component of a CPU; it is a combinational circuit (its output depends only on the

inputs, and it does not have an internal memory), but its speed influences the overall

speed of the CPU, which is a synchronous sequential circuit. When designing an ALU,

the designer must determine the time required to produce the final output after a new

input is provided to the circuit; the maximum possible delay influences the maximum

clock rate the CPU can run at. This step is first performed at early design steps using

simplified delay models for gates in order to drive possible circuit optimizations, and

finally it is performed after the physical design using more complex delay models that

use accurate electrical level information. For simplicity, we will consider the basic case,

although the proposed approach can be extended to more accurate delay models.

An approximate approach to maximum delay computation is given by static timing

analysis (STA) (Hitchcock 1982; Agrawal 1982; Chadha and Bhasker 2009), which com-

putes this delay as the longest path in a directed acyclic graph. The circuit is traversed

from primary inputs (PIs) to primary outputs (POs); the static arrival time for the out-

put of each gate is the sum of the maximum arrival time of its inputs plus the gate

propagation delay. This method is static because it does not consider the actual logic

values within the circuit. Therefore, it provides possibly pessimistic results since there

might exist no input configuration that propagates transitions through the computed

longest paths.

As an example, consider the circuit in Figure 1, where the delay introduced by each

gate is represented by a number inside it (in arbitrary time units). In such a circuit, the

maximum delay computed by STA is 12, with the path b-f -h-i-k-l-n. Paths featuring

the maximum delay are called critical paths (Kundu 1994). However, no sequence of

input vectors exists that makes a transition propagate through such a path. In fact,

if signal o is 0 (false), then h is always 0, independently of b, while if p is 1 (true),

the output l is always 0, independently from the path highlighted in red. So, the only

possibility for a signal from b to influence the output n would be that o= 1 and p= 0,

which is impossible since o= c∧ d and p= c∨ d. The maximum delay of such a circuit,

which can be computed with more accurate approaches and by means of the proposed

method, is 10.

To refine such results with the aim to meet the aggressive timing requirements of

today’s circuits, several approaches consider circuit paths and try to sensitize them to

prove that transitions can propagate through them. If this operation is possible, the path

is said to be true; otherwise, the path is said to be false (such as the path indicated in

Figure 1 because it cannot contribute to the maximum circuit delay (Gharaybeh et al.

1998). For computational reasons, only the longest paths are typically considered (Lu

et al. 2004). The way in which a path is sensitized determines the quality of the results

achievable by such timing verification techniques.

For example, Andres et al. (2013a, 2013b) use answer set programming (ASP) to

compute the maximum delay in a circuit. They search for a sequence of two input vectors

such that when the circuit passes from the first bit vector to the second, a transition is
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Fig. 1. Example of circuit featuring a false path that leads to pessimism in STA.
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Fig. 2. (a) Example circuit and (b) corresponding signal waveforms.

propagated through the longest sensitizable path. A path is sensitizable if all the gates

in the path flip (change their output from 1 to 0 or vice versa) when the input changes

from the first input vector to the second.

Consider, for instance, the circuit in Figure 2a. The path a-d-f -y can be sensitized, in

fact if we take as first input vector [a= 0, b= 0, c= 1] and as second [a= 1, b= 1, c= 0],

all the gates in the path switch their output value (d, f and y change value). The total

delay on this path is the sum of the delays in the path: 2 + 2+ 2= 6.

Instead, the path a-e-g-y cannot be statically sensitized, in fact in order for the input

a to change the output e of the first AND gate, it is required that b= 1, and for the

same reason c= 0 and f = 1. It is easy to find that b= 1→ f = 0, thus preventing a

transition on a to reach the output. Such path has delay = 7 and cannot be found with

path sensitization. Unfortunately, although the longest sensitizable path has length 6,

this does not mean that after 6 time units, the final value has been correctly computed,

or that there cannot be unpleasant effects happening after such time.

Consider, for example, the switch from [a= 1, b= 1, c= 0] to [a= 0, b= 0, c= 0]; the

signals’ waveforms are shown in Figure 2b. At time 0, a and b switch from level 1 to 0; 2

time units later, d flips to 0, and at time 4, signal f goes to 1. Signal e changes at time 3,

causing g to flip to 0 at time 5. Note that between time 4 and 5, both f and g have

value 1: this makes the final AND gate switch its output from 0 to 1 in instant 6. This is
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not the final output value: in fact at time 5, the signal g goes to 0, making the out signal

go to its final level only at time 7. The temporary switching of a signal is called in the

literature a hazard ; the circuit in Figure 2a has a 1-sized hazard of the y signal, since it

lasts 1 time unit.

In the next section, we propose a model of a circuit that also takes into consideration

hazards when computing the maximum delay.

2 Problem description

Unlike path-based approaches, which constitute a large majority in the field of timing

verification to improve STA results, our approach does not explicitly consider paths.

Instead, it directly models the dynamic conditions occurring within the circuit for the

possible input configurations.

Let us consider a combinational circuit with a set I of input signals, where the number

of inputs is denoted by ni = |I|, and a set O of output signals, with no = |O|.
To compute the maximum possible delay of the circuit, we study its behavior between

two arbitrary input vectors, V1 and V2 ∈ {0, 1}ni , which are applied one after the other

to the input signals.

