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Abstract

Photovoltaic (PV) energy grows rapidly and is crucial for the decarbonization of electric systems. However,
centralized registries recording the technical characteristics of rooftop PV systems are often missing, making it
difficult to monitor this growth accurately. The lack of monitoring could threaten the integration of PVenergy into the
grid. To avoid this situation, remote sensing of rooftop PV systems using deep learning has emerged as a promising
solution. However, existing techniques are not reliable enough to be used by public authorities or transmission system
operators (TSOs) to construct up-to-date statistics on the rooftop PV fleet. The lack of reliability comes from deep
learningmodels being sensitive to distribution shifts. This work comprehensively evaluates distribution shifts’ effects
on the classification accuracy of deep learning models trained to detect rooftop PV panels on overhead imagery. We
construct a benchmark to isolate the sources of distribution shifts and introduce a novel methodology that leverages
explainable artificial intelligence (XAI) and decomposition of the input image and model’s decision regarding scales
to understand how distribution shifts affect deep learning models. Finally, based on our analysis, we introduce a data
augmentation technique designed to improve the robustness of deep learning classifiers under varying acquisition
conditions. Our proposed approach outperforms competing methods and can close the gap with more demanding
unsupervised domain adaptation methods. We discuss practical recommendations for mapping PV systems using
overhead imagery and deep learning models.

Impact Statement

This paper analyzes the effects of distribution shifts on deep learning models trained to detect rooftop
photovoltaic (PV) systems on aerial imagery by combining explainable artificial intelligence methods. It then
proposes practical solutions based on this analysis to enhance the robustness of these models, thereby improving
their reliability and facilitating the use of remote sensing techniques to support the insertion of rooftop PV
systems into the grid. The methodology laid out in this work can be replicated for other case studies.
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1. Introduction

Photovoltaic (PV) energy grows rapidly and is crucial for the decarbonization of electric systems (Haegel
et al., 2017). The rapid growth of rooftop PV systems makes it challenging to of estimate the global PV
installed capacity, as centralized data is often lacking (Hu et al., 2022;Kasmi et al., 2022). Remote sensing of
rooftop PV systems using orthoimagery and deep learning models is a blooming solution for mapping
rooftop PV installations. Deep learning-based pipelines have become the standard method for remote
sensing PV systems, with works like DeepSolar (Yu et al., 2018) paving the way for country-wide mapping
of PV systems using deep learning and airborne or spaceborne orthoimagery. Recently, methods for
mapping rooftop PV systems in many regions, especially in Europe, have been proposed (Frimane et al.,
2023; Kasmi et al., 2022; Kausika et al., 2021; Lindahl et al., 2023; Mayer et al., 2020; Rausch et al., 2020;
Zech andRanalli, 2020). Some of theseworks (Kasmi et al., 2022;Mayer et al., 2022) introducedmethods to
estimate the technical characteristics of the PV systems (individual localization, orientation, PV installed
capacity). The identification of rooftop PV systems improves their integration into the electric grid by
improving the ability of transmission system operators (TSOs) to more accurately estimate their power
production in real-time (Kasmi et al., 2024) but can also promote their future expansion, as this data helps
understanding the drivers behind rooftop PV adoption (Alipour et al., 2020; Colas and Saulnier, 2024;
Graziano and Gillingham, 2015; Wang et al., 2022).

However, deep learning-based detection methods are sensitive to so-called distribution shifts,
i.e., differences between the training and testing data (Koh et al., 2021). This sensitivity manifests by
unpredictable and sharp accuracy drops when the model is deployed on unseen images. It limits their
practical usability as a trained model cannot be deployed without retraining to carry out registry updates.
Besides, the unpredictability of the model’s behavior limits its reliability as it casts doubt on what it
perceives as a PV panel (De Jong et al., 2020; Hu et al., 2022). In this work, we define the reliability of a
model as its ability to rely on relevant features to identify PV systems, i.e., to be “right for the right
reasons” and to be simultaneously able to rely on robust features (Kasmi, 2024; Ross et al., 2017). Steps
towards improving the quality of registries (i.e., tables recording the location and some technical
information on PV systems) of rooftop PV systems constructed using deep learning algorithms have
been taken, with Hu et al., 2022 and Kasmi et al., 2022 discussing the practical evaluation of the mapping
algorithms or Li et al., 2021 identifying the minimum resolution to detect rooftop PV systems from
orthoimagery (whether this minimum resolution is the native image resolution or the resolution obtained
after increasing the input image resolution with methods such as those proposed by Ho et al., 2022). To
date, Wang et al. (2017) is the only work that studied the poor generalizability of PVmapping algorithms,
though it was limited to two cities and one image dataset. More recently, Pena Pereira et al. (2024)
analyzed howPV system typologies and backgrounds affect performance, recommending input patch size
adjustments and data augmentation to improve detection accuracy. Despite these advances, further work
is needed to understandwhat themodel identifies as a PV panel during training and how distribution shifts
—arising from variations in PV systems, backgrounds, or acquisition conditions—impact performance.

This work aims to improve the reliability of deep learning models deployed in real-world settings
prone to distribution shifts, taking the remote sensing of rooftop PV systems as a case study.We introduce
a novel methodology to understand and address the sensitivity to distribution shifts based on empirical
experiments and throughout analysis of the model’s decision using explainable AI (XAI) methods.
Empirical evaluation and XAI methods enable us to identify the most important sources of distribution
shifts and grasp why they occur. We evaluate a wide range of popular domain adaptation techniques
(i.e., methods that aim at reducing the sensitivity to distribution shifts of deep learning algorithms) and
introduce a novel data augmentation method. This method, based on our empirical findings, aims at
effectively and reliably reducing the sensitivity to distribution shifts of deep learning models trained to
detect PV systems from orthoimagery. We discuss practical takeaways regarding the choice of training
data and domain adaptation methods for remote sensing PV systems. Since the sensitivity to distribution
shifts is a recurring issue with the real-world deployment of deep learning systems (Koh et al., 2021), we
discuss the requirements for applying our methodology to alternative use cases.
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The code for replicating the results of this paper can be found at https://github.com/gabrielkasmi/
robust_pv_mapping, and model weights can be found at https://zenodo.org/records/14673918.

2. Related works

2.1. Remote sensing of rooftop photovoltaic installations

The remote sensing of rooftop PV systems is now a well-established field with early works dating back to
Golovko et al., 2018; Malof et al., 2015, Malof et al., 2016; Yuan et al., 2016. The DeepSolar project
(Yu et al., 2018) marked a significant milestone bymapping distributed and utility-scale installations over
the continental United States using state-of-the-art deep learningmodels. Manyworks built on DeepSolar
to map regions or countries, especially in Europe, covering areas such as North-RhineWestphalia (Mayer
et al., 2020), Switzerland (Casanova et al., 2021), Oldenburg in Germany (Zech and Ranalli, 2020), parts
of Sweden (Frimane et al., 2023; Lindahl et al., 2023), Northern Italy (Arnaudo et al., 2023), the
Netherlands (Kausika et al., 2021) or the surroundings of Berkeley in California (Parhar et al., 2021),
Connecticut (Malof et al., 2019) or the surroundings of Sfax, in Tunisia (Bouaziz et al., 2024). Several
works even includedGIS data to construct registries of PVinstallations (Kasmi et al., 2022; Kausika et al.,
2021; Mayer et al., 2022; Rausch et al., 2020). In the current context of rapid rooftop PV growth (Haegel
et al., 2017; RTE France, 2022), remote sensing of rooftop PV installations using deep learning and
orthoimagery offers the potential to address the lack of systematic registration of small-scale PV
installations (Kasmi et al., 2022; Kausika, 2022).

However, current methods cannot be transposed from one region to anotherwithout incurring accuracy
drops, thus limiting their practical usability (Hu et al., 2022), as the aim of these models is to be regularly
deployed on new images to construct andmaintain official registries of PV systems (De Jong et al., 2020).
The unpredictability of the accuracy drops also casts doubt regarding the reliability of these methods in
such applied settings. To address this issue, Kasmi et al., 2022 recently introduced a method aiming at
indirectly assessing the accuracy of the detections by automatically comparing the registry generated by
deep learning algorithms to reference data, which is often aggregated at the city scale. While this work
enabled the quantification of the drop in accuracy encountered during deployment, no cues as to why the
accuracy varied during deployment were discussed. Kasmi et al. (2023a) introduced a benchmark to
disentangle the sources of distribution shifts occurringwith orthoimages of PV systems and outlined some
promising directions to improve the reliability of deep learning algorithms. This work builds on and
deepens the analysis of Kasmi et al., 2023a to propose a methodology for identifying the main sources of
distribution shifts when dealing with the remote sensing of rooftop PV systems, understanding how these
shifts affect deep learning models and extensively discussing how explainable AI techniques and domain
adaptation methodologies can help mitigate the sensitivity to distribution shifts while improving the end
user’s trust towards deep learning black-boxes.

2.2. Distribution shifts and domain adaptation

Definition.Distribution shifts, i.e., the sensitivity to the fact that “the training distribution differs from the
test distribution” (Koh et al., 2021) are ubiquitous in machine learning (Torralba and Efros, 2011). The
sensitivity to distribution shifts causes unpredictable performance drops, which can have dire conse-
quences as models are deployed in safety-critical settings such as autonomous driving (Sun et al., 2022b),
medical diagnoses (Pooch et al., 2020) or finance (Thimonier et al., 2024). Distribution shifts formally
consist of a break in the assumption that the training and testing (or deployment) data are independently
and identically distributed (i.i.d., Zhou et al., 2023). This assumption is central when training models to
minimize the empirical risk, as the underlying assumption is that the empirical risk is a good approxi-
mation of the true risk of the estimator. This assumption is true only if the data is i.i.d.; otherwise, the
empirical risk no longer represents the true risk. It corresponds to epistemic uncertainty (Gal, 2016) as the
model is exposed to data outside its prior training experience.

Environmental Data Science e22-3

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

https://github.com/gabrielkasmi/robust_pv_mapping
https://github.com/gabrielkasmi/robust_pv_mapping
https://zenodo.org/records/14673918
https://doi.org/10.1017/eds.2025.13


Distribution shifts in remote sensing. Due to its nature, remote sensing data often breaks the
i.i.d. assumption (Tuia et al., 2024). For instance, the raw imagery consists of large image tiles cut into
smaller thumbnails before being passed to the model. Therefore, the thumbnails exhibit a strong spatial
correlation. Tuia et al. (2016) identified two primary sources of shifts in the input data to whichmodels are
sensitive: variations in the geographical scenery and varying acquisition conditions. Following Murray
et al., 2019, we can add a third one: the ground sampling distance (GSD).

