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The aim of this study was to investigate the role of
genes and environment in susceptibility to breast

cancer and to give an estimate of heritability in the
propensity to develop the disease. To do this we
applied an interdisciplinary approach, merging
models developed in the field of demography and
survival analysis — so-called frailty models — and
models coming from quantitative genetics and epi-
demiology, namely genetic models. In our study, the
inferential problem was solved in a Bayesian frame-
work and the numerical work was carried out using
MCMC methods. We used the special information
coming from twin data, particularly breast cancer
data, from the Swedish Twin Register. The applica-
tion of a correlated log-normal frailty model leads to a
very large estimate of the population heterogeneity
(σ = 6.7), and relatively small correlations between
co-twins’ frailties — around 0.3 for monozygotic and
0.1 for dizygotic twins. Comparing three different
genetic models (an ACE, an AE and an ADE model),
we furthermore concluded that genetic effects
would explain globally almost 30% of the total vari-
ability of propensity to breast cancer. Environmental
effects would be predominant in determining breast
cancer susceptibility and these effects would be pri-
marily individual-specific, that is, non-shared effects.
Finally, a model which includes dominance genetic
effects (ADE model) is preferred for genetic and sta-
tistical reasons.

Frailty Models
Frailty was first introduced in survival analysis in
order to assess unobserved heterogeneity (Vaupel et al.,
1979). Frailty models represent an extension of the
proportional hazards model (Cox, 1972) in which
both the frailty term and the covariate effects are
assumed to act multiplicatively on the baseline hazard.
The term including covariates allows for observed het-
erogeneity, while the frailty term captures that part of
the individual heterogeneity that refers to unobserved
risk factors. Individuals differ substantially in their

susceptibility toward mortality (overall or cause-spe-
cific mortality) and it is often impossible to include 
all the relevant covariates in the model. More frail
individuals die earlier than stronger ones and this
leads to a systematic selection effect over time. When
unobserved heterogeneity is introduced in the model,
it is possible to identify the influence of selection on
the observed hazard and to analyze the individual 
risk of mortality at different frailty levels (Vaupel &
Yashin, 1985).

In the present study, we were dealing with multi-
variate frailty models, which were created with the
aim of assessing mutual dependence between the life
spans of related individuals. The first approach
developed in the literature, and still much employed,
is based on the concept of “shared frailty” (Clayton,
1978; Oakes, 1982; Hougaard, 1984; Sahu et al.,
1997; Vaupel et al., 1992). Groups of individuals
(family, litter, clinic or recurrent events from the same
individual) share the same frailty and their durations
are assumed to be conditionally independent, given
the frailty variable. Shared frailty models are par-
ticularly spread in the field of animal genetics
(Ducrocq et al., 1988; Ducrocq & Casella, 1996). In
this context, the shared frailty term — multiplica-
tively added to models describing the time of culling
for groups of breeding animals — represents the effect
of belonging to a particular sire. Thus, this random
effect reflects genetic-specific features, which are
“shared” by all animals coming from the same sire
(Yazdi et al., 2000).

Shared frailty models are useful for explaining
correlations within groups, but they have some limita-
tions. Firstly, they deal with a definition of frailty
which is not consistent with the definition given in 
the univariate framework (Vaupel et al., 1979). The
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frailty term represents a part of individual frailty, 
only capturing the components that are shared by all
individuals within a cluster. Second, they force all
unobserved risk factors to be the same within a
cluster, which is not always reasonable. For example,
when one deals with pairs of twins there is no reason
to assume that both partners in a pair share the same
unobserved heterogeneity. Third, shared frailty will
only induce positive association within a group.
However, in some situations it could be useful to also
allow for a negative correlation between life spans
within the groups (Xue & Ding, 1999).

To overcome these limitations, a correlated frailty
approach has been developed. The importance of
taking into account the dependence between hetero-
geneity variables describing different processes
related to the same individual was first emphasised
by Butler et al. (1986) and Lillard (1993). Yashin 
et al. (1995) introduced a correlated gamma frailty
model to describe bivariate survival data, focusing
their attention on the analysis of pairs of related indi-
viduals, for example twins. The correlated frailty
assumption is more flexible than the shared frailty
assumption in the sense that the model includes 
different — but correlated — frailties for the two
individuals in a pair. It is of interest to estimate the
correlation coefficient between these two variables,
that is, the degree of dependence between frailties in
each pair. As in the shared frailty model, the two life
spans in a pair are assumed to be conditionally inde-
pendent given the frailties.