The state of each signal s in the circuit is represented by a 4-tuple 〈vs1, vs2, es, ls〉, where
1) vs1 ∈ {0, 1} is the logic value to which s stabilizes when the first input vector is applied;

2) vs2 ∈ {0, 1} denotes the value to which s eventually stabilizes after applying the second

input vector; 3) es ∈ [−1, T ] denotes the earliest time at which a transition away from vs1
may occur; 4) ls ∈ [−1, T ] denotes the latest time by which s stabilizes to vs2. T denotes

a value much larger than the expected maximal delay of the considered combinational

circuit.

The intuitive meaning is that initially the first input vector is applied, and the signal s

stabilizes to the logical value vs1. When the second input vector is introduced, the signal

does not change immediately, due to propagation delays in the circuit. It remains at vs1
until the early arrival time es, after which it might have spurious variations. Eventually,

by time ls (called the latest stabilization time), it becomes stable to the final value vs2,

which depends only on the second input vector.

The objective is to determine the worst-case delay, defined as the maximum stabiliza-

tion time across all outputs, over all possible pairs of input vectors V1 and V2:

max
V1,V2∈{0,1}ni

{lo | o∈O}.

The gate output state is computed as a function of gate input states. Let us consider

a NAND gate with output signal y and a, b as inputs. The input/output relationships

for the two considered test vectors are described as vyi =¬(vai ∧ vbi ) for each of the two

input vectors (represented by the index i∈ {1, 2}).
The arrival times of the gate output are a function of the input logic values and of

the arrival times of the gate inputs. Let us instantiate the computation of ey and ly in

a gate delay model featuring the propagation delay d as the only parameter; as already

said, more complex delay models can be easily accounted for.
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Fig. 3. Examples of the application of equation (1). The shaded areas denote the interval
between the early and the latest stabilization time. In such time regions, the signal value is not
determined because we also account for multiple hazards. Each case shows the early arrival
time (left) and the latest stabilization time (right) of the output, considering inputs with the

controlling starting value 0 (a) and 1 (b), or the controlling final value 0 (c) and 1 (d).

To this purpose, we first introduce two auxiliary variables ey∗ and ly∗ that intuitively

represent the time in which the gate may start commuting (ey∗) and that in which

the output becomes stable (ly∗) without considering the delay introduced by the gate

itself.

va1 ∧ vb1 → ey∗ =min{ea, eb} (1a)

¬va1 ∧¬vb1 → ey∗ =max{ea, eb} (1b)

va1 ∧¬vb1 → ey∗ = eb (1c)

¬va1 ∧ vb1 → ey∗ = ea (1d)

va2 ∧ vb2 → ly∗ =max{la, lb} (1e)

¬va2 ∧¬vb2 → ly∗ =min{la, lb} (1f)

¬va2 ∧ vb2 → ly∗ = la (1g)

va2 ∧¬vb2 → ly∗ = lb (1h)

For instance, equation (1a) considers the case in which the initial values of a and b are

both 1. Since the NAND gate has output 1 whenever one of its inputs is 0, as soon as

the first of its inputs switches to 0, the output will leave its initial 0 value, as shown in

Figure 3b. Value 0 is called a controlling value for the NAND gate, since as soon as one

of its input takes the controlling value, the other inputs are irrelevant for the output.

Other gate types have a controlling value; we define this concept formally, on a generic

logic gate indicated with the symbol 	.

Definition 1

(Controlling value). The logic gate 	 has a controlling value c iff c	 1 = c	 0 = 1	 c=

0	 c; in such a case ¬c is called non-controlling value.
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Fig. 4. Example of timing waveforms featuring a potential hazard which, however, does not
occur because of the relative timing of signals.

Conversely, equation (1b) considers the situation in which both inputs have the con-

trolling value 0. Therefore (Figure 3a), y will switch only when both inputs have switched.

Equations (1c) and (1d) handle the cases in which an input takes the controlling value

and the other the non-controlling value: the output will switch when the input at the

controlling value switches.

Equations (1e)–(1h) are used to compute the latest stabilization time of the output

signal y. Equation (1e) takes care of the case in which a and b have 1 (non-controlling) as

final values. The output stabilizes to 0 only when both the inputs are stable (Figure 3d).

Conversely, in equation (1f), both inputs have a controlling final value 0. Therefore,

y will stabilize to its final value 1 as soon as one of such inputs has stabilized (Figure 3c).

Equations (1g) and (1h), instead, feature an input with a final controlling value and the

other one with a non-controlling value; therefore, the output will stabilize to its final

value only when the input at the controlling value has stabilized.

In order to compute the times ey and ly, we have to consider that the time interval

[ey∗, l
y
∗ ] might be of zero or negative length. For example, consider the case featuring a

rising transition on a (va1 = 0 and va2 = 1) and a falling one on b (vb1 = 1 and vb2 = 0),

with the following timing: ea = 4, la = 5 and eb = 1, lb = 3, also depicted in Figure 4.

It is evident from Figure 4 that there is no instant in which both inputs are 1 at the

same time, which implies that the output y remains stable at 1, meaning that no hazard

may be present at the output. Note that equations (1d) and (1g) produce ey∗ = ea∗ = 4

and ly∗ = lb∗ = 3, respectively. The apparent inconsistency ly∗ < ey∗ signals that there is no

transition on y, which can be thought as if y reaches its final value at time −∞, and

that the initial value is maintained until time +∞. Steady states of a signal s (hazard

and transition free within the two considered input vectors) are encoded by es = T , and

ls =−1. Here, T is a value larger than the maximum delay computed by STA, effectively

representing an infinite early arrival time (the signal never switches from vs1), while

ls =−1 signifies that the signal has already stabilized to vs2 when the first input vector

is applied). We detect this situation when the following variable ηy is true:

ηy ↔ (vy1 = vy2 )∧ (ly∗ − ey∗ ≤ 0) . (2)

Such a variable holds true if and only if there is a potential hazard that does not appear

because of circuit delays.
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Fig. 5. Waveforms computed in the example circuit of Figure 1, in the case of maximum delay.
The colored areas represent timings in which the value of the signals is undetermined.
Waveforms automatically drawn with ASPECT (Bertagnon and Gavanelli, 2024a).