The acquisition conditions encompass the conversion of a scene into a digital image and include all
sources of variability in the input images caused by different sensors, exposure, attitude and altitude
during acquisition, and atmospheric conditions. The ground sampling distance (GSD) is the upper bound
to the image’s effective resolution. The effective resolution considers the distortions induced by the angle
of incidence of the sensor (e.g., RGB camera). The lower the ground sampling distance, the more detailed
the image. In practice, the effective resolution is limited by the GSD and the image quality (noise, optical
transfer function, and intrinsic geometric consistency). In this article, with a slight abuse of wording, we
will use the terms “GSD” and “resolution” interchangeably. The GSD corresponds to the distance
between two consecutive pixels measured on the ground and is expressed in meters per pixel. The
resolutionmeasures the number of pixels per unit of length (e.g., inches or centimeters), and the image size
describes its dimension. For consistencywith the related literature, wewill use the term “resolution”when
broadly referring to the GSD. However, we will explicitly use “GSD” in specific contexts, such as when
expressing it with its unit, as it makes no sense to refer to a “resolution of 0.2 m/pixel”.

So far, the onlywork that investigated the poor reliability of deep learningmodels applied to the remote
sensing of PV panels is Wang et al., 2017. The authors argued that the generalization ability from one city
to another depends on how “hard” to recognize the PV panels are. However, no proper definition of the
“hardness” to recognize PV panels or a proper disentanglement of the effect of each source of variability
was carried out, and there was no prescription regarding model training or data preprocessing. More
recently, Li et al., 2021 and Pena Pereira et al., 2024 studied the practical implications of having different
resolutions or PV panel instances on the model’s performance. These studies focus on the observable
impacts of factors such as system heterogeneity, ground sampling distance, or image resolution on
performance but overlook the underlying mechanisms driving the performance degradation. Following
Kasmi et al., 2023a, we consider that improving the reliability of PV mapping models requires a deeper
understanding of the underlying reasons for their sensitivity to these distribution shifts. Finally, to the best
of our knowledge, Kasmi et al., 2023a is the only work to have implemented some domain adaptation
techniques in the context of mapping rooftop PV systems.

Distribution shifts and domain adaptation. Domain adaptation is the go-for approach to address the
sensitivity of machine learning models to distribution shifts (Ben-David et al., 2006). The different
distributions are referred to as the source domain S, on which the model is initially trained, and the target
domain T, on which the model is deployed. Different approaches can be distinguished depending on the
number of source and target domains or the availability of labeled data. In its most constrained setting, we
assume that we have access to labeled data from the source domain and, at most, unlabeled data from the
target domain. This setting is sometimes referred to as unsupervised domain adaptation. We refer the
reader to surveys such as Csurka, 2017; Csurka et al., 2021; Guan and Liu, 2022; Tuia et al., 2016; Zhou
et al., 2023 for an extensive discussion of the domain adaptation settings and techniques. The general idea
of domain adaptation is to learn a representation of the data invariant across domains or, equivalently,
insensitive to distribution shifts.

We can distinguish two broad approaches to domain adaptation: implicit and explicit regularization.
Implicit regularization encourages the model to generalize across domains without imposing specific
constraints on the loss function during the initial training. Data augmentations form a first class of implicit
regularization techniques. By viewingmultiple copies of the same image that have been altered, themodel
learns to be invariant to these alterations. The aim is that the model is no longer sensitive to a given set of
perturbations of the input images. Popular data augmentation methods consist of defining a method to
generate as many perturbed samples as possible while preserving the semantic content of the image. To
this end, AugMix (Hendrycks et al., 2020) applies a random sequence with random weights of
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perturbations to the input image. Similarly, Hendrycks et al., 2022 augmented an input image with fractal
patterns, and Sun et al., 2022a perturbed the Fourier spectrum of the input image. Cubuk et al., 2019 used a
reinforcement learning framework to search for an optimal augmentation policy, selecting the type,
magnitude, and probability of transformations based on a target validation set, and Cubuk et al., 2020
simplified this framework to make it computationally less demanding. Another approach for implicit
regularization is to modify the model’s architecture by enforcing additional invariances, such as the
invariance to various groups of translations, reflections, and rotations as done by Cohen andWelling, 2016.

On the other hand, explicit regularization techniques require access to several source domains or
unlabeled samples from the target domain, making these approaches more demanding than the implicit
ones. The most popular approach is CORrelation ALignment (CORAL), and its counterpart for deep
models DeepCORAL (Sun and Saenko, 2016), which aligns the distributions or the representations across
domains by aligning their second-order statistics. On the other hand, Ganin et al., 2016; Shen et al., 2018
or Tzeng et al., 2017 leveraged adversarial training to align the feature representations across domains.
More recently, invariant risk minimization (Arjovsky et al., 2019) ensured that the model’s representation
is invariant across environments by ensuring the model’s predictions remained the same across domains.
This approach, however, required at least two source environments to compute invariant representations
and struggled to scale to complex model architectures such as ResNets (Zhou et al., 2022).

Fundamentally, improving the robustness against distribution shifts is a long-tailed problem, meaning
that unseen situations eventually arise, and not all situations can be accounted for (Recht et al., 2019;
Torralba and Efros, 2011). Therefore, to improve the reliability of deep learning systems and not only their
robustness, we need to be able to characterize the representation learned by themodel and understand how it
is affected by the distribution shifts. To this end, we propose to use explainable artificial intelligence (XAI)
methods.

2.3. Explainable artificial intelligence (XAI)

Modern deep learning algorithms are often qualified as black boxes, meaning it is hard to grasp their inner
workings fully. This black-box nature limits the applicability of machine learning in safety-critical settings
(Achtibat et al., 2022). We can distinguish two main approaches for machine learning explainability:
by-design interpretablemodels and post-hoc explainability (Parekh, 2023). Flora et al. (2022) note that there
is no consensus yet in the literature regarding the use of the terms explainability and interpretability.
Following Flora et al., 2022, we say that a model is interpretable if it is inherently or by design interpretable,
and a model is explainable if we can compute a post-hoc explanation of its decision. By-design interpret-
ability aims at constructing models that are transparent and self-explanatory (Sudjianto and Zhang, 2021),
e.g., the decision boundaries of a decision tree. On the other hand, post-hoc explainability seeks to explain a
model’s decision by highlighting important features contributing to this decision without explicitly stating
how these features affected the model. Methods such as class activation maps (CAMs, Zhang et al., 2017),
which plot a heatmap of the important image regions for the classification of this image, fall into this
category.

XAI methods for model debugging.One of the main motivations for XAI is to inspect the decision of
models to assess whether they rely on relevant factors to make predictions. Several works highlighted
biases in the decision process, such as the reliance on spurious features. Lapuschkin et al., 2019 leveraged
the GradCAM (Selvaraju et al., 2017) to show how classifiers could rely on watermarks rather than
relevant areas of the input image for horses classification, thus highlighting a so-called “Clever Hans”
(Pfungst, 1911) effect. CAMs (Zhang et al., 2017) have also been used to understand the behavior of
convolutional neural networks (CNNs) in medical imagery classification by Zhang et al., 2021. Another
example of the usage of XAI tools to understand and debug a model was proposed by Dardouillet et al.,
2023, who leveraged SHapley Additive exPlanations (SHAP, Lundberg and Lee, 2017) to understand a
model deployed for oil slick pollution detection on the sea surface. Going one step further, Andeol et al.,
2023 recently used conformal predictions to improve the trustworthiness of railway signal detections, a
case studywhere one needs to be sure that themodel makes predictions for adequate reasons. In this work,
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we exploit the complementarities between post-hoc and by-design interpretable XAImethods to provide a
thorough understanding of the sensitivity to distribution shifts of CNNs deployed for mapping PV
systems from orthoimagery.

3. Data

To analyze the effect of distribution shifts on deep learning models in the context of the remote sensing of
rooftop PV systems, we rely on the training dataset Base de données d’apprentissage profond pour les
installations photovoltaiques (Database for deep learning applied to PV systems, BDAPPV, Kasmi et al.,
2023c). BDAPPV contains nearly 50,000 annotated images of PV systems. A very interesting feature of
our case study is that the database contains annotations for 28,000 unique PV systems in France and
neighboring countries. The training images were also retrieved from two different sources: satellite
images coming from the Google Earth Engine (hereafter referred to as “Google,” Gorelick et al., 2017)
and aerial images coming from the IGN (IGN, 2024), the French public operator for geographic
information. We have annotations for about 28,000 Google images and 17,000 IGN images. Both
providers overlap, meaning we have two annotations for about 7,000 individual PV systems. The dataset
is nearly balanced. We refer the reader to Kasmi et al., 2023c for more details regarding the dataset’s
characteristics. Figure 1 presents some samples coming fromBDAPPV.We refer the reader to Section 4.1
to understand how we used BDAPPV to disentangle the different sources of distribution shifts.

4. Methods

We aim to explain why convolutional neural networks (CNNs) applied to detect PV panels on orthoimages
are sensitive to distribution shifts. We first construct a benchmark to isolate the effect of the three main
instances of distribution shifts onorthoimagery highlighted byTuia et al., 2016andMurray et al., 2019using
the BDAPPV dataset (see Section 4.1 for more details). These instances include the variability in the
geographic location, varying acquisition conditions, and the varying ground sampling distance (GSD).

After quantifying the respective impact on prediction accuracy—measured by the F1 score—we
leverage two XAI approaches to understand why these shifts affect the performance. Our working

Figure 1. Examples of images of the same PV panels but with different providers and acquisition dates
(Up Google, down: IGN).

e22-6 Gabriel Kasmi et al.

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.13


hypothesis is that analyzing the model’s prediction in terms of scales can help us understand why the
model is sensitive to distribution shifts. Indeed, scales are located in space and, for each location,
correspond to a dyadic partition of the frequency space. Therefore, given each location, we can identify
which frequency ranges the model relies on. On the other hand, frequencies are unevenly affected by
distribution shifts (for instance, high frequencies are more fragile, Chen et al., 2022). So, scales enable us
to assess whether themodel focuses on the PV panel tomake a prediction andwhich frequencies it focuses
on at this location. Using decomposition in terms of scale is particularly well suited in the case of remote
sensing images since the scales, expressed in pixels on images, are indexed in meters and can thus point
towards actual elements depicted in the images.

We combine two complementary approaches to explain the model’s decision. Both of these approaches
are grounded in the wavelet theory. On the one hand, we leverage a by-design interpretable model, the
Scattering transform (Bruna andMallat, 2013, introduced in Section 4.2.2). We compare the predictions of
this model—which are intrinsically interpretable—with those of CNN to see when the predictions are the
same and when they differ. On the other hand, we decompose the decision of the model using a post-hoc
explainability method, the wavelet scale attribution method (WCAM, Kasmi et al., 2023b), which is a post-
hoc explainability method to isolate the important scales in the predictions of our black-box CNN model.