In the correlated frailty model, unobserved risk
factors are not forced to be the same in each group,
the frailty term represents the entire susceptibility
toward death exactly as in the univariate framework,
and the possibility of a negative association between
survival times is taken into account. In addition, the
correlated frailty concept allows for the integration of
survival data for related individuals with different
levels of relationship, for example, identical (monozy-
gotic) and fraternal (dizygotic) twins, and merging of
traditional approaches of quantitative genetics and
epidemiology with survival analysis methods (Yashin
& Iachine, 1995, 1997).

Two important assumptions in frailty models are
related to the shape of the underlying hazard and the
distribution of the frailty variables.

Shared and correlated frailty models have been
estimated both parametrically and semiparametri-
cally. The most adopted parametrical hypothesis is
the Gompertz baseline hazard (Iachine et al., 1998;
Vaupel et al., 1992; Wienke et al., 2001) but other
shapes are also possible, for example, Weibull (Do et
al., 2000; Sahu et al., 1997; Visscher et al., 2001) or
(piecewise) exponential (Xue & Ding, 1999; Scurrah
et al., 2000). Yashin and Iachine (1994) derived a
semiparametric representation for the correlated
gamma frailty model, which opened new oppor-
tunities for the statistical analysis of bivariate data. 

This representation allows estimation of the model
without making assumptions about the shape of the
baseline hazard. The semiparametric approach was
also adopted in a Bayesian framework to estimate
different shared frailty models by Clayton (1991) and
Spiegelhalter et al. (1996), among others.

Every distribution of a positive random variable
can be adopted to model frailty. The gamma distri-
bution has been widely applied in the literature
(Clayton, 1978; Hougaard, 2000; Oakes, 1982;
Vaupel et al., 1979; Wienke et al., 2001; Yashin &
Iachine, 1994). The gamma choice is convenient 
from a mathematical point of view, because of the
simplicity of the Laplace transformation, which allows
for the use of traditional maximum likelihood proce-
dures in parameter estimation. Another possibility 
is to assume that frailty is log-normal distributed 
(Do et al., 2000; Korsgaard et al., 1998; Ripatti &
Palmgren, 2000; Scurrah et al., 2000; Spiegelhalter 
et al., 1996; Xue & Ding, 1999). The log-normal
approach is much more flexible than the gamma 
one in creating correlated but different frailties as
required in the case of the correlated frailty model.
Unfortunately, with a log-normal assumption it is
impossible to derive the marginal likelihood function
in an explicit form and parameter estimation has 
to be performed with the help of more sophisticated
estimation strategies, such as numerical methods of
integration or Bayesian MCMC methods (see Estima-
tion Strategy section below).

The present study worked with correlated frailty
models. The Model Description section below pro-
vides a general description of the theory of correlated
frailty models. In the section titled Estimation Strategy,
the estimation procedure is presented. An interdiscipli-
nary approach based on quantitative genetics models
is described in the section titled Genetic Models. The
Data section introduces data from the Swedish Twin
Register. The Results section presents results of the
analysis. Some comments and suggestions for further
research are presented in the Discussion.

Materials and Methods
The Model Description

As we have already described, frailty models represent
a particular area of survival analysis. This discipline
typically studies the behavior of a random variable X,
describing the time since the origin of an observation
period and the moment of the occurrence of an event
of interest. The survival function is defined as the
probability of the event occurring after a certain time: 

(1)

In the case of continuous time, another quantity is
introduced, the so-called hazard function, which is
defined as the probability of the event occurring in
the interval (x, x + ∆x), given that it has not occurred

                                   ( ) ( )xXxS >= Pr .                                    
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before x, divided by the length of the interval, and 
for ∆x→0:

(2)

The hazard function characterizes the risk changing
over time, specifying the instantaneous failure rate at
time x, for an individual who is still at risk of experi-
encing the event at that time.

Being H(x) the cumulative hazard function, H(x) =

0

x

∫µ(t)dt, the following relations hold:

(3)

where ƒ(x) is the density function of the random vari-
able X.