The gate propagation delay can be added in all cases that are different from a constant

gate output. This is made by adding the following constraints:

(ey∗ 
= T )∧¬ηy → (ey = ey∗ + d) (3a)

(ly∗ 
=−1)∧¬ηy → (ly = ly∗ + d) (3b)

(ey∗ = T )∨ ηy → (ey = T ) (3c)

(ly∗ =−1)∨ ηy → (ly =−1) (3d)

In the example in Figure 4, ηy = 1 makes false conditions in equations (3a) and (3b) and

true equations (3c) and (3d), obtaining that ey = T (the initial value of y is maintained

until time T ) and ly =−1 (the final value of y is available since time −1), meaning that

signal y never changes.

A more complete example is shown in Figure 5, where the waveforms are computed

using the described method for the circuit in Figure 1.

The constraints describing other kinds of gates (NOR, AND, OR, and NOT) can be

computed in a similar way. In non-monotonic gates such as XOR and XNOR, the early

arrival time e∗ of the output is equal to the minimum arrival time of the inputs, and the

latest stabilization time l∗ is equal to the maximum stabilization time of the inputs.

3 Preliminaries

ASP is a form of declarative programming oriented toward difficult combinatorial search

problems (Erdem et al. 2016; Son et al. 2023; Bertagnon and Gavanelli 2024b). It relies

on the stable model semantics, also known as answer set semantics (Gelfond and Lifschitz

1988). An ASP program Π consists of a finite set of rules, each of which is an implication

of the form H:−B, where H is the head and B is the body of the rule.

The head H can be an atom, a choice atom, or an aggregate atom. An atom

has the form a(t1, . . . , tn), where t1, . . . , tn are terms. A choice atom has the form
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{a(t1, . . . , tn)}, and an aggregate atom can be of the form A{t1, . . . , tm : c1, . . . , cm} ◦ n,
where A can be #sum, #min, #max, or #count, ◦ is a relational operator and n is an

integer.

The body B is a set of literals, which can be either positive (a) or negative (not a),

where a can be an atom, an aggregate or a condition. Literals and rules containing no

variables are called ground. The ground instantiation of a program Π, denoted as gr(Π),

consists of all ground instances of rules in Π. A condition has the syntax a(X) : c(X),

where a(X) is an atom and c(X) is a condition that must be satisfied. This allows for the

instantiation of variables to collections of terms within a single rule. For example, the

rule q :−r(X) : p(X) is expanded to a conjunction of r(X) for all X that satisfy p(X).

Rules with an empty body are called facts, while rules with an empty head are called

Integrity Constraints (ICs). The head of an IC is intended to be false.

An interpretation I of a program Π is a subset of the set of atoms occurring in Π.

Atoms in I are considered true, while all remaining atoms are false. The reduct ΠI of a

program Π with respect to an interpretation I is obtained by removing rules containing

negative literals not a, where a∈ I, and removing all negative literals from the remaining

rules. An interpretation I is a stable model of Π if it is a minimal model of ΠI .

ASP solvers typically work in two stages: grounding and solving. In the grounding

stage, the program is converted into an equivalent ground program. The solving stage

involves finding stable models (answer sets) of the ground program.

4 Problem formalization in answer set programming

A combinational circuit is encoded in ASP using two types of facts. Each logic gate is

represented by a fact gate_delay(Out, Gate, Delay), where Gate is the type of the

gate, which can be and, nand, or, nor, xor, xnor, inv (inverter)1 or buff (buffer); Out

is the output signal of the gate, and is also used as a unique identifier of the gate, since

a signal can be output only of one gate; Delay is the delay associated with the gate.

In order to represent uniformly gates with varying number of input signals, a fact

gate_in(Out, Gate, Input) specifies that the gate of type Gate, whose output is Out,

receives Input as one of the input signals. Each input is described through a separate

fact, allowing gates to have an arbitrary number of inputs when applicable. For instance,

a 3-input NAND gate with inputs a, b, and c and output y is represented by the following

three facts: gate_in(y, nand, a). gate_in(y, nand, b). gate_in(y, nand, c).

To reason about signal behavior in the circuit, we define terms representing signals

(Figure 6). A signal is any node appearing as an input or output of at least one gate

(lines 1–2). From this, we automatically identify PIs and POs. A signal is a PI if it is

never found as a gate output (line 4), and as a PO if it is never used as a gate input

(line 3). With these definitions, the inputs and outputs are automatically inferred from

the gate-level structure, with no need for external annotations or manual specification;

modern grounders can nevertheless convert these definitions into a set of facts, which are

handled very efficiently.