Finally, based on our findings, we propose a data augmentation method to improve the robustness of
CNNs, compare our approach with popular domain adaptation methods, and draw some conclusions
regarding the choice of image data.

4.1. Disentangling the sources of distribution shifts on orthoimagery

BDAPPV features images of the same installations from two providers and records the approximate
location of the PV installations. Using this information, we can define three test cases to disentangle the
distribution shifts that occur with remote sensing data: the GSD, the acquisition conditions, and the
geographical variability. Natively, our dataset disentangles the effect of the spatial shift, thanks to Google
images being roughly geolocalized. Both the resolution and acquisition conditions vary when shifting
from Google to IGN images. To disentangle the two sources of shifts, we downsampled the Google
images to a GSD of 0.2 m/pixel to match the GSD of the IGN images. We chose not to upsample the IGN
images to a GSD of 0.1 m/pixel as it would require adding information to the images and making
additional assumptions regarding the method used to carry out the super-resolution task.

We train a ResNet-50 model (He et al., 2016) on Google images downsampled at 0.2 m/pixel of
resolution and evaluate it on three datasets: a dataset with Google images at their native 0.1 m/pixel GSD
(“Google 0.1 m/pixel”), the IGN images with a native 0.2 m/pixel GSD (“IGN”) and Google images
downsampled at 0.2 m/pixel located outside of France (“Google Spatial Shift”). We add the test set to
record the test accuracy without distribution shift (“Google baseline”). We only do random crops,
rotations, and ImageNet normalizations (i.e., with a mean of [0.485, 0.456, and 0.406] and a standard
deviation of [0.229, 0.224, and 0.225]). Figure 2 plots examples of the different test images to disentangle
the effects of distribution shifts. The baseline and IGN images represent the same panel at the same spatial
resolution. The Google 0.1 m/pixel depicts the same scene but with the native resolution of Google
images. Finally, the Spatial shift test set contains images from outside of France.

4.2. Space-scale decomposition of a model’s decision process

4.2.1. Background: the wavelet transform of an image
Motivation and definition. We propose to analyze the decision process of an off-the-shelf CNN model
through the lenses of space-scale or wavelet decomposition. Wavelets are a natural tool to decompose an
image into scales while maintaining local analysis in space: they provide a single space-scale decom-
position. As scales are indexed in terms of actual distances on the ground, we can directly identify the
important objects contributing to a model’s decision by studying the important scales. In appendix A, we
provide further evidence of the limitation of “traditional” feature attribution methods for explaining the

Environmental Data Science e22-7

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.13


false detection of deep learning models in our use case. Figure 3 illustrates the objects that can be found at
different scales of an orthoimage.

A wavelet is an integrable function ψ ∈L2 ℝð Þ with zero average, normalized, and centered around
0. Unlike a sinewave, a wavelet is localized in space and in the Fourier domain. This implies that dilatations
of thiswavelet enable to scrutinize different scales, while translations enable to scrutinize spatial location. In
other words, scales correspond to different spatial frequency ranges or spectral domains.

To compute an image’s (continuous) wavelet transform (CWT), one first defines a filter bank D from
the original wavelet ψ with the scale factor s and the 2D translation in space u. We have

D¼ ψs,u xð Þ¼ 1ffiffi
s

p ψ
x�u
s

� �� �
u∈ℝ2, s≥ 0

, (1)

The computation of the wavelet transform of a function f ∈L2 ℝð Þ at location x and scale s is given by

W fð Þ x,sð Þ¼
Z +∞

�∞
f uð Þ 1ffiffi

s
p ψ∗ x�u

s

� �
du, (2)

which can be rewritten as a convolution (Mallat, 1999). Computing the multi-level decomposition of f
requires applying Equation 2 J times, with 1≤ s≤ J. J denotes the number of levels of decomposition. For
each scale, the translation in space u corresponds to the orientations at a given level.

Mallat (1989) showed that one could implement the multi-level dyadic decomposition of the discrete
wavelet transform (DWT) by applying a high-pass filter H to the original signal f and subsampling by a
factor of two to obtain the detail coefficients and applying a low-pass filterG and subsampling by a factor
of two to obtain the approximation coefficients. Iterating on the approximation coefficients yields amulti-
level transform where the jth level extracts information at resolutions between 2j and 2j�1 pixels. The
detail coefficients can be decomposed into various rotations (usually horizontal, vertical, and diagonal)
when dealing with 2D signals (e.g., images).

Figure 2. Test images on which a model trained on Google images (downsampled to 0.2 m/pixel of GSD,
“Google baseline”) is evaluated. “Google 0.1 m/pixel” corresponds to the source Google image before
downsampling and evaluates the effect of the varying image resolutions. “Google Spatial Shift”
corresponds to Google images taken outside of France. “IGN” corresponds to images depicting the same
installations as Google baseline but with a different provider.
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Interpreting the wavelet transform of an image. Figure 4 illustrates how to interpret the (two-level)
wavelet transform of an image. Reading is the same for any multi-level decomposition. The right
image plots the two-level dyadic decomposition of the original image on the left. Following this
transform, the localization on the image highlighted by the red polygon can be decomposed into six
detail components (marked yellow and blue) and one approximation component (marked pink). Each
detail component has three directions: horizontal, vertical, and diagonal. The yellow components
correspond to details at the 1–2 pixel scale, and the blue components to the details at the 2–4 pixel
scale. For each location, the wavelet transform summarizes the information in the image at this scale
and location.

Figure 3. Decomposition of a PV panel into scales.

Horizontal

DiagonalVertical

Figure 4. Image and associated two-level dyadic wavelet transform with indications to interpret the
wavelet transform of the image. “Horizontal,” “diagonal,” and “vertical” indicate the direction of the
detail coefficients. The direction is the same at all levels.
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4.2.2. By design interpretable XAI method: the Scattering transform
The Scattering transform (Bruna and Mallat, 2013) is a deterministic feature extractor. CNNs and the
Scattering transform share the same multi-level architecture, where the previous layer’s output is passed
onto the next after a nonlinearity is applied. The nonlinearities in a CNN are generally rectified linear units
(ReLU), whereas in the Scattering transform, it is a modulus operation. Unlike CNNs, whose kernel
coefficients are learned during training, the coefficients of the Scattering transform are fixed. Bruna and
Mallat (2013) showed that the Scattering transform computes representations from an input image that
share the same properties of translational invariance as the representations computed with a CNN. The
advantage of the Scattering transform is that as filters are fixed, we can know precisely what information
they extract from the input image. Figure 5 summarizes the feature extraction process of the Scattering
transform.

The input image x is downsampled, and a wavelet filter ϕ is applied in J directions. The wavelet
coefficients at that scale are retrieved (black arrows), and the image is passed onto the next layer (blue
arrows). As the depth increases, the spatial extent covered by the filters decreases. At each spatial location,
one takes the modulus of the wavelet transform to compute a scale-invariant representation that indicates
the amount of “energy” in the image at this scale and localization.

The Scattering transform is parameterized by the numberm of layers and the number J of orientations.
We have a total ofmJ +m2J J�1ð Þ=2 coefficients. At the end of the decomposition, the features, i.e., the
scattering coefficients, are flattened into a single vector of size mJ +m2J J�1ð Þ=2. We can identify to
which scale, location, and orientation on the input image this feature corresponds.

We implement three variants of the Scattering transform with depths m varying from one to three
levels. Bruna and Mallat (2013) stated that first-order coefficients were insufficient to discriminate
between two very different images but that coefficients of order m¼ 2 could. We consider J¼ 8
orientations. We stack the scattering coefficients into a vector of dimension mJ +m2J J�1ð Þ=2, akin

Figure 5. A scattering propagatorUJ applied to x computes eachU λ1½ �x¼ ∣x⋆ψλ1 ∣ and outputs SJ 0=½ �x¼
x⋆ϕ2J (black arrow). Applying UJ to each U λ1½ �x computes all U λ1,λ2½ �x and outputs SJ λ1½ � ¼U λ1½ �⋆ϕ2J
(black arrows). Applying UJ iteratively to each U p½ �x outputs SJ p½ �x¼U p½ �x⋆ϕ2J (black arrows) and
computes the next path layer. Figure borrowed fromBruna andMallat, 2013. Note: In the image, the input
x corresponds to f and λ¼ 2jr is a frequency variable corresponding to the jth scale with r rotations.
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to the penultimate layer of a CNN.We train a linear classifier on this feature vector. Our implementation of
the Scattering transform is based on the Python library Kymatio (Andreux et al., 2020).

4.2.3. Post-hoc XAI method: the wavelet scale attribution method (WCAM)
Traditional feature attribution methods (Petsiuk et al., 2018; Selvaraju et al., 2020; Simonyan and
Zisserman, 2015) highlight the important areas for the prediction of a classifier in the pixel (spatial)
domain. The WCAM (Kasmi et al., 2023b) generalizes attribution to the wavelet (space-scale domain).
The WCAM provides us with two pieces of information: where the model sees and what scale it sees at
this location. The decomposition of the prediction in terms of scales points towards actual elements on the
input image since orthoimagery scales are indexed in meters. For example, on Google images, details at
the 1–2 pixel scale correspond to physical objects with a size between 0.1 and 0.2 m on the ground. Thus,
we know what the model sees as a panel; we can interpret it and assess whether it is sensitive to varying
acquisition conditions. We refer the reader to appendix B or to Kasmi et al., 2023b for more details on the
computation of the WCAM.

Reading a WCAM. Figure 6 presents an example of an explanation computed using the WCAM. On
the right panel, we can see the important areas in the model prediction highlighted in the wavelet domain.
On the left panel, we can see the spatial localization of the important components. We can see two main
spatial locations: the center of the image, which depicts the PV panel, and the bottom left, which depicts a
pool. Disentangling the scales, we can see that the PV panel’s importance spreads across three scales
(orange arrows), while the pool is only important at the 4–8 pixel scale. This underlines that the model
focuses on the PV panel because it sees details ranging from small details in the PVmodules to the cluster
of modules.