Frailty models are typically based on the so-called
multiplicative assumption (Cox, 1972), that is, the
hazard function (2) is represented by the product of a
baseline hazard, µ0(x), and a frailty term (Z), the
latter describing the role played by unobserved risk
factors on the individual risk (Vaupel et al., 1979):

(4)

In the current study we dealt with a particular class of
frailty models, the so-called correlated frailty models,
which are adopted in order to describe the cor-
relation between frailties within pairs of individuals
(namely twins) and, by consequence, between their
duration times.

Let Xi1,Xi2 be the vector of life spans (duration
times) for the two individuals from the pair i (i = 
1,…,n). The typical assumption of correlated frailty
models is that Xi1 and Xi2 are conditionally indepen-
dent given the frailties Zi1 and Zi2:

(5)

The conditional likelihood of the model is given by:

(6)

where x = (x1,…,xn), xi = (xi1, xi2); z = (z1,…,zn), 
zi = (zi1, zi2) and ƒXi1, Xi2Zi1, Zi2

represents the bivariate
conditional density of the life spans for the pair i. The
conditional independence of the life spans given the
frailties (5) allows rewriting of (6) as follows:

(7)

where now we deal with the univariate densities ƒXijZij

(j = 1, 2).
Given the relations (see equation [3]):

(8)
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where SXZ is the conditional survival function given
the frailty variable, the expression for the conditional
likelihood becomes:

(9)

where for each individual a censoring indicator δij is
introduced, taking value 1 if the subject experiences the
event and 0 otherwise. When δij = 0, the value of Xij

represents a censoring time, corresponding to the end
of the observation period, instead of a failure time.

Integrating out the random effects, we obtain the
marginal likelihood function:

(10)

where ƒZi1,Zi2
represents the joint density function of

the vector of frailties (Zi1,Zi2).
In the current study, we adopted a Gompertz base-

line hazard, µ0(x) = aebx, and we did not take into
account observed covariate effects.

To complete the model, it was necessary to make
assumptions about the form of ƒZi1,Zi2

. In this work, the
vector of frailties was assumed to follow a log-normal
distribution. This assumption was adopted because of
its large flexibility in multivariate modelling, especially
because we were interested in introducing a correla-
tion between frailties, as in the case of the correlated
frailty model.

For identifiability reasons, a restriction was placed
on the parameters of the frailty distribution. Following
the usual definition of frailty used in demography
(Clayton, 1978; Vaupel et al., 1979), the expected
value of frailty was constrained to be equal to one,
E(Zij) = 1, for i = 1,…,n and j = 1, 2. In that way, it
was assumed that the hazard function of a “standard”
individual corresponded to the baseline hazard func-
tion, and the hazard rate of any individual in the
population was multiplicatively distorted by their
frailty value zij. This assumption differs from the one
generally made in the context of correlated log-normal
frailty models. Usually the restriction is placed on 
the logarithm of the frailty variable, whose mean 
is assumed to be equal to zero (Do et al., 2000;
Korsgaard et al., 1998; Ripatti & Palmgren, 2000;
Scurrah et al., 2000; Spiegelhalter et al., 1996; Xue &
Ding, 1999). This hypothesis does not imply that the
average frailty in the population is equal to 1 [E(logZ)
≠ logE(Z)], as originally assumed in the first formula-
tions of frailty models (Clayton, 1978; Vaupel et al.,
1979). Thus, in the present study, the estimated 
variance and correlation refer to the frailty variable
itself, instead of to its logarithm. The same can be said
of the genetic decomposition of the frailty variance
and the estimate of heritability (see Genetic Models
section below).

         ( ) ( )[ ]

( )( ) ( )

’ÚÚ’
= =

-

=
n

i j

iiiiZZijij

ijij

dzdzzzfxHz

xzxL

ii

ij

1

2

1

2121,0

0

,exp

,

21

d
md

   ( ) ( )[ ] ( )(’’
= =

-=
n

i j

ijijijij xHzxzzxL ij

1

2

1

00 exp|,
d

md        )

184 Twin Research April 2004

Isabella Locatelli, Paul Lichtenstein, and Anatoli I. Yashin

https://doi.org/10.1375/twin.7.2.182 Published online by Cambridge University Press

https://doi.org/10.1375/twin.7.2.182


Finally, it was assumed that the two frailties in
each pair had the same variance σ2, because of the
symmetry of twin data, which were the object of
application in the present paper.