1 We did not use not because it is a reserved word in ASP.
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1 signal(V) :- gate_in(V, _, _).
2 signal(V) :- gate_in(_, _, V).
3 output_node(V) :- signal(V), not gate_in(_, _, V).
4 input_node(V) :- signal(V), not gate_in(V, _, _).
5 boolean(0). boolean(1).
6 input_vec_no(1). input_vec_no(2).
7 1 = {v(V, InpVec, X) : boolean(X)} :- input_node(V), input_vec_no(InpVec).
8 etagreffuB%.)V,ceVpnI,A(v,)A,ffub,Y(ni_etag-:)V,ceVpnI,Y(v
9 v(Y, InpVec, Vout) :- gate_in(Y, inv, A), v(A, InpVec, Vin), inv(Vin,Vout). % NOT gate (inverter)

10 inv(0, 1). inv(1, 0).
11 non controlling((and;nand), 1). controlling((and;nand), 0).
12 non controlling((or;nor), 0). controlling((or;nor), 1).
13 out_val(and, non controlling, 1). out_val(and, controlling, 0).
14 out_val(or, non controlling, 0). out_val(or, controlling, 1).
15 out_val(nand,Element,1-OutVal):- out_val(and,Element,OutVal).
16 out_val(nor, Element,1-OutVal):- out_val(or, Element,OutVal).
17 tupninieulavgnillortnocahtiwRON,DNAN,RO,DNA%-:)eulaVtuO,ceVpnI,Y(v
18 gate_in(Y, Gate, In),
19 controlling(Gate, Controlling),
20 out_val(Gate,controlling,OutValue),
21 v(In, InpVec, Controlling).
22 v(Y, InpVec, OutValue) :- % AND, OR, NAND, NOR when all inputs are non-controlling values
23 gate_in(Y, Gate, _), input_vec_no(InpVec),
24 non controlling(Gate, NonControlling),
25 out_val(Gate, non controlling, OutValue),
26 v(In, InpVec, NonControlling) : gate_in(Y, Gate, In).
27 tupniemashtiwronx,rox%-:)eulaVtuO,ceVpnI,Y(v
28 gate_in(Y, Gate, A), gate_in(Y, Gate, B), A != B,
29 out_on_equal(Gate, OutValue),
30 v(A, InpVec, VA), v(B, InpVec, VB), VA == VB.
31 tupnitnereffidhtiwronx,rox%-:)eulaVtuOvnI,ceVpnI,Y(v
32 gate_in(Y, Gate, A), gate_in(Y, Gate, B), A != B,
33 out_on_equal(Gate, OutValue), inv(OutValue, InvOutValue),
34 v(A, InpVec, VA), v(B, InpVec, VB), VA != VB.
35 out_on_equal(xor, 0). out_on_equal(xnor, 1).

Fig. 6. Encoding in ASP of signals and logic gates, common to all the encodings.

We consider the behavior of a combinational circuit under a pair of input vectors as

introduced in Section 2. We define a domain of Boolean values, in line 5, and specify the

two input vectors in line 6.

As the objective is to find two input vectors that witness the required properties (e.g.,

longest delay), we introduce in line 7 a choice rule that selects exactly one Boolean value

for each input vector and each PI. The atom v(V, InpVec, X) means that signal V

takes the Boolean value X under input vector InpVec.

For non-PI signals, the logical value is determined by the functional behavior of the

gates driving them; again, each signal takes a boolean value for each input vector. In

the case of unary gates, such as buff (buffer) and inv (inverter), the output value is

determined by the value of their single input signal (lines 8–10). These rules are applied

for each input vector (InpVec∈ 1, 2).

In order to define compactly the logic behavior of multi-input gates, avoiding long lists

of cases, we leverage on the concept of controlling and non-controlling values (Def. 1).

Value 0 is controlling for AND and NAND, while 1 is their non-controlling element (line

11). Value 1 is controlling for OR and NOR, while 0 is non-controlling (line 12). Lines

13–16 provide the truth table of these four gate types relying only on the controlling and

non-controlling values.

The output signal values for gates belonging to types enjoying controlling values are

computed in lines 17–26. The first clause (lines 17–21) considers the case in which at

least one input takes the controlling value; the second (lines 22–26) when all inputs

https://doi.org/10.1017/S1471068425100288 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100288


Fine-grained Timing Analysis of Digital ICs in ASP 531

36 t(V, InpVec, 0) :- input_node(V), input_vec_no(InpVec).
37 )2(noitauqeees,atefonoitinifeD%,)YlangiS(dexif-:)YlangiS(ate
38 ts(SignalY, 1, Ey), ts(SignalY, 2, Ly), Ly-Ey <= 0.
39 fixed(SignalY) :- v(SignalY, 1, Vy), v(SignalY, 2, Vy).
40 )a3(qE%,)emiTxaM(emitxam,emiTxaM=!ratSyE-:)yaleD+ratSyE,1,YlangiS(t
41 not eta(SignalY), ts(SignalY, 1, EyStar), gate_delay(SignalY, _, Delay).
42 )b3(qE%,1-=!ratSyL-:)yaleD+ratSyL,2,YlangiS(t
43 not eta(SignalY), ts(SignalY, 2, LyStar), gate_delay(SignalY, _, Delay).
44 t(SignalY, 1, MaxTime) :- maxtime(MaxTime), ts(SignalY, 1, MaxTime). % First part of Eq (3c)
45 )c3(qEfotrapdnoceS%.)YlangiS(ate,)emiTxaM(emitxam-:)emiTxaM,1,YlangiS(t
46 )d3(qEfotraptsriF%.)1-,2,YlangiS(st-:)1-,2,YlangiS(t
47 )d3(qEfotrapdnoceS%.)YlangiS(ate-:)1-,2,YlangiS(t
48 static_timing_analysis(V, 0) :- input_node(V).
49 static_timing_analysis(Out, MaxIn + Delay) :- gate_in(Out, Gate, In),
50 gate_delay(Out, Gate, Delay), static_timing_analysis(In,MaxIn).
51 maxtime(MaxTime+1) :- #max{T: static_timing_analysis(V, T), output_node(V)} = MaxTime.
52 max_output_delay(MaxOutDelay) :- MaxOutDelay = #max{L, OutNode : t(OutNode, 2, L), output_node(OutNode)}.
53 #maximize{ MaxOutDelay: max_output_delay(MaxOutDelay) }.