4.3. Improving the robustness through implicit regularization

Improving the robustness to noise and scale perturbations. Since we know that varying acquisition
conditions induce perturbations which primarily affect high-frequency components (i.e., the finest scales,
Lone and Siddiqui, 2018, we primarily focus on implicit regularization and more precisely data
augmentations. Indeed, data augmentation is sufficient to enforce invariance to alterations in the
frequency domain. Besides, they are easier to implement for deep learning practitioners and do not
require having access to samples from the target domain. For the sake of completeness, we compare our
results with explicit regularization techniques. We evaluate popular data augmentation methods to

Scale size (px): > 8 4-8 2-4 1-2
Figure 6. Decomposition in the wavelet domain of the important regions for a model’s prediction with
the WCAM.
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improve the robustness of classification models to image corruptions (Cubuk et al., 2019; Cubuk et al.,
2020; Geirhos et al., 2019; Hendrycks et al., 2020, 2022). We consider the AugMix method (Hendrycks
et al., 2020) and the recently-proposed RandAugment (Cubuk et al., 2020) and AutoAugment (Cubuk
et al., 2019) methods. We refer the reader to appendix D.1 for a detailed presentation of these methods.

Proposed data augmentationmethods.As a baseline, we propose blurring the input image and refer to
this method as Blurring. We apply a nonrandom Gaussian blur to the image. The value is set by
comparing visually Google and IGN images and trying to remove details from Google images that are
not visible on IGN images. After a manual inspection, we set the blur level to discard the details at 0.1–0.2
m scale from the image. It corresponds to a blurring value σ¼ 2: in the ImageFilter.Gaussian-
Blurmethod of the Python Imaging Library (PIL). Our proposedmethod consists of combining blurring,
which removes the small-scale details of the imagewith a random perturbation of thewavelet transform of
the image. We randomly set some wavelet coefficients to 0 sand reconstructed the image from its
perturbed coefficients. The perturbation is done across all scales, and the set of coefficients set to 0 is
determined using uniform sampling. This results in a random perturbation that removes information for
some precise scales and locations. We then reconstruct the image from its perturbed wavelet coefficients.
For each call, 20% of the coefficients are canceled. This value balances between the loss of information
and the input perturbation. We perturb each color channel independently. The wavelet perturbation aims
to disrupt information at specific scales, as it can happen with varying acquisition conditions. The
resulting data augmentation method is referred to as Blurring + Wavelet perturbation (WP). Figure 7
presents examples of perturbed images using our method.

Domain adaptation. We complement our analyses by comparing our approach with popular domain
adaptation techniques. These techniques are more demanding as unlabeled data from the target domain is

Figure 7. Illustration of the effect of our data augmentation method on a sample of images.
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required. We refer the reader to appendix E for a discussion of the results obtained with the domain
adaptation techniques.

5. Results

5.1. Deep models are mostly sensitive to varying acquisition conditions, leading to an increase in the
number of false negatives

Table 1 shows the results of the decomposition of the effect of distribution shifts into three components:
resolution, acquisition conditions, and spatial shift. We can see that the F1 score drops the most when the
model faces new acquisition conditions. The second most significant impact comes from the change in
the resolution. However, the performance drop remains relatively small compared to the effect of the
acquisition conditions (which can also be assimilated to variations in the image quality). In our
framework, there is no evidence of an effect of geographical variability once we isolate the effects of
acquisition conditions and resolution. This effect is probably underestimated, as images of our dataset that
are not in France are near France. However, the effect of the acquisition conditions is sizeable enough to
seek methods for addressing it.

5.2. The Scattering transform shows that clean, fine-scale features are transferable but poorly
discriminative

Discriminative and transferable features. In the following, we distinguish between two kinds of features:
the discriminative and the transferable features. Discriminative features enable the model to discriminate
well between PVand non-PV images. Relying on discriminative features ensures a low number of false
positives. On the other hand, transferable features correspond to features that generalize well across
domains. If a model relies on transferable features, its performance should remain even across domains.
Ideally, we would like a model to rely on discriminative and transferable features.

Accuracy of the Scattering transform.Table 2 presents the accuracy results of the Scattering transform
and compares it with a random classifier and the ERM (which is the same model as the one evaluated in
Table 1). We can see that the performance on the source domain lags behind the performance of the CNN,
but the Scattering transform generalizes better to IGN than the CNN. However, this comes at the cost of a

Table 1. F1 Score and decomposition in true positives, true negatives, false positives, and false
negatives rates of the classification accuracy of a CNN model trained on Google images (Google
baseline) and tested on the three instances of distributions shifts: GSD (Google 0.1 m/pixel), the

geographical variability (Google Spatial Shift) and the acquisition conditions (IGN).

Shift instance
F1 score

(↑)
True positive

rate (↑)
True negative

rate (↑)
False positive

rate (↓)
False negative

rate (↓)

None
(Google baseline)

0.98 0.99 0.98 0.02 0.01

GSD
(Google 0.1 m/pixel)

0.89 0.81 1.00 0.00 0.19

Geography
(Google spatial shift)

0.98 0.99 0.98 0.02 0.01

Acquisition
conditions (IGN)

0.46 0.32 0.95 0.03 0.68
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high false positive rate. Table F2 in appendix F.2 presents similar accuracy results for variants of the
Scattering transform model in the depth and number of features.

Implications for the CNN. We know which features the Scattering transform relies on. It leverages
information at the two-pixel scale after downsampling the input image. In other words, the Scattering
transformmakes predictions based on clean features at the two-pixel scale. Therefore, we can deduce that
these features are transferable, as the performance remains even across datasets, but not very discrim-
inative as the false positives rate is high (across both datasets). Therefore, the analysis of the errors of the
Scattering transform and the CNNhighlights a potential trade-off between transferable and discriminative
features

On the other hand, the CNN should rely on discriminative features located at coarser scales than 8
pixels, and on noisy features. In Section 5.3, we investigate how the distortion of the input image’s coarse
scales impacts the CNN’s decision process and the shift in its predicted probability. In Section 5.4.1, we
discuss how noise in input images affects the generalization ability of the CNN.

5.3. CNNs are sensitive to the distortion of coarse-scale discriminative features

Predicted probability shifts. The CNN outputs a predicted probability of a PV panel on the input image.
When evaluating the CNN on the same scene from two providers, we compute predicted probability shift
Δp¼ ∣pign�pgoogle∣ when the model trained on Google is evaluated on IGN images. pgoogle denotes the
predicted probability on Google images and pign on IGN images. By construction, Δp∈ 0,1½ �. If Δp¼ 0,
the predicted probability did not change when changing the provider. On the other hand, ifΔp! 1, then it
means that the model made a different prediction solely because of the new acquisition condition.

Correlations between the probability shift and low-scale similarity of the images. For all images in
our test set (n¼ 4321), we compute the similarity between the low-scale components of the input image
across the two domains. This enables us to assess how similar images depicting the same scene on Google
and IGN are, with respect to their low-scale components, i.e., components larger than 8 pixels, which
correspond to the approximation coefficients of a 3-level dyadic decomposition of the image.

On the other hand, we compute the predicted probability shift for each image across two domains. The
predicted probability shift indicates how much the model’s prediction changed when facing the IGN
image.

Suppose the CNN is indeed sensitive to low-scale perturbations of the input image. In that case, we
expect a correlation between the dissimilarity between the approximation coefficients (which only contain

Table 2. F1 Score and decomposition in true positives, true negatives, false positives, and false
negative rate of the classification accuracy of the Scattering Transform model trained on Google

images and deployed on IGN images. The best results are bolded.

Dataset Model
F1 score

(↑)
True positive

rate (↑)
True negative

rate (↑)
False positive

rate (↓)
False negative

rate (↓)

Google
baseline

Scattering
transform

0.57 0.89 0.10 0.56 0.48

CNN (ERM) 0.98 0.99 0.98 0.02 0.01
Random

classifier
0.47 0.50 0.50 0.55 0.45

IGN Scattering
transform

0.59 0.54 0.31 0.62 0.54

CNN (ERM) 0.46 0.32 0.95 0.03 0.68
Random

classifier
0.47 0.50 0.50 0.56 0.44
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the low-scale components of the image) and the predicted probability shift (which indicates whether the
model changed its prediction once faced with a new image).

We evaluate the similarity between the approximation coefficients using two metrics: the Structural
similarity index measure (SSIM, Wang et al., 2004) and the Euclidean distance between the approxima-
tion coefficients. The SSIM takes values between �1 and 1, where 1 indicates perfect similarity,
0 indicates no similarity, and �1 indicates perfect anti-correlation. On the other hand, the Euclidean
distance takes positive values; the greater the distance, the greater the dissimilarity between the images.

We evaluate the correlation between the similarity of the approximation coefficients and themagnitude
of the probability shift using the Pearson correlation coefficient (PCC, Pearson and Galton, 1895). The
PCC is a statistical measure that quantifies the strength and direction of a linear relationship between two
continuous variables. The PCC value ranges from �1 to 1, where �1 indicates a perfect negative linear
relationship, 1 is a perfect positive linear relationship, and 0 is no linear relationship (the variables are
uncorrelated). Given two random variables X and Y, the PCC is given by

r¼Cov X,Yð Þ
σXσY

,

where Cov X,Yð Þ denotes the covariance between X and Y and σ is the standard deviation. In addition to
computing the PCC, we report its p-value to assess whether the reported value significantly differs from
0, thus rejecting the hypothesis that the variables are uncorrelated.

As expected, we obtain a negative Pearson correlation coefficient equal to�0.41 (with a p-value < 10�5)
between the input images’SSIMs and the predicted probability shift. Using the Euclidean distance, we obtain
a correlation coefficient of 0.250 (p< 10�5). These results back the idea that theCNN is sensitive to low-scale
perturbations of the input image, which results in a shift in the predicted probability.

Visualization of the model’s response with the WCAM. The WCAM disentangles the important scales
in amodel’s prediction. It enables us to seewhich scaleswere disrupted.On Figure 8,we present an example of
an image that was initially identified as a PV panel but turned out to be no longer recognized on IGN images.

We can see that in both cases, the approximation details are important in the model’s prediction. The
model responds to distortions at this scale by no longer focusing on a single area. Indeed, the model
weights more components located at the 2–4 and 4–8 pixel scale (orange circles), which were not as
important initially. At the level of the perturbed scales, we can also witness that the model is disrupted by
factors lying next to the PV panel (green circle). We supply more examples of such cases in appendix G
and discuss the quantitative analysis of this result in appendix C.

5.4. Pathways towards improving the robustness to acquisition conditions

5.4.1. Blurring and wavelet perturbation improve accuracy
Table 3 reports the results of our data augmentation techniques and compares themwith existingmethods.
We can see that augmentations that explicitly discard small scales (high frequencies, i.e. Blurring and
Blurring + WP) information perform the best. However, the blurring method sacrifices the recall (which
drops to 0.6) to improve the F1 score. In Table 3, this can be seen by the increase in false positives rate.
Therefore, this method is unreliable for improving the robustness to acquisition conditions. We recall that
the true positive rate and the false negative rate divide the number of true positives (resp. false negatives)
by the number of positive samples. Similarly, the true negative and false positive rates divide the number
of true negatives (resp. false positive) by the number of negative samples in the dataset. The true positive
rate corresponds to the recall, and the true negative rate to the specificity.