Hence, the study dealt with the following distribu-
tion of the vector of frailties:

(11)

with logN denoting the bivariate log-normal distribu-
tion. This can be obtained by assuming a bivariate
normal distribution on the logarithm of the frailty vector 

whose parameters are some functions of the frailty
parameters σ2 and ρ (see for example Hutchinson &
Lai, 1991):

(12)

with N denoting the bivariate normal distribution.

Estimation Strategy

Methods that have been adopted for parameter estima-
tion in frailty models can be approximately classified
into two categories: (1) maximum likelihood, and (2)
Markov chain Monte Carlo (MCMC) methods.

Procedures based on the maximum likelihood
method have been applied in the gamma context,
where an explicit representation of the likelihood
function is always available (Wienke et al., 2001;
Yashin et al., 1995; Yashin & Iachine, 1994). The
maximum likelihood method has also been adopted 
in the log-normal framework with the help of dif-
ferent numerical algorithms (Arbeev et al., 2003;
Lillard, 1993; Lillard et al., 1995; McGilchrist, 1993;
McGilchrist & Aisbett, 1991; Ripatti & Palmgren,
2000; Sastry, 1997). These methods are also imple-
mented in the aML software package (aML version 1;
Lillard & Panis, 2000).

Bayesian MCMC methods have also been applied
as estimation procedures especially in shared frailty
models (Clayton, 1991; Sahu et al., 1997; Sinha &
Dey, 1997; Spiegelhalter et al., 1996) but also in corre-
lated frailty models (Do et al., 2000; Scurrah et al.,
2000; Xue & Ding, 1999). The Bayesian framework is
natural when dealing with conditionally independent
observations and working with hierarchical models,
with the frailty variables at an intermediate stage
between the observations and the so-called hyperpara-
meters. In the Bayesian context the frailty distribution
represents a “prior” of the model, and its parameters
(hyperparameters) are also considered as random vari-
ables following some non-informative distribution.

An MCMC method generates a set of Markov
chains whose joint stationary distribution corresponds
to the joint posterior of the model, this one being the
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distribution of random parameters given observed
data. In a hierarchical model, the posterior distribu-
tion is often very difficult to work with and almost
always impossible to integrate out in order to deter-
mine the marginal posterior of each random
parameter. The MCMC methods enable circumven-
tion of this problem. The posterior of each parameter
is approximated by the empirical distribution of the
values of the corresponding Markov chain and empiri-
cal summary statistics calculated along each chain can
be used to make inferences about the true value of the
corresponding parameter (for a review see Gilks et al.,
1996). Gibbs Sampling (Geman & Geman, 1984) is
one of the algorithms that have been created in order
to obtain Markov chains with the desired stationary
distribution. The basic idea behind Gibbs Sampling is
to successively sample from the conditional distribu-
tion of each random node, whether parameter or
observable, given all the others in the model. These
distributions are known as “full conditional distribu-
tions”. It can be shown that, under broad conditions,
this process eventually provides samples from the joint
posterior distribution of the unknown quantities.

In the current study, Bayesian MCMC methods
were adopted to estimate the correlated log-normal
frailty model described above. Calculations were per-
formed within the software WinBUGS 1.4 (Spiegelhalter
et al., 1999). WinBUGS 1.4 is a package which enables
solution of Bayesian hierarchical models, essentially
using the Gibbs Sampling algorithm.

The correlated log-normal frailty model applied
here can be represented as a Bayesian hierarchical (3-
level) model in the following way:

1. Likelihood function:

(13)

2. Priors:

(i)

(ii) a ~ Γ(0.01, 0.01)

(iii) b ~ Γ(0.01, 0.01)

3. Hyperpriors:

(i) σ2 ~ Γ(0.01, 0.01)

(ii) ρ ~ U(–1, 1)

where H(x) = (a/b)⋅[exp(bx) – 1] is the Gompertz
cumulative hazard function, y = (y1,…, yn), yi = (yi1,
yi2), and Γ and U denote the gamma and uniform dis-
tribution, respectively. Non-informative priors are
assigned on the parameters of the Gompertz curve and
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on the frailty parameters (hyperparameters). A prior
distribution is called non-informative when it covers,
with a large variance, the reasonable interval of values
of a parameter.