Fig. 7. Time computation and optimization.

take the non-controlling value. The conditional atom v(In, InpVec, NonControlling)

: gate_in(Y, Gate, In) is expanded at grounding time into a conjunction of atoms

v(In, InpVec, NonControlling), one for each ground atom satisfying gate_in(Y,

Gate, In); in the example of a NAND gate with inputs a, b and c, it is expanded

to the conjunction v(a, InpVec, NonControlling), v(b, InpVec, NonControlling),

v(c, InpVec, NonControlling), so it is true only of all the three inputs take the

non-controlling value.

Finally, to simplify the exposition, we show the code for modeling XOR and XNOR

gates having exactly two inputs. The code can be extended also for multi-inputs but is not

necessary for common gate libraries used in benchmarks, where XOR/XNOR gates are

generally with two inputs. The auxiliary predicate out_on_equal/2 (line 35) defines the

output value of these gate types when the two inputs are equal. A XOR gate produces 0

when both inputs are equal, whereas XNOR produces 1. The logical behavior is encoded

through two rules. The first handles the case where the inputs have the same value (lines

27–30), and the gate produces the output defined by out_on_equal/2. The second rule,

lines 31–34, covers the case with different input values.

Figure 7 shows the code for computing the early (ev) and late (lv) arrival times of each

signal according to the timing model introduced in Section 2. Table 1 summarizes how

the variables in equations (1)–(3) are encoded in ASP. Since early and late arrival are

times associated to the first and second bit vector, both are represented in ASP through

the same predicate t(Signal, InpVec, Time), where InpVec = 1 refers to the early

arrival time and InpVec = 2 to the latest stabilization time. For PI nodes, these times

are fixed to zero, as shown in line 36.

The auxiliary variables e∗ and l∗ are represented by the predicate ts(Signal, InpVec,

Time); ts stands for Time Star , and the parameters have the same meaning as in t/3.

Lines 37–38 define η as in equation (2). Equations (3a) and (3b) are implemented in

lines 40–43, where the arrival times are computed by adding the gate delay to the early

(ey∗) and late (ly∗) auxiliary values. Equation (3c) is implemented in lines 44–45 while

equation (3d) corresponds to clauses 46–47.

Equations (3a) and (3c) require a value T that is higher than the maximum delay;

while for correctness any value sufficiently large is valid, larger values can increase the

solving time. For this reason, we compute, in lines 48–50, the upper bound with STA.
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Table 1. Symbols in the mathematical formulation (Section 2) and in the ASP code

Symbol ASP Description

ev Ev in t(v,1,Ev) Early Arrival Time of signal v
lv Lv in t(v,2,Lv) Late Arrival Time of signal v
ev∗ Ev in ts(v,1,Ev) Auxiliary Early Arrival Time of signal v
lv∗ Lv in ts(v,2,Lv) Auxiliary Late Arrival Time of signal v
ηv eta(v) Masked potential hazard in signal v
T maxtime(T) A time larger than the possible maximum delay

Probably, the most intuitive formulation would be to state that, for each gate G, the

maximum possible output delay is the maximum of the inputs with added the delay of

the gate:

static_timing_analysis(V, 0) :- input_node(V).

static_timing_analysis(Out, MaxIn + Delay) :- gate_delay(Out, _, Delay),

MaxIn = #max { Time : gate_in(Out, _, In), static_timing_analysis(In, Time) }.

This version is correct, but contains a recursion through the #max aggregate; this

recursion hinders the optimization of the gringo grounder, that is unable to compute

the upper bound at grounding time, leaving it to be computed at solving time. The

formulation in lines 48–50, instead, is stratified, and the maximum time is computed

directly by the gringo grounder. The size of the ground program is also significantly

reduced. In the formulation in lines 48–50, it can be the case that for some gate, the

value of the maximum time is not unique; in order to obtain the global maximum, it is

enough to apply the #max aggregate, as shown in line 51.

Finally, the objective function is to maximize the maximum delay (lines 52–53).

The rest of the code is devoted to computing the value of the auxiliary variables ey∗
and ly∗ for each of the gates types, based on equations (1a)–(1h); in the next sections, we

first show an intuitive encoding, then an advanced encoding for this task.