On the other hand, adding wavelet perturbation (WP) contributes to restoring the accuracy of the
classification model without sacrificing the precision or the recall. While the drop in accuracy is still
sizeable compared to the Oracle, the gain is consistent compared to other data augmentation techniques.
Compared to RandAugment, the best-benchmarked method, our Blurring + WP is closer to the targets
regarding true positives and true negatives andmakes lower false negatives. This experiment shows that it
is possible to consistently and reliably improve the robustness of acquisition conditions using a data
augmentation technique, which does not leverage any information on the IGN dataset.
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Figure 8. Analysis with the WCAM of the CNNs prediction on an image no longer recognized as a PV
panel.

Table 3. F1 Score and decomposition in true positives, true negatives, false positives, and false
negatives rate for models trained on Google with different mitigation strategies. Evaluation on IGN
images. The Oracle corresponds to a model trained on IGN images with standard augmentations. Best
results are bolded, second-best results are underlined, values highlighted in red indicate the worst

performance, and values in orange indicate the second-to-last worst performance

Model
F1 score

(↑)

True
positive
rate (↑)

True
negative
rate (↑)

False
positive
rate (↓)

False
negative
rate (↓)

Oracle 0.88 0.96 0.82 0.18 0.04
Augmentations None (ERM) 0.44 0.30 0.96 0.04 0.70

AutoAugment 0.46 0.31 0.96 0.04 0.69
AugMix 0.48 0.33 0.96 0.04 0.67
RandAugment 0.51 0.37 0.94 0.06 0.63
Blurring (Ours) 0.74 0.98 0.49 0.51 0.02
Blurring + WP (Ours) 0.58 0.47 0.87 0.13 0.53
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5.4.2. On the role of the input data: towards some practical recommendations regarding the training data.
Generalizability of the feature representation. Our results show that lowering the reliance on high-
frequency content in the image improves generalization. This content is located on the 0.1-0.2m scale and
only appears on Google images. In Table 4, we flip our experiment to study how a model trained on IGN
images generalizes toGoogle images. Results show that themodel trained on IGNgeneralizes better to the
downscaled Google images than the opposite. This result further supports the idea that higher resolution is
not necessarily better for good robustness to acquisition conditions.

Reliability trade-offs. The training data is often considered as given in many practical settings,
especially given the high cost of annotating samples. This motivates the use of domain adaptation
techniques, such as those described in this work. From Tables 3 and E1 in appendix E, it should be noted
that the F1 score can be misleading regarding how the different methods attenuate the effects of the
distribution shifts. In particular, it should be noted that Blurring achieves a very high F1 score at the
expense of the number of false positives. On the other hand, the domain adaptation method Wasserstein
Distance Guided Representation Learning (WDGRL) exhibits a relatively false negative rate. Depending
on the task at hand, different methods can be preferred. In the case of the remote sensing of rooftop PV
systems, false negatives can be an issue, thus leading to favor solutions such as Blurring or Adversarial
Discriminative Domain Adaptation (ADDA), even though we know that these methods generate a lot of
false detections.

6. Discussion

6.1. Conclusion

This work aims to explain why convolutional neural networks (CNNs) applied to detect PV panels on
orthoimages are sensitive to distribution shifts. We first set up an experiment to disentangle the effects of
the three main distribution shifts occurring in remote sensing (Murray et al., 2019; Tuia et al., 2016),
namely geographical variability, varying acquisition conditions, and varying resolution. We showed that
the varying acquisition conditions contribute significantly to the observed performance drop. To explain
why this drop occurs, we leverage space-scale analysis to disentangle the different scales from the input
images. We combine two types of explainable AI methods grounded in the wavelet decomposition of the
input images to show that the CNN relies on noisy features (at the finest scales) and features that are not
very well transferable across domains (at the coarsest scales).

We then introduced a data augmentation technique to improve the model’s robustness to distortions of
the coarse-scale features and remove noise from the fine-scale features. We compare this method against
popular data augmentation techniques and show that our approach outperforms these baselines. We also
compared our approach with more demanding domain adaptation techniques and showed that our
approach remains competitive. We then discussed several practical takeaways of this study for the
training or the choice of the training data for the initial training of the deep learning model.

Broader impact.Mapping rooftop PV systems is a recurring issue inmany countries, and a lot of actors
interested in such rooftop PV registries require reliable data (De Jong et al., 2020; Kasmi, 2024). While
offering the possibility to quickly and cheaply map PV systems over vast areas, current methods for
mapping rooftop PV installations lack reliability owing to their poor generalization abilities beyond their

Table 4. F1 Score and true positives, true negatives, false positives, and false negatives rates.
Evaluation computed on the Google dataset. ERM was trained on Google and Oracle on IGN images

Model
F1 Score

(↑)
True positive

rate (↑)
True negative

rate (↑)
False positive

rate (↓)
False negative

rate (↓)

ERM (Vapnik, 1999) 0.98 0,98 0.98 0,02 0,02
Oracle (ERM trained

on IGN)
0.91 0,94 0,89 0,11 0,06
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training dataset (De Jong et al., 2020). This work addresses this gap and thus demonstrates that remote
sensing of PV installations is a reliable way to construct registries of rooftop PV systems.

The methodology introduced in this work, which consists of first isolating the main source of
performance drop among possible types of distribution shifts, then leveraging XAI methods to grasp
better the impact of these shifts on the model’s predictions to finally highlight how invariance to these
shifts can be mitigated can be replicated to other case studies.

6.2. Limitations and future works

Further discussion of the geographical variability.Our training data was limited to a narrow area around
France. Therefore, we suspect the effect of the geographical variability to be underestimated. For instance,
Freitas et al., 2023 showed that fine-tuning a model with data that is not far from the target area (e.g.,
France when the goal is to map PV systems in Portugal) enables accuracy gains compared to directly
transferring a model trained over the United States. It could be interesting to study how the performance
varies with the distance between the training data and the target mapping area once all other factors
(acquisition conditions, resolution) are accounted for.

Extensions to other models. Over the last couple of years, foundation models (Bommasani et al.,
2022) have been redefining the standards in deep learning. These very large models, trained on large data
corpora, have shown remarkable performance for many challenging tasks, especially for text (Brown
et al., 2020) and image (Rombach et al., 2022) generation. These models are used for more conventional
and specialized tasks such as image segmentation (Kirillov et al., 2023) and achieve superior performance
to conventional approaches while only requiring a few samples to learn their new task. Extending this
benchmark and evaluating the performance of foundation models fine-tuned for segmenting PV panels,
such as Yang et al., 2024, under distribution shifts could be interesting.

Application to other case studies. The key ingredients to replicate our methodology are the disen-
tanglement of the effect of the different types of shifts occurring in the case study at hand and the
combination of various XAI methods to build a relevant intuition regarding the characterization of the
feature representation of the model, in terms of semantic relevance and in terms of robustness to the types
of shifts that are recurring in the case study. Introducing new domain adaptation methods should not be
prioritized over thorough decomposition of the distribution shifts and analysis of their effects.

Open peer review. To view the open peer review materials for this article, please visit http://doi.org/10.1017/eds.2025.13.

Acknowledgments. The authors would like to thank Reviewer 1 for the detailed comments and feedback on our manuscript, which
significantly contributed to improving the quality and depth of this work.

Author contribution. Conceptualization, Gabriel Kasmi; Formal analysis, Gabriel Kasmi; Funding acquisition, Laurent Dubus;
Investigation, Gabriel Kasmi; Methodology, Gabriel Kasmi; Project administration, Laurent Dubus; Software, Gabriel Kasmi;
Supervision, Philippe Blanc, Yves-Marie Saint-Drenan and Laurent Dubus; Validation, Gabriel Kasmi; Writing—original draft,
Gabriel Kasmi; Writing – review & editing, Gabriel Kasmi, Philippe Blanc, Yves-Marie Saint-Drenan Laurent Dubus. All authors
approved the final submitted draft.

Competing interests. The authors declare no conflicts of interest.

Data availability statement. Code for replicating the results of this paper can be found at: https://github.com/gabrielkasmi/
robust_pv_mapping. Model weights can be found at: https://zenodo.org/records/12179554.

Funding statement. This research was supported by a grant from the ANRT (CIFRE funding 2020/0685) and was funded by the
French transmission system operator RTE.

Ethical standard. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

References
Achtibat R, Dreyer M, Eisenbraun I, Bosse S, Wiegand T, Samek W and Lapuschkin S (2022) From “Where” to “What”:

Towards human-understandable explanations through concept relevance propagation. [arXiv:2206.03208 [cs]]. https://doi.
org/10.48550/arXiv.2206.03208

e22-18 Gabriel Kasmi et al.

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

http://doi.org/10.1017/eds.2025.13
https://github.com/gabrielkasmi/robust_pv_mapping
https://github.com/gabrielkasmi/robust_pv_mapping
https://zenodo.org/records/12179554
https://arxiv.org/abs/2206.03208
https://doi.org/10.48550/arXiv.2206.03208
https://doi.org/10.48550/arXiv.2206.03208
https://doi.org/10.1017/eds.2025.13


Alipour M, Salim H, Stewart RA and Sahin O (2020) Predictors, taxonomy of predictors, and correlations of predictors with the
decision behaviour of residential solar photovoltaics adoption: A review. Renewable and Sustainable Energy Reviews 123,
109749. https://doi.org/10.1016/j.rser.2020.109749

Andeol L, Fel T, de Grancey F and Mossina L (2023) Confident object detection via conformal prediction and conformal risk
control: An application to railway signaling. In Papadopoulos H, Nguyen KA, Boström H and Carlsson L (eds.), Proceedings of
the Twelfth Symposium on Conformal and Probabilistic Prediction with Applications, Vol. 204. PMLR, pp. 36–55

AndreuxM,Angles T,Exarchakis G,Leonarduzzi R,Rochette G,Thiry L,Zarka J,Mallat S,Andén J,Belilovsky E,Bruna
J, Lostanlen V, Chaudhary M, Hirn MJ, Oyallon E, Zhang S, Cella C and Eickenberg M (2020) Kymatio: Scattering
transforms in python. Journal of Machine Learning Research 21(60), 1–6.