The full conditional distributions can be obtained
considering that they are proportional to the joint dis-
tribution of all the random quantities of the model. In
the current study, the joint distribution took the form:

(14)

where π(⋅) indicates the density function of the corre-
sponding argument.

Often the full conditional distributions have a
complicated form, which makes it impossible to
sample directly from them. In such cases, different
modifications of the Gibbs Sampling algorithm origi-
nally proposed by Geman and Geman (1984) are
available in version 1.4 of the software WinBUGS. In
particular, a slice-sampler algorithm is used for non-
log-concave densities defined on a restricted range
(Neal, 1997). This has an adaptive phase of 500 itera-
tions, which are discarded from all summary statistics.
A Metropolis within Gibbs algorithm based on a sym-
metric normal proposal distribution is applied in the
case of non-log-concave densities defined on an unre-
stricted range (Besag & Green, 1993; Hastings, 1970;
Metropolis et al., 1953). In this case, the adaptive
phase is of 4,000 iterations. The Metropolis within
Gibbs procedure is applied in the log-normal case.

Different models proposed for the same set of data
(even if they are not nested) can be compared with the
help of a Bayesian criterion, the Deviance Information
Criterion (DIC), recently introduced by Spiegelhalter et
al. (2002). This criterion allows comparison of differ-
ent Bayesian hierarchical models in terms of adequacy
and complexity. The DIC statistic is defined as:

(15)

where represents an estimate (in terms of poste-
rior mean) of the deviance of the model and is
suggested as a Bayesian measure of fit or adequacy,
and pD is the difference between the posterior mean of
the deviance and the deviance of the posterior mean of
parameters of interest and is proposed as a measure of
the effective number of parameters (complexity) of the
model. The deviance D(θ) is defined as equal to
–2logp(yθ) where y comprises all stochastic nodes
giving values (that is, data), and θ comprises the sto-
chastic nodes upon which the distribution of y
depends, when collapsing over all logical relationships.
It can be shown (Spiegelhalter et al., 2002) that DIC is
related to other information criteria and in particular,
in models with negligible prior information, DIC is
approximately equivalent to Akaike’s criterion. The
model with the smallest DIC is estimated to be the
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model that would best predict a replicate dataset of
the same structure as that currently observed.

Genetic Models

Typical models of quantitative genetics can easily be
incorporated into the correlated frailty model described
above. Quantitative genetics models (Falconer, 1990)
are based on the decomposition of a phenotypic trait
into a sum of different components, which are sup-
posed to be independent. Using this approach, it is
possible to estimate the proportion of the total vari-
ability of the phenotype that is related to genetic
factors. This proportion is defined as the “heritability”
of the phenotypic trait. In particular, a heritability 
estimate can be calculated for human longevity by
identifying the phenotype with the life span variable
(McGue et al., 1993).

The definition of heritability given by Yashin and
Iachine (1995) was used in the current study. To study
the role of genetic and environmental factors on
longevity, they suggest an approach based on the
frailty variable Z instead of the life span (duration
time) X. The phenotype is thus identified with the
unobserved heterogeneity term. With this approach,
the problem of censoring in the estimate of heritabil-
ity does not arise because heritability is calculated as
a function of the correlation coefficient between co-
twins’ frailties — estimated via application of a
correlated frailty model — instead of the correlation
between observed duration times. In this context, her-
itability is defined as the proportion of the total
variability of frailty explained by genetic factors and
it is thus obtained via decomposition of the frailty
variance (Do et al., 2000; Scurrah et al., 2000). An
advantage of this approach is that, through the addi-
tive decomposition of frailty into a genetic and an
environmental component, one can obtain a compet-
ing risk structure for the respective survival model.
That is, observed mortality is represented as a sum of
two terms: one depends on genetic and another on
environmental parameters, both estimated from
bivariate data (Yashin & Iachine, 1995).