4.1 A first encoding

In the first encoding (Figure 8), equations (1a)–(1h) are generalized to the case of multiple

inputs; in order to reduce the number of cases, we rely again on the concept of controlling

value, and the eight equations (1a)–(1h) are rewritten as four clauses. The clauses on

lines 57 and 67 compute, respectively, the ey∗ and ly∗ arrival times in case there is no

controlling value in input to the gate; from equation (1a), ey∗ =min{ei} where i is an

input to the gate, while (equation 1e) ly∗ =min{li}. Clauses 62 and 72, instead, consider

the case in which at least one of the inputs is equal to the controlling value. In such a

case, ey∗ is the maximum of the ei, where i are the inputs taking the controlling value
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57 ts(SignalY, 1, MinE) :- % Early* Arrival time in AND, OR, NAND, NOR gates when there is
58 )a1(qE,tupninieulavgnillortnocon%,)_,etaG,YlangiS(ni_etag
59 controlling(Gate, Controlling),
60 #count{ I : gate_in(SignalY, Gate, I), v(I, 1, Controlling) } = 0,
61 MinE = #min { T : gate_in(SignalY, Gate, I), t(I, 1, T) }.
62 ts(SignalY, 1, MaxE) :- % Early* Arrival time in AND, OR, NAND, NOR gates when there is
63 gate_in(SignalY, Gate, _), % at least one controlling value in input, Eq (1b),(1c),(1d)
64 controlling(Gate, Controlling),
65 #count{ I : gate_in(SignalY, Gate, I), v(I, 1, Controlling) } > 0,
66 MaxE = #max { T : gate_in(SignalY, Gate, I), v(I, 1, Controlling), t(I, 1, T) }.
67 ts(SignalY, 2, MaxL) :- % Late* Arrival time in AND, OR, NAND, NOR gates when there is
68 )e1(qE,tupninieulavgnillortnocon%,)_,etaG,YlangiS(ni_etag
69 controlling(Gate, Controlling),
70 #count{ I : gate_in(SignalY, Gate, I), v(I, 2, Controlling) } = 0,
71 MaxL = #max { T : gate_in(SignalY, Gate, I), t(I, 2, T) }.
72 ts(SignalY, 2, MinL) :- % Late* Arrival time in AND, OR, NAND, NOR gates when there is
73 gate_in(SignalY, Gate, _), % at least one controlling value in input, Eq (1f),(1g),(1h)
74 controlling(Gate, Controlling),
75 #count{ I : gate_in(SignalY, Gate, I), v(I, 2, Controlling) } > 0,
76 MinL = #min { T : gate_in(SignalY, Gate, I), v(I, 2, Controlling), t(I, 2, T) }.
77 ts(SignalY, 1, EA) :- SignalA != SignalB, EB >= EA, % Early* Arrival time in XOR, XNOR gates
78 t(SignalA, 1, EA), gate_in(SignalY, (xor;xnor), SignalA),
79 t(SignalB, 1, EB), gate_in(SignalY, (xor;xnor), SignalB).
80 ts(SignalY, 2, LB) :- SignalA != SignalB, LB >= LA, % Late* Arrival time in XOR, XNOR gates
81 t(SignalA, 2, LA), gate_in(SignalY, (xor;xnor), SignalA),
82 t(SignalB, 2, LB), gate_in(SignalY, (xor;xnor), SignalB).
83 setagyranuniemitlavirrA*etaLdna*ylraE%-:)AT,ceVpnI,YlangiS(st
84 t(SignalA,InpVec,TA), gate_in(SignalY,(inv;buff),SignalA).

Fig. 8. Basic encoding.

(equations (1b), (1c), (1d)), while ly∗ is the minimum of the li that are equal to the

controlling value (equations (1f), (1g), (1h)).

Considering XOR and XNOR gates, clause 77 computes the ey∗, while clause 80

computes the ly∗ . Finally, clause 83 takes care of unary gates (inverter and buffer).

4.2 An advanced encoding

The encoding proposed in Section 4.1 implements correctly the equations (1a)–(1h), but

it suffers from the fact that the number of clauses in the ground program can be very

large. Consider, for example, the clause in line 57 (corresponding to equation (1a)); to

simplify the exposition, let us consider a simplified version that holds only for a NAND

gate with two inputs, only for the early arrival time (so we remove the parameter InpVec

from all predicates to simplify the exposition):

ts(Y, EA) :- v(A,1), v(B,1), A!=B, % Both inputs are 1

gate_in(Y, Gate, A), t(A, EA), % Compute EA = time of input A

gate_in(Y, Gate, B), t(B, EB), % Compute EA = time of input B

EA <= EB.

Such a clause intuitively means that if both inputs are 1, then the early arrival time eY∗
is the minimum of the two inputs eA and eB. If EA and for EB can possibly take t values

each, such a clause is grounded into O(t2) clauses. For a gate with k inputs, the number

of clauses worsens to O(tk).

However, one can observe that in order to compute the minimum, it is not strictly

necessary to know the exact timing of all the input signals: it is necessary only to know

the exact timing of the smallest one, plus it is needed to have a proof that all the other

signals have a larger (or equal) time. So, if we define a predicate tgeq(S, Time) that
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94 tgeq(S, InpVec, V) :- t(S, InpVec, V).
95 tgeq(S, InpVec, V-1) :- V>=0, tgeq(S, InpVec, V).
96 ts(SignalY, 1, EA) :- t(SignalA, 1, EA),
97 all_non controlling_except(SignalY,1,SignalA),
98 tgeq(SignalB, 1, EA) : gate_in(SignalY, Gate, SignalB), SignalB != SignalA. % EA is the minimum
99 ts(SignalY, 1, EB) :- t(SignalB, 1, EB),