Arjovsky M, Bottou L, Gulrajani I and Lopez-Paz D (2019) Invariant risk minimization. arXiv preprint arXiv:1907.02893.
Arjovsky M, Chintala S and Bottou L (2017). Wasserstein Generative Adversarial Networks. In Precup, Doina and Teh, Yee

Whye (eds.), Proceedings of the 34th International Conference on Machine Learning, Vol 70. PMLR.
Arnaudo E, Blanco G, Monti A, Bianco G, Monaco C, Pasquali P and Dominici F (2023) A comparative evaluation of deep

learning techniques for photovoltaic panel detection from aerial images. IEEE Access, 1–1. https://doi.org/10.1109/
ACCESS.2023.3275435

Ben-David S, Blitzer J, Crammer K and Pereira F (2006) Analysis of representations for domain adaptation. In Schölkopf B,
Platt J and Hoffman T (eds.), Advances in Neural Information Processing Systems, Vol. 19. MIT Press.

Bommasani R, Hudson DA, Adeli E, Altman R, Arora S, von Arx S, Bernstein MS, Bohg J, Bosselut A, Brunskill E,
Brynjolfsson E, Buch S,Card D,Castellon R,Chatterji N,Chen A,Creel K,Davis JQ,Demszky D,… Liang P (2022) On
the opportunities and risks of foundation models. [arXiv:2108.07258 [cs]].

Bouaziz C, El Koundi M and Ennine G (2024) High-resolution solar panel detection in Sfax, Tunisia: A UNet-based approach.
Renewable Energy 121171. https://doi.org/10.1016/j.renene.2024.121171

Brown TB,Mann B, Ryder N, Subbiah M,Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S,
Herbert-Voss A,KruegerG,HenighanT,Child R,RameshA,ZieglerDM,WuJ,Winter C,…Amodei D (2020) Language
models are few-shot learners. [arXiv:2005.14165 [cs]]. https://doi.org/10.48550/arXiv.2005.14165

Bruna J and Mallat S (2013) Invariant scattering convolution networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35(8), 1872–1886. https://doi.org/10.1109/TPAMI.2012.230

Casanova A, Careil M, Verbeek J, Drozdzal M and Romero Soriano A (2021) Instance-Conditioned GAN. In Ranzato M,
Beygelzimer A, Dauphin Y, Liang PS and Vaughan JW (eds.), Advances in Neural Information Processing Systems, Vol. 34.
Curran Associates, Inc, pp. 27517–27529

Chen Y,Ren Q and Yan J (2022) Rethinking and improving robustness of convolutional neural networks: A shapley value-based
approach in frequency domain. In Koyejo S, Mohamed S, Agarwal A, Belgrave D, Cho K and Oh A (eds.), Advances in Neural
Information Processing Systems, Vol. 35. Curran Associates, Inc, pp. 324–337

CohenTandWellingM (2016)Group equivariant convolutional networks. InProceedings of the 33rd International Conference on
Machine Learning, 2990–2999.

Colas M and Saulnier E (2024). Means-Tested Solar Subsidies (CESifo Working Paper No. 11378). CESifo. https://doi.
org/10.2139/ssrn.4991926

Csurka G (2017) A comprehensive survey on domain adaptation for visual applications. In Csurka G (ed.),Domain Adaptation in
Computer Vision Applications. Springer International Publishing, pp. 1–35. https://doi.org/10.1007/978-3-319-58347-1_1

CsurkaG,Volpi R andChidlovskii B (2021) Unsupervised domain adaptation for semantic image segmentation: a comprehensive
survey. [arXiv:2112.03241 [cs]]. https://doi.org/10.48550/arXiv.2112.03241

Cubuk ED, Zoph B, Mane D, Vasudevan V and Le QV (2019) AutoAugment: Learning augmentation strategies from data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Cubuk ED, Zoph B, Shlens J and Le QV (2020) RandAugment: Practical automated data augmentation with a reduced search
space. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3008–3017.
https://doi.org/10.1109/CVPRW50498.2020.00359

Dardouillet P, Benoit A, Amri E, Bolon P, Dubucq D and Credoz A (2023) Explainability of image semantic segmentation
through SHAP values. In Rousseau J-J and Kapralos B (eds.), Pattern Recognition, Computer Vision, and Image Processing.
ICPR 2022 International Workshops and Challenges. Springer Nature Switzerland, pp. 188–202. https://doi.org/10.1007/978-3-
031-37731-0_19

De Jong T, Bromuri S, Chang X, Debusschere M, Rosenski N, Schartner C, Strauch K, Boehmer M and Curier L (2020).
Monitoring spatial sustainable development: Semi-automated analysis of satellite and aerial images for energy transition and
sustainability indicators. arXiv preprint arXiv:2009.05738.

Fel T,Cadene R,ChalvidalM,CordM,VigourouxD and Serre T (2021) Look at the Variance! efficient black-box explanations
with sobol-based sensitivity analysis. In Ranzato M, Beygelzimer A, Dauphin Y, Liang PS and Vaughan JW (eds.), Advances in
Neural Information Processing Systems, Vol. 34. Curran Associates, Inc, pp. 26005–26014.

FloraM, Potvin C,McGovern A andHandler S (2022) Comparing explanation methods for traditional machine learning models
part 1: An overview of current methods and quantifying their disagreement. [arXiv:2211.08943 [physics, stat]].

Freitas S, SilvaM, Silva E,MarcedduA,MiccoliM,Gnatyuk P,Marangoni L andAmiconeA (2023) An artificial intelligence-
based framework to accelerate data-driven policies to promote solar photovoltaics in Lisbon. Solar RRL, n/a(n/a), 2300597.
https://doi.org/10.1002/solr.202300597

Environmental Data Science e22-19

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1016/j.rser.2020.109749
https://arxiv.org/abs/1907.02893
https://doi.org/10.1109/ACCESS.2023.3275435
https://doi.org/10.1109/ACCESS.2023.3275435
https://arxiv.org/abs/2108.07258
https://doi.org/10.1016/j.renene.2024.121171
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1109/TPAMI.2012.230
https://doi.org/10.2139/ssrn.4991926
https://doi.org/10.2139/ssrn.4991926
https://doi.org/10.1007/978-3-319-58347-1_1
https://arxiv.org/abs/2112.03241
https://doi.org/10.48550/arXiv.2112.03241
https://doi.org/10.1109/CVPRW50498.2020.00359
https://doi.org/10.1007/978-3-031-37731-0_19
https://doi.org/10.1007/978-3-031-37731-0_19
https://arxiv.org/abs/2211.08943
https://doi.org/10.1002/solr.202300597
https://doi.org/10.1017/eds.2025.13


Frimane Â, Johansson R,Munkhammar J, Lingfors D and Lindahl J (2023) Identifying small decentralized solar systems in
aerial images using deep learning. Solar Energy 262, 111822. https://doi.org/10.1016/j.solener.2023.111822

Gal Y (2016) Uncertainty in deep learning. Doctoral dissertation, University of Cambridge.
Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M and Lempitsky V (2016) Domain-

adversarial training of neural networks. The Journal of Machine Learning Research 17(1), 2096–2030.
Geirhos R,Rubisch P,Michaelis C, Bethge M,Wichmann FA. and Brendel W (2019) ImageNet-trained CNNs are biased

towards texture; increasing shape bias improves accuracy and robustness. In International Conference on Learning
Representations.

Golovko V, Kroshchanka A, Bezobrazov S, Sachenko A, Komar M and Novosad O (2018) Development of solar panels
detector. In 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC
S&T), pp. 761–764. https://doi.org/10.1109/INFOCOMMST.2018.8632132

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y (2014) Generative
adversarial nets. InGhahramani Z,WellingM,Cortes C, LawrenceN andWeinbergerKQ (eds.),Advances inNeural Information
Processing Systems, Vol. 27. Curran Associates, Inc.

GorelickN,HancherM,DixonM, Ilyushchenko S,ThauDandMooreR (2017)Google earth engine: Planetary-scale geospatial
analysis for everyone. Remote Sensing of Environment 202, 18–27.

Graziano M and Gillingham K (2015) Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the
built environment. Journal of Economic Geography 15(4), 815–839. https://doi.org/10.1093/jeg/lbu036

Guan H and Liu M (2022) Domain adaptation for medical image analysis: A survey. IEEE Transactions on Biomedical
Engineering 69(3), 1173–1185. https://doi.org/10.1109/TBME.2021.3117407

Gulrajani I and Lopez-Paz D (2021) In search of lost domain generalization. In International Conference on Learning
Representations.

Haegel NM,Margolis R, Buonassisi T, Feldman D, Froitzheim A,Garabedian R,GreenM,Glunz S,Henning H-M,Holder
B, et al (2017) Terawatt-scale photovoltaics: Trajectories and challenges. Science 356(6334), 141–143.

HeK, Zhang X,Ren S and Sun J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778.

Hendrycks D, Mu N, Cubuk ED, Zoph B, Gilmer J and Lakshminarayanan B (2020) AugMix: A simple data processing
method to improve robustness and uncertainty. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26–30, 2020.

Hendrycks D,Zou A,MazeikaM, Tang L,Li B, Song D and Steinhardt J (2022) PixMix: Dreamlike pictures comprehensively
improve safety measures. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
https://doi.org/10.48550/arXiv.2112.05135

Ho J, Saharia C, Chan W, Fleet DJ, Norouzi M and Salimans T (2022). Cascaded diffusion models for high fidelity image
generation. Journal of Machine Learning Research 23(1), Article 47, 33 pages.

HuW,BradburyK,Malof JM,Li B,HuangB, StreltsovA, Sydny FujitaK andHoenB (2022)What you get is not always what
you see—pitfalls in solar array assessment using overhead imagery. Applied Energy 327, 120143. https://doi.org/10.1016/j.
apenergy.2022.120143

IGN (2024) BD ORTHO® | Géoservices. https://geoservices.ign.fr/bdortho
JansenMJW (1999) Analysis of variance designs formodel output.Computer Physics Communications 117(1), 35–43. https://doi.

org/10.1016/S0010-4655(98)00154-4
Kasmi G (2024) Enhancing the reliability of deep learning algorithms to improve the observability of french rooftop photovoltaic

installations. Doctoral dissertation, Université Paris sciences et lettres.
Kasmi G, Dubus L, Saint-Drenan Y-M and Blanc P (2024). Leveraging Artificial Intelligence to Improve the Integration of

Photovoltaic Energy into the Grid. The Transition Institute 1.5. https://doi.org/10.23646/9NEV-PY65
Kasmi G, Dubus L, Saint-Drenan Y-M and Blanc P (2022) Towards unsupervised assessment with open-source data of the

accuracy of deep learning-based distributed PVmapping. In Corpetti T, Ienco D, Interdonato R, PhamM-Tand Lefèvre S (eds.),
Proceedings of MACLEAN: MAChine Learning for EArth ObservatioN Workshop co-located with the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2022), September 18–22,
2022, Grenoble, France, Vol. 3343. CEUR-WS.org.