As mentioned above (in The Model Description
section), in the literature of correlated log-normal
frailty models the decomposition is usually made with
respect to the variance of the logarithm of frailty (Do
et al., 2000; Scurrah et al., 2000). The current study
referred to the variance of the frailty itself. We believe
this interpretation is more consistent with the multi-
plicative assumption than the usual one, which is
based on a definition of frailty as a term acting addi-
tively on the logarithm of the baseline hazard, logµ(t,
Z) = Z + logµ0(t).

In more detail, let the frailty be represented by:

Z = A + D + I + C + E (16)

where A represents additive genetic effects, D corre-
sponds to dominance genetic effects, I denotes epistatic
genetic effects, and C and E stand for shared and non-
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shared environmental effects, respectively. All factors
are assumed to be independent. The following additive
decomposition of the frailty variance and of the corre-
lation coefficient between co-twins’ frailty holds:

1 = a2 + d2 + i2 + c2 + e2 (17)

ρ = ρ1a
2 + ρ2d

2 + ρ3i
2 + ρ4c

2 + ρ5e
2 (18)

where lowercase letters a2, d2, i2, c2, e2 indicate the
proportions of the total variability associated with the
corresponding components of frailty, and ρ i  (i = 
1,…,5) are correlations between respective compo-
nents within a twin pair.

Standard assumptions of quantitative genetics
models specify different values of ρi (i = 1,…,5) for
monozygotic and dizygotic twins. In the case of
monozygotic twins ρi = 1, i = 1,…,4 and ρ5 = 0, while
for dizygotic twins ρ1 = 0.5, ρ2 = 0.25, ρ3 = m, ρ4 = 1,
ρ5 = 0, and 0 ≤ m ≤ 0.25 is an unknown parameter.
Not all parameters of the genetic decomposition of
frailty can be estimated simultaneously. The model
reduces to three equations (two relationships (18) for
monozygotic and dizygotic twins and one constraint
(17)) allowing estimation of no more than three para-
meters at the same time. One possibility is to consider
an ACE (additive genetic–common environmental–
uncommon environmental) model. In this case, equa-
tions (17) and (18) lead to the following:

(19)

This system can be integrated into the correlated
frailty model described above in the section titled The
Model Description (see equation (12)) giving place 
to a reparameterization of the original model. The
only difference is that when interested in estimating
parameters of a genetic model, data for monozygotic
and dizygotic twins have to be analyzed simultane-
ously and a likelihood function for combined data has
to be drawn.

Equivalently, other genetic models can be obtained
combining no more than three components of frailty
(Yashin & Iachine, 1995). In this paper we compare
three different genetic models (ACE, AE and ADE).

The Data

In the current analysis we used breast cancer data
from the Swedish Twin Registry. First established in
the late 1950s to study the importance of smoking and
alcohol consumption on cancer and cardiovascular
diseases whilst controlling for genetic propensity to
disease, it is now a unique source. Since its establish-
ment, the Registry has been expanded and updated on
several occasions, and the focus has similarly broad-
ened to include most common complex diseases.

At present, the Swedish Twin Registry contains
information about two cohorts of Swedish twins
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referred to as the “old” and the “middle” cohort. The
old cohort consists of all same-sexed pairs born
between 1886 and 1925 where both members in a
pair were living in Sweden in 1959. In 1970 a new
cohort of twins born between 1926 and 1967, the
middle cohort, was compiled. Both cohorts were
included in the current analysis making a total of
12,568 pairs of female twins. The data are described
in Table 1, categorized according to the censoring
status. The event under study was the onset of breast
cancer. If a woman did not develop breast cancer or
she was deceased at follow-up, the corresponding
observation was censored.

For a comprehensive description of the Swedish
Twin Registry database, with a focus on recent data
collection efforts and a review of the principle findings
that have come from the Registry, see Lichtenstein 
et al. (2002).

Results
Results of the application of the correlated log-
normal frailty model to the Swedish breast cancer
data are presented in Table 2. Estimated values
include the Gompertz parameters a and b, the vari-
ance of the frailty distribution σ2, which can be seen as
the extent of population heterogeneity with respect to
breast cancer, and estimates of the correlation coeffi-
cient for both monozygotic twins (ρMZ) and dizygotic
twins (ρDZ).