100 gate_in(SignalY, Gate, SignalB), v(SignalB, 1, V), controlling(Gate, V),
101 not tgeq(SignalA, 1, EB + 1) : gate_in(SignalY, Gate, SignalA), v(SignalA, 1, V), SignalA != SignalB.
102 ts(SignalY, 2, LA) :- t(SignalA, 2, LA),
103 all_non controlling_except(SignalY,2,SignalA),
104 not tgeq(SignalB, 2, LA + 1) : gate_in(SignalY, Gate, SignalB), SignalB != SignalA.
105 ts(SignalY, 2, LB) :- t(SignalB, 2, LB),
106 gate_in(SignalY, Gate, SignalB), v(SignalB, 2, V), controlling(Gate, V),
107 tgeq(SignalA, 2, LB) : gate_in(SignalY, Gate, SignalA), v(SignalA, 2, V), SignalA != SignalB.
108 ts(SignalY, 1, Min) :- t(SignalA, 1, Min),
109 gate_in(SignalY, (xor;xnor), SignalA),
110 gate_in(SignalY, (xor;xnor), SignalB),
111 SignalA != SignalB, tgeq(SignalB, 1, Min).
112 ts(SignalY, 2, Max) :- t(SignalA, 2, Max),
113 gate_in(SignalY, (xor;xnor), SignalA),
114 gate_in(SignalY, (xor;xnor), SignalB),
115 SignalA != SignalB, not tgeq(SignalB, 2, Max + 1).
116 all_non controlling_except(SignalY,BitVec,SignalA):- % all inputs to the gate having output SignalY take
117 AlangiSylbissoptpecxe,eulavgnillortnoc-noneht%,)ceVtiB(on_cev_tupni
118 gate_in(SignalY, Gate, SignalA), non controlling(Gate, V),
119 v(SignalB, BitVec, V) : gate_in(SignalY, Gate, SignalB), SignalB != SignalA.

Fig. 9. Advanced encoding.

is true when signal S has a time greater than or equal to2 Time, we would be able to

compute the minimum using only a linear number of clauses with respect to t, as follows:

ts(Y, EA) :- v(A,1), v(B,1), A!=B,

gate_in(Y, Gate, A), t(A, EA), % Compute EA = time of input A

tgeq(B,EA). % Ensure that EB >= EA

Note that in this version, variable EB does not occur in the clause, as it is not necessary

to know the exact value of eB: it is only necessary to know that eB’s value is higher than

or equal to eA, which is stated by the atom tgeq(B,EA). Now, predicate tgeq(S,T), with

the intuitive meaning that eS ≥ T, can be defined as:

tgeq(S, T) :- t(S, T).

tgeq(S, T-1) :- T>=0, tgeq(S, T).

The first clause states that if eS = T, then obviously eS ≥ T, while the second says that

if eS ≥ T, then also eS ≥ T− 1. Note that predicate tgeq is defined with two Horn clauses

(which are handled very efficiently by modern ASP solver – it is worth to remember that

Horn-SAT is a polynomially solvable fragment of SAT), and that as soon as the ASP

solver infers that atom t(S,T0) is true for some specific value T0, the truth of t(S,T)

is inferred ∀T≤ T0 through the simple unit propagation mechanism, in linear time.

Figure 9 shows the computation of e∗ and l∗ in the advanced encoding; the complete

code of the advanced encoding consists of the code in Figures 6, 7, and 9.

The clause in lines 99–101 considers the case in which there is at least one input taking

the controlling value in the first bit vector: in such a case, the early arrival time eY∗ of

the output is the maximum among the early arrival times of the inputs at the controlling

value. This is implemented with a clause stating that the early arrival eY∗ = eB for some

2 The acronym tgeq stands for time is greater than or equal to.

https://doi.org/10.1017/S1471068425100288 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100288


Fine-grained Timing Analysis of Digital ICs in ASP 535

signal B taking the controlling value and with early arrival time eB that is higher than

or equal to all other inputs having the controlling value.

Another improvement in this encoding can be found in the clause in lines 96–98.

Consider equation (1a): in the case of multiple inputs it could be interpreted as: if all

the inputs take the non-controlling value, then the time eY∗ is the minimum of the early

arrival time of the inputs. This could be implemented as

ts(Y, 1, EA) :-

t(A, 1, EA), v(A, 1, NonControlling), non controlling(Gate, NonControlling),

v(B, 1, NonControlling) : gate_in(Y, Gate, B), B != A;

tgeq(B, 1, EA) : gate_in(Y, Gate, B), B != A;

gate_in(Y, Gate, A).

That is, if the input SignalA has early arrival time lower than or equal to all other

inputs, and all the inputs take the non-controlling value in the first bit vector, then

eY∗ = eA. On the other hand, if there exists an input A having early arrival time lower

than or equal to all other inputs but taking the controlling value (while all other inputs

take the non-controlling value), then again eY∗ = eA, this time due to equation (1d). So, it

is possible to strengthen the clause, removing the condition v(A, 1, NonControlling),

as in lines 96–98. With the strengthened clause, the ground program is smaller, and unit

propagation can be applied more often, since the clause is shorter.

5 Experimental results

In order to evaluate the running time of our method, we performed experiments on

circuits from the ISCAS85 (Brglez and Fujiwara 1985) and ITC99 (Corno et al. Corno

et al., 2000) benchmark suites.3 The output signal of a gate G can be connected in input

to a number of other gates; such a number is called fan-out , and it influences the delay

associated to the gate G. In the experiments, we used for each gate a delay proportional

to the fan-out of the gate; of course, the same methodology and encoding could be used

with delays computed with other methodologies (e.g., hardware simulations).

We compared the basic encoding presented in Section 4.1 and the advanced encoding

in Section 4.2. Table 2 reports the number of logic gates for each circuit, as well as the

solving and grounding times, and the grounding size in MB. The results were obtained

using clingo 5.7.1 (Gebser et al. 2019) on an AMD EPYC 9454 processor at 2.75 GHz,

with a maximum of 64 GB of reserved memory. In the tests, we used clingo with only

one core (without parallelism) and imposed a timeout (T/O) of 10 h (36,000 s). As the

objective is to compare the two ASP approaches, we do not report the instances in which

both methods incurred into a timeout.