Kasmi G, Dubus L, Saint-Drenan Y-M and Blanc, P (2023a) Can we reliably improve the robustness to image acquisition of
remote sensing of PV systems? In NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning.

Kasmi G, Dubus L, Saint-Drenan Y-M and Blanc P (2023b) Assessment of the reliablity of a model’s decision by generalizing
attribution to the wavelet domain. In XAI in Action: Past, Present, and Future Applications Workshop at NeurIPS 2023. https://
doi.org/10.48550/arXiv.2305.14979

Kasmi G, Saint-Drenan Y-M, Trebosc D, Jolivet R, Leloux J, Sarr B and Dubus L (2023c) A crowdsourced dataset of aerial
images with annotated solar photovoltaic arrays and installation metadata. Scientific Data 10(1), 59. https://doi.org/10.1038/
s41597-023-01951-4

Kausika BB (2022) GIS4PV: A technological impact assessment of the application of GIS for Photovoltaic Solar Energy. Doctoral
dissertation, Utrecht University. https://doi.org/10.33540/1371

e22-20 Gabriel Kasmi et al.

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1016/j.solener.2023.111822
https://doi.org/10.1109/INFOCOMMST.2018.8632132
https://doi.org/10.1093/jeg/lbu036
https://doi.org/10.1109/TBME.2021.3117407
https://doi.org/10.48550/arXiv.2112.05135
https://doi.org/10.1016/j.apenergy.2022.120143
https://doi.org/10.1016/j.apenergy.2022.120143
https://geoservices.ign.fr/bdortho
https://doi.org/10.1016/S0010-4655(98)00154-4
https://doi.org/10.1016/S0010-4655(98)00154-4
https://doi.org/10.23646/9nev-py65
https://doi.org/10.48550/arXiv.2305.14979
https://doi.org/10.48550/arXiv.2305.14979
https://doi.org/10.1038/s41597-023-01951-4
https://doi.org/10.1038/s41597-023-01951-4
https://doi.org/10.33540/1371
https://doi.org/10.1017/eds.2025.13


Kausika BB,Nijmeijer D,Reimerink I,Brouwer P and LiemV (2021) GeoAI for detection of solar photovoltaic installations in
the Netherlands. Energy and AI 6 100111. https://doi.org/10.1016/j.egyai.2021.100111

Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, Xiao T, Whitehead S, Berg AC, Lo W-Y, Dollár P and
Girshick R (2023) Segment anything. [arXiv:2304.02643 [cs]]. https://doi.org/10.48550/arXiv.2304.02643

Koh PW, Sagawa S,MarklundH,Xie SM,ZhangM,Balsubramani A,HuW,YasunagaM, Phillips RL,Gao I,Lee T,David
E,Stavness I,GuoW,EarnshawB,Haque I,Beery SM,Leskovec J,KundajeA,…LiangP (2021)WILDS:A benchmark of
in-the-wild distribution shifts. In Proceedings of the 38th International Conference on Machine Learning, pp. 5637–5664.

Lapuschkin S,Wäldchen S, Binder A,Montavon G, SamekWandMüller K-R (2019) Unmasking clever hans predictors and
assessing what machines really learn. Nature Communications 10(1), 1–8.

Li P, Zhang H,Guo Z, Lyu S, Chen J, Li W, Song X, Shibasaki R and Yan J (2021) Understanding rooftop PV panel semantic
segmentation of satellite and aerial images for better using machine learning. Advances in Applied Energy 4, 100057. https://doi.
org/10.1016/j.adapen.2021.100057

Lindahl J, Johansson R and Lingfors D (2023) Mapping of decentralised photovoltaic and solar thermal systems by remote
sensing aerial imagery and deep machine learning for statistic generation. Energy and AI 100300. https://doi.org/10.1016/j.
egyai.2023.100300

Lone AH and Siddiqui AN (2018) Noise models in digital image processing. Global Science & Technology 10(2), 63–66.
Lundberg SM and Lee S.-I (2017) A unified approach to interpreting model predictions. In Guyon I, Luxburg UV, Bengio S,

WallachH, FergusR, Vishwanathan S andGarnett R (eds.),Advances in Neural Information Processing Systems, Vol. 30. Curran
Associates, Inc.

Mallat S (1989) A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 11(7), 674–693. https://doi.org/10.1109/34.192463

Mallat S (1999) A Wavelet Tour of Signal Processing. Elsevier.
Malof JM, Bradbury K, Collins LM and Newell RG (2016) Automatic detection of solar photovoltaic arrays in high resolution

aerial imagery. Applied Energy 183, 229–240. https://doi.org/10.1016/j.apenergy.2016.08.191
Malof JM, Li B, Huang B, Bradbury K and Stretslov A (2019). Mapping solar array location, size, and capacity using deep

learning and overhead imagery. CoRR, abs/1902.10895.
Malof JM, Rui Hou, Collins LM, Bradbury K and Newell R (2015) Automatic solar photovoltaic panel detection in satellite

imagery. In 2015 International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1428–1431. https://
doi.org/10.1109/ICRERA.2015.7418643

MayerK,Rausch B,ArltM-L,GustG,WangZ,NeumannD andRajagopal R (2022) 3D-PV-Locator: Large-scale detection of
rooftop-mounted photovoltaic systems in 3D. Applied Energy 310, 118469. https://doi.org/10.1016/j.apenergy.2021.118469

Mayer K,Wang Z,Arlt M-L,Neumann D and Rajagopal R (2020) DeepSolar for Germany: A deep learning framework for PV
system mapping from aerial imagery. In 2020 International Conference on Smart Energy Systems and Technologies (SEST),
pp. 1–6. https://doi.org/10.1109/SEST48500.2020.9203258

Murray J, Marcos D and Tuia D (2019) Zoom in, zoom out: Injecting scale invariance into landuse classification CNNs. In
IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 5240–5243.

Parekh J (2023) Un cadre flexible pour l’apprentissage automatique interprétable: Application à la classification d’images et
d’audio. Theses, Institut Polytechnique de Paris [Issue: 2023IPPAT032].

Parhar P, Sawasaki R, Todeschini A, Reed C, Vahabi H, Nusaputra N and Vergara F (2021) HyperionSolarNet: Solar panel
detection from aerial images. In NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning.

PearsonKandGalton F (1895) VII. Note on regression and inheritance in the case of two parents.Proceedings of the Royal Society
of London 58(347–352), 240–242. https://doi.org/10.1098/rspl.1895.0041

Pena Pereira S,RafieeA andLhermitte S (2024)Automated rooftop solar panel detection through convolutional neural networks.
Canadian Journal of Remote Sensing 50(1), 2363236. https://doi.org/10.1080/07038992.2024.2363236

Petsiuk V, Das A and Saenko K (2018) RISE: Randomized input sampling for explanation of black-box models. [arXiv:
1806.07421 [cs]]. https://doi.org/10.48550/arXiv.1806.07421

Pfungst O (1911) Clever Hans: (The Horse of Mr. Von Osten.) A Contribution to Experimental Animal and Human Psychology.
Holt, Rinehart; Winston.

Pooch EHP, Ballester P and Barros RC (2020) CanWe trust deep learning based diagnosis? The impact of domain shift in chest
radiograph classification. In Petersen J, San José Estépar R, Schmidt-RichbergA, Gerard S, Lassen-Schmidt B, Jacobs C, Beichel
R andMori K (eds.), Thoracic Image Analysis. Springer International Publishing, pp. 74–83. https://doi.org/10.1007/978-3-030-
62469-9_7

Rausch B,Mayer K,Arlt M-L,Gust G, Staudt P,Weinhardt C,Neumann D and Rajagopal R (2020) An enriched automated
PV registry: Combining image recognition and 3D building data. In NeurIPS 2020 Workshop on Tackling Climate Change with
Machine Learning.

Recht B,Roelofs R, Schmidt L and Shankar V (2019) Do imagenet classifiers generalize to imagenet?. In Proceedings of the 36th
International Conference on Machine Learning, pp. 5389–5400.

Rombach R, Blattmann A, Lorenz D, Esser P and Ommer, B (2022) High-resolution image synthesis with latent diffusion
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695.

Environmental Data Science e22-21

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1016/j.egyai.2021.100111
https://arxiv.org/abs/2304.02643
https://doi.org/10.48550/arXiv.2304.02643
https://doi.org/10.1016/j.adapen.2021.100057
https://doi.org/10.1016/j.adapen.2021.100057
https://doi.org/10.1016/j.egyai.2023.100300
https://doi.org/10.1016/j.egyai.2023.100300
https://doi.org/10.1109/34.192463
https://doi.org/10.1016/j.apenergy.2016.08.191
https://doi.org/10.1109/ICRERA.2015.7418643
https://doi.org/10.1109/ICRERA.2015.7418643
https://doi.org/10.1016/j.apenergy.2021.118469
https://doi.org/10.1109/SEST48500.2020.9203258
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1080/07038992.2024.2363236
https://arxiv.org/abs/1806.07421
https://arxiv.org/abs/1806.07421
https://doi.org/10.48550/arXiv.1806.07421
https://doi.org/10.1007/978-3-030-62469-9_7
https://doi.org/10.1007/978-3-030-62469-9_7
https://doi.org/10.1017/eds.2025.13


Ross AS,Hughes MC and Doshi-Velez F (2017) Right for the right reasons: Training differentiable models by constraining their
explanations. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2662–2670.

RTE France (2022) Energy Pathways to 2050 (Tech. Rep.). RTE France.
RussakovskyO,Deng J, SuH,Krause J, Satheesh S,MaS,HuangZ,KarpathyA,Khosla A,BernsteinM,BergAC. andFei-

Fei L (2015) ImageNet large scale visual recognition challenge. International Journal of Computer Vision 115(3), 211–252.
https://doi.org/10.1007/s11263-015-0816-y

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D and Batra D (2017) Grad-CAM: Visual explanations from deep
networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626.
https://doi.org/10.1109/ICCV.2017.74

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D and Batra D (2020) Grad-CAM: Visual explanations from deep
networks via gradient-based localization. International Journal of Computer Vision 128(2), 336–359. https://doi.org/10.1007/
s11263-019-01228-7

Shen J, Qu Y, Zhang W and Yu Y (2018) Wasserstein distance guided representation learning for domain adaptation. In
Proceedings of the AAAI Conference on Artificial Intelligence 32(1). https://doi.org/10.1609/aaai.v32i1.11784

SimonyanKandZissermanA (2015)Very deep convolutional networks for large-scale image recognition. In BengioYandLeCun
Y (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015,
Conference Track Proceedings.