Two parallel chains were run from different start-
ing points and 25,000 iterations were generated per
chain. Estimates were calculated after discarding a
burn-in of 4,000 iterations for each chain. Two esti-
mates for each parameter were calculated in terms of
the mean and the median of the corresponding
Markov chain. In all cases, the two values were very
close to each other. This means that empirical esti-
mates of the marginal posteriors densities (Kernel
density estimates) are approximately symmetric
(Figure 1). The symmetry of the posterior distribution
of all the parameters of interest around the posterior
mean (which is thus equal to the posterior median)
allows us to be sufficiently confident in our estimates,
even if in some cases the sample standard deviation is
quite large. For each parameter, in addition to the
sample standard deviation, an estimate of the standard
error of the mean is also given. This was obtained fol-
lowing the batch means method outlined by Roberts
(1996). The value of the Corrected Scale Reduction
Factor (CSRF) for each parameter is reported in the
final row of Table 2. This value corresponds to the
Gelman-Rubin convergence statistic (Gelman &
Rubin, 1992), as modified by Brooks and Gelman
(1998), and is based on a comparison of the within
and between-chain variance for each variable. When
values of this diagnostic are approximately equal to 1,
the sample can be considered to have arisen from the
stationary distribution and descriptive statistics can be
seen as valid estimates of unknown parameters.
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According to the model, the population under
study would present a very large heterogeneity (σ2) in
terms of susceptibility toward breast cancer. The esti-
mated correlation between frailties is larger for
monozygotic than for dizygotic twins. A likely inter-
pretation of this result is that individuals who are
more similar from a genetic point of view (MZ twins)
also present a larger connection in terms of frailty
toward breast cancer. This finding provides evidence
of a genetic influence on propensity to develop breast
cancer. If genetic factors do influence individual sus-
ceptibility toward breast cancer, we would expect to
see a higher correlation between frailties in MZ twins,
who are genetically identical, than in DZ twins who,
on the average, have just half of their genes in
common. The extent of such a genetic influence was
then estimated in the current study with the help of
three different genetic models.

Table 3 compares an ACE, AE and ADE model.
Estimates of each parameter are given in terms of the
sample mean. Sample median values were omitted
because they were very close to the mean in Table 2.
The posterior standard deviation of each parameter is
presented in parenthesis. This quantity is a measure of
the dispersion of the posterior density estimate, giving
an idea of a parameter’s significance.

A first observation can be made about the estimate
of parameter c2 in the ACE model. This value cannot
be considered as being significantly different from 0.
For this reason the ACE model, which is the one most
widely reported in the literature, does not seem to be
appropriate, therefore, it was compared with two
models which do not include the common environ-
mental effect c2, namely the AE and ADE model.

Moreover, the estimated value of the narrow sense
heritability parameter resulting from the ACE model,
â2 ≅ 0.18, does not correspond to the one that could
be obtained by applying a “two step-procedure”. A
two-step procedure, which simply consists of substi-
tuting ρMZ and ρDZ estimates (Table 2) in ACE
equations (19), would lead to a bigger estimate of the
heritability parameter, â2

2ST ≅ 0.4. The same procedure
would also give a negative estimate of parameter c2,
which may indicate the presence of non-additive
genetic effects (Yashin & Iachine, 1997).

These problems do not arise with the other two
models (AE and ADE). In particular, under the AE
model, ρMZ and ρDZ are both estimates of a2. The
(unweighted) average of these two is around 0.25.
This value is not too far from the 0.23 obtained with
the “one-step procedure” adopted here, consisting of
a reparameterization of the correlated frailty model in

Table 1

Composition of the Dataset by Zygosity and Censoring Status. Swedish Twin Registry

Both censored One censored None censored Total % of Individual affected 
MZ 4304 335 33 4672 0.0429 
DZ 7236 625 35 7896 0.0432 
Total 11540 960 68 12568 0.0431 

Table 2

Results of a Correlated Log-normal Frailty Model Applied to Swedish Breast Cancer Data. Convergence Achieved After 50,000 Iterations

a b σ2 ρMZ ρDZ

Mean 2.54E-5 0.0715 45.190 0.3107 0.1044 
Median 2.52E-5 0.0715 41.500 0.2991 0.0967 
Standard deviation 3.24E-6 0.0025 17.040 0.0456 0.1084 
MC error 7.92E-8 8.94E-5 0.824 0.0051 0.0021 
CSRF 1.0021 1.0063 1.055 1.0082 1.0048 