The second encoding provides speedups from 1.5× to 18×. Instance C6288 is notori-

ously hard in the literature (Qiu and Walker 2003); it is a 16 bits × 16 bits multiplier

that has an exponential number of paths, and many methods in the literature are not

able to solve it in reasonable time. While the first encoding is unable to solve it within

10 hours, the advanced encoding can solve it in less than 4 hours. A similar behavior

3 In the ITC99 case, we considered the combinational fraction of these circuits.
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Table 2. Benchmark results for a set of logic circuits using the two ASP encoding. For each circuit, the number of logic gates,
solving and grounding times, and grounding sizes are reported. The final two columns show the maximum observed late output

and the maximum delay from static timing analysis

Basic encoding Advanced encoding

# Logic Total Grounding Grounding Total Grounding Grounding Max late Max STA
Name gates time [s] time [s] size [MB] time [s] time [s] size [MB] output delay

C432 152 1.21 0.33 51.4 0.71 0.29 7.8 71 71
C499 320 0.35 0.08 9.1 0.23 0.20 3.7 40 40
C880 311 7.98 1.46 25.4 2.21 1.11 5.9 72 72
C1355 601 28.95 4.55 94.9 18.10 2.71 20.6 76 76
C1908 274 297.32 13.93 17.6 57.49 8.00 5.0 106 118
C2670 761 56.07 5.27 41.0 18.13 9.13 11.6 108 112
C3540 996 1566.54 27.82 244.2 86.50 23.57 42.0 126 136
C5315 1605 331.32 23.33 145.1 104.00 37.49 38.1 134 138
C6288 1588 T/O 49.68 1582.5 13291.97 240.52 251.0 382 386
C7552 3510 1272.73 43.73 611.3 160.14 88.65 133.8 126 130

B11 622 21.78 2.72 54.8 5.09 1.71 16.4 92 105
B12 963 25.41 6.99 75.3 7.92 4.70 25.9 70 90
B13 310 0.43 0.36 2.5 0.32 0.28 2.1 35 35
B14 8567 T/O 1183.08 12729.1 12006.65 589.69 1858.1 256 259
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is observed, for instance, B14, a subset of the Viper processor, but with a much larger

grounding size that exceeds 12 GB for the basic encoding while remaining below 2 GB

with the advanced encoding. This is likely due to the higher number of logic gates (8567

in B14 vs. 1588 in C6288), which significantly increases the grounding complexity.

6 Related work

The work most closely related to the current article is by Andres et al. (2013): they

address a closely related problem in hardware design, namely the computation of the

longest path in a combinational circuit, in ASP. Their approach is based on choosing a

gate in the circuit, which is the gate under test, and restricting their attention only on

the paths that pass through that gate. This can help avoiding, in some instances, large

parts of the circuit, resulting in a very quick search. Afterward, they find the longest path

(varying the gate under test) such that all the gates in the path commute when the input

array switches from the first array to the second. In order to increase further the speed of

the computation, they adopt a multi-shot solving strategy (Gebser et al. 2019). Indeed,

their solution is extremely quick in instances having a number of paths not exceedingly

high. Our approach is, in most instances, slower, but more precise, because it solves a

harder problem, taking into consideration also the hazards.

ASP was employed in a number of different applications in hardware design and veri-

fication. Ishebabi et al. (2009) address a problem of automated design for multiprocessor

systems on FPGAs. Andres et al. (2013) propose in ASP an automated system design

approach for embedded computing systems.

Gavanelli et al. (2017) address a problem of designing an optical router on-chip maxi-

mizing parallelism while avoiding routing faults. They provide and compare approaches

based on ASP, Constraint Logic Programming, and Integer Linear Programming.

Bobda et al. (2018) tackle system-level synthesis for heterogeneous multi-processors on

a chip using ASP. ASP is also at the basis of a stream reasoning tool that was used for

monitoring and scheduling in a semiconductor failure analysis lab (Mastria et al. 2024).

Digital hardware verification is a complex process spanning from logic synthesis to

physical design. For synchronous systems, functional and timing verification can be

decoupled; this work focuses on the latter, to ensure that no timing violations occur.

Initial efforts centered on STA (Hitchcock 1982; Agrawal 1982; Chadha and Bhasker

2009), later evolving to address false path identification (Kundu 1994). Early methods

employed multi-valued algebras and custom justification algorithms to handle hazards.

More recent approaches leverage SAT solvers for signal justification (Eggersglüss et al.

2010) and target critical path identification in complex modules (Pomeranz 2024).

Alternative strategies include event-driven simulation to exploit higher clock frequen-

cies while mitigating false paths (Wang and Robinson 2019), and machine learning

techniques like association rule analysis to identify input vectors critical to reliability

(Shi et al. 2024). However, these methods offer approximate rather than exact solutions.

7 Conclusions

We proposed an ASP-based solution for computing the maximum delay in combina-

tional circuits, a key task in hardware design and verification. This work, a collaboration
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between logic programming and hardware design experts, adopts a fine-grained approach

that considers hazards, unlike the mainstream method of finding the maximum sensiti-

zable path. Experiments show our approach can solve instances considered very hard

in the literature. Future work includes experimenting with ASP modulo difference logic

(Janhunen et al. 2017).
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