Sudjianto A andZhangA (2021, November) Designing inherently interpretable machine learningmodels. [arXiv:2111.01743 [cs,
stat]].

Sun B and Saenko K (2016) Deep CORAL: Correlation alignment for deep domain adaptation. In Hua G and Jégou H (eds.),
Computer Vision—ECCV 2016Workshops. Springer International Publishing, pp. 443–450. https://doi.org/10.1007/978-3-319-
49409-8_35

Sun J, Mehra A, Kailkhura B, Chen P-Y, Hendrycks D, Hamm J and Mao ZM (2022a) A spectral view of randomized
smoothing under common corruptions: Benchmarking and improving certified robustness. In Avidan S, Brostow G, Cissé M,
Farinella GM and Hassner T (eds.), Computer Vision—ECCV 2022, Vol. 13664. Springer Nature Switzerland, pp. 654–671.
https://doi.org/10.1007/978-3-031-19772-7_38

Sun T, Segu M, Postels J,Wang Y, Van Gool L, Schiele B, TombariF and Yu F (2022b) SHIFT: A synthetic driving dataset for
continuous multi-task Domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 21371–21382.

Thimonier H, Popineau F,Rimmel A,Doan B-L and Daniel F (2024) Comparative evaluation of anomaly detection methods for
fraud detection in online credit card payments. In International Congress on Information and Communication Technology,
pp. 37–50.

Torralba A and Efros AA (2011) Unbiased look at dataset bias. In CVPR 2011, pp. 1521–1528. https://doi.org/10.1109/
CVPR.2011.5995347

Tuia D, Persello C and Bruzzone L (2016) Domain adaptation for the classification of remote sensing data: An overview of recent
advances. IEEE Geoscience and Remote Sensing Magazine 4(2), 41–57. https://doi.org/10.1109/MGRS.2016.2548504

Tuia D, Schindler K,Demir B, Zhu XX,Kochupillai M,Džeroski S, van Rijn JN,Hoos HH,Del Frate F,DatcuM,Markl V.,
Le Saux B., Schneider R andCamps-Valls G (2024) Artificial Intelligence to Advance Earth Observation: A review of models,
recent trends, and pathways forward. IEEE Geoscience and Remote Sensing Magazine, 2–25. https://doi.org/10.1109/
MGRS.2024.3425961

Tzeng E,Hoffman J, SaenkoK andDarrell T (2017) Adversarial discriminative domain adaptation. In 2017 IEEEConference on
Computer Vision and Pattern Recognition (CVPR), pp. 2962–2971. https://doi.org/10.1109/CVPR.2017.316

Vapnik V (1999) The Nature of Statistical Learning Theory. Springer Science & Business Media.
Wang R, Camilo J, Collins LM, Bradbury K and Malof JM (2017) The poor generalization of deep convolutional networks to

aerial imagery from new geographic locations: An empirical study with solar array detection. 2017 IEEE Applied Imagery
Pattern Recognition Workshop (AIPR) 1–8. https://doi.org/10.1109/AIPR.2017.8457965

Wang Z, Arlt M-L, Zanocco C,Majumdar A and Rajagopal R (2022) DeepSolar++: Understanding residential solar adoption
trajectories with computer vision and technology diffusion models. Joule 6(11), 2611–2625. https://doi.org/10.1016/j.
joule.2022.09.011

Wang Z,Bovik AC, Sheikh HR and Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing 13(4), 600–612.

YangR,HeG,Yin R,WangG,Zhang Z,Long Tand PengY (2024)Weakly-semi supervised extraction of rooftop photovoltaics
from high-resolution images based on segment anything model and class activation map. Applied Energy 361, 122964. https://
doi.org/10.1016/j.apenergy.2024.122964

Yu J,Wang Z,Majumdar A and Rajagopal R (2018) DeepSolar: A machine learning framework to efficiently construct a solar
deployment database in the United States. Joule 2(12), 2605–2617. https://doi.org/10.1016/j.joule.2018.11.021

Yuan J, Yang H-HL, Omitaomu OA and Bhaduri BL (2016). Large-scale solar panel mapping from aerial images using deep
convolutional networks. In 2016 IEEE International Conference on Big Data (Big Data), pp. 2703–2708. https://doi.
org/10.1109/BigData.2016.7840915

ZechM and Ranalli J (2020) Predicting PVareas in aerial images with deep learning. In 2020 47th IEEE Photovoltaic Specialists
Conference (PVSC), pp. 0767–0774. https://doi.org/10.1109/PVSC45281.2020.9300636

e22-22 Gabriel Kasmi et al.

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1609/aaai.v32i1.11784
https://arxiv.org/abs/2111.01743
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1007/978-3-031-19772-7_38
https://doi.org/10.1109/CVPR.2011.5995347
https://doi.org/10.1109/CVPR.2011.5995347
https://doi.org/10.1109/MGRS.2016.2548504
https://doi.org/10.1109/MGRS.2024.3425961
https://doi.org/10.1109/MGRS.2024.3425961
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1109/AIPR.2017.8457965
https://doi.org/10.1016/j.joule.2022.09.011
https://doi.org/10.1016/j.joule.2022.09.011
https://doi.org/10.1016/j.apenergy.2024.122964
https://doi.org/10.1016/j.apenergy.2024.122964
https://doi.org/10.1016/j.joule.2018.11.021
https://doi.org/10.1109/BigData.2016.7840915
https://doi.org/10.1109/BigData.2016.7840915
https://doi.org/10.1109/PVSC45281.2020.9300636
https://doi.org/10.1017/eds.2025.13


Zhang C, Bengio S,Hardt M,Recht B and Vinyals O (2017) Understanding deep learning requires rethinking generalization. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track
Proceedings.

Zhang Y, Hong D, McClement D, Oladosu O, Pridham G and Slaney G (2021) Grad-CAM helps interpret the deep learning
models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging. Journal of Neuroscience
Methods 353, 109098. https://doi.org/10.1016/j.jneumeth.2021.109098

ZhouK,LiuZ,QiaoY,XiangTandLoyCC (2023)Domain generalization: A survey. IEEE Transactions onPattern Analysis and
Machine Intelligence, 45(4), 4396–4415. https://doi.org/10.1109/TPAMI.2022.3195549

Zhou X, Lin Y, Zhang W and Zhang T (2022) Sparse invariant risk minimization. In Proceedings of the 39th International
Conference on Machine Learning, pp. 27222–27244. https://proceedings.mlr.press/v162/zhou22e.html

A. Limitations of the GradCAM and related feature attribution methods for our use case
Figure A1 presents the explanations obtained using the GradCAM (Selvaraju et al., 2020). We can see two different prediction
patterns depending on whether the model predicts a positive (true or false) or a negative (true or false). In the case of a true positive
prediction, the model will focus on a specific, narrow region of the image, which corresponds to a PV panel. However, for false
positives, the model also focuses on a narrow image region. Inspecting the samples of Figure A1 reveals that this region of the image
depicts items that resemble PV panels. In the image on the first row (second column) of Figure A1, we can see that the model
confuses a shade house that shares the same color and overall shape as a PV panel with an actual panel. In the image on the second
row, the verandas with groves fool the model.

On the other hand, when themodel does not see a PV panel, it does not focus on a specific image region. This remains true for the
false negatives, where we can see that the model does not see the panels on any of the images.

However, we can also see that as the GradCAM only assesses where the model is looking, it is challenging to understand why it
focused on a given area that resembles a PV panel on false positives and why it did not identify the PV panel on the false negatives.
Achtibat et al. (2022) underline the necessity for reliable model evaluation to assess where models are looking at and what they are
looking at on input images. The choice of the WCAM as an attribution method and, more broadly, the space-scale decomposition
attempts to address this question by assessing the scales the models consider when making their predictions.

B. Computation of the WCAM (from Kasmi et al., 2023b)
Figure B1 depicts the principle of theWCAM. The importance of the regions of the wavelet transform of the input image is estimated
by (1) generatingmasks from aQuasi-Monte Carlo sequence, (2) evaluating themodel on perturbed images.We obtain these images

Figure A1.Model explanations using the GradCAM (Selvaraju et al., 2020) for some true positives, false
positives, true negatives, and false negatives. The redder, the higher the contribution of an image region to
the predicted class (1 for true and false positives, and 0 for true and false negatives).
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by computing the discrete wavelet transform (DWT) of the original image, applying the masks on the DWT to obtain perturbed
DWT, and inverting the perturbed DWT to generate perturbed images. On an RGB image, we apply the DWT channel-wise and
apply the same perturbation to each channel.We generateN K + 2ð Þ perturbed images for a single image, and (3)Weestimate the total
Sobol indices of the perturbed regions of the wavelet transform using the masks and the model’s outputs using Jansen’s estimator
(Jansen, 1999). Fel et al. (2021) introduced this approach to estimate the importance of image regions in the pixel space. We
generalize it to the wavelet domain.

C. Quantitative relationship between the WCAM’s scale embeddings and the model’s response to
distribution shifts
Definition. A scale embedding is a vector z¼ z1,…,zLð Þ∈ℝL where each component zs encodes the importance of the lth scale
component in the prediction.

Scale embeddings compute the importance of each scale and each direction and summarize it into a vector z∈ℝL where L
indicates the number of levels. In our case, we have ten levels (1 corresponding to the approximation coefficients and L¼ 3 × 3
corresponding to the three scales of details coefficients and their three respective orientations. Scale embeddings summarize the
importance of each scale, irrespective of the spatial localization of importance.

Results. We computed the distance (measured by the Euclidean distance) between the two images’ scale embeddings and
computed the correlation between this distance and the predicted probability shift. As a baseline, we also computed the distance
between the two WCAMs.

We obtained correlation coefficients of 0.18 p¼ 0:19ð Þ for the scale embedding and 0.17 p¼ 0:19ð Þ for the raw WCAM.
Althoughweaker than the correlation between the distortion and the predicted probability shift, this result highlights that theWCAM
consistently captures the change in behavior of the model resulting from the shift in acquisition conditions.

D. Overview of the data augmentation strategies

D.1. Description of the data augmentations
AugMix (Hendrycks et al., 2020). The data augmentation strategy “Augment-and-Mix” (AugMix) consists of producing a high
diversity of augmented images from an input sample. A set of operations (perturbations) to be applied to the images are sampled,
alongwith sampling weights. The image resulting xaug is obtained through the composition xaug ¼ω1op1∘…ωnopn xð Þwhere x is the
original image. Then, the augmented image is interpolatedwith the original imagewith aweightm that is also randomly sampled.We
have xaugmix ¼mx + 1�mð Þxaug .

AutoAugment (Cubuk et al., 2019). This strategy aims at finding the best data augmentation for a given dataset