Table 3

Results of Three Genetic Models Applied to Swedish Breast Cancer Data. Convergence Achieved After 50,000 Iterations

a b σ2 a2 d2 c2 e2 DIC 
ACE 2.55E–5 0.0715 45.21 0.1759 0.0529 0.7712 15138.6 

(3.36E–6) (0.003) (17.7) (0.094) (0.046) (0.089)
AE 2.50E–5 0.0721 47.31 0.2304 0.7696 15102.3 

(3.16E–6) (0.003) (18.3) (0.091) (0.091)
ADE 2.52E–5 0.0719 48.30 0.1273 0.1491 0.7239 15091.8 

(3.16E–6) (0.002) (16.7) (0.086) (0.100) (0.084)
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order to incorporate the ADE structure (see Genetic
Models section above). Equivalently, under the ADE
model, the one-step procedure provided results that
were similar to those obtained with the procedure in
two steps (â2 ≅ 0.13 and  d̂2 ≅ 0.15 while â2

2ST ≅ 0.1 and
d̂2

2ST ≅ 0.2).
Finally, the three models were compared using the

Deviance Information Criterion (Spiegelhalter et al.,
2002). As seen above (Estimation Strategy section),
the DIC statistic allows comparison between different
Bayesian models using the criteria of the best ade-
quacy to the data and the lowest complexity. The
model which presented the smallest value of DIC in
the current study was the ADE model (Table 3).
Therefore, the ADE model is the model that would
best predict a replicate dataset of the same structure
as the one currently observed.

Discussion
In the present paper, a Bayesian correlated frailty
model was adopted to analyze the onset of breast
cancer in a population of female Swedish twins. A
Gompertz assumption was made in order to model the
baseline hazard function. The vector of frailties was
assumed to follow a log-normal distribution, which is

one of the most flexible in multivariate modelling and
especially when interested in introducing a correlation
between frailties, as in the case of the correlated frailty
model. Also, estimates of the frailty variance (Table 2),
which measure the degree of heterogeneity in suscepti-
bility toward breast cancer, were very large. This effect
may be partly due to the strong negative correlation
between the estimates of σ2 and ρ, which is typical of
the correlated frailty model. Such correlation has been
detected and discussed in a recent simulation study
involving different assumptions on the frailty distribu-
tion and different estimation strategies (Wienke et al.,
2003a). On the other hand, using a subset of the data
analyzed here (the old cohort of the Swedish Twin
Registry), Wienke et al. (2003b) have shown that the
heterogeneity estimate decreases when the possibility
that a fraction of the study population is unsusceptible
to experience the disease is accounted for.

The current study compared three different genetic
models using the Deviance Information Criterion 
(see section titled Results). The ADE model, a model
including dominance genetic effects, proved to be the
best model in terms of adequacy and complexity.
According to the parameter estimates of the ADE
model, genetic effects would explain globally around

Figure 1
Posterior distributions of the parameters estimated via application of a correlated log-normal frailty model to Swedish breast cancer data.
Convergence achieved after 50,000 iterations.
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30% of the total variability of propensity to breast
cancer. Environmental effects would be predominant in
determining breast cancer susceptibility and would pri-
marily be individual-specific, that is, non-shared effects.

The WinBUGS package proved to be extremely
useful and flexible enough to estimate correlated
frailty models and to add to them equations typical of
genetic models. Within the same software it is easy to
modify the hypothesis on the frailty distribution, and
it is also possible to follow a semiparametric strategy
by assuming a prior process on the cumulative hazard
function (the work on semiparametric methods is in
progress). Different assumptions about the frailty dis-
tribution and the shape of the baseline hazard function
can be compared within the same software (version 1.4)
with the help of a Bayesian information criterion (BIC).

The disadvantage of using WinBUGS in the
context described here is in the time required for esti-
mation. Models being worked with include a very
large number of parameters, especially when analyzing
large data sets. Therefore, every MCMC algorithm
which updates parameters one by one (like Gibbs
Sampling used in WinBUGS) will be very time con-
suming. To overcome this limitation, an algorithm
which enables updating of parameters all together 
(or groups of parameters at the same time) should 
be adopted.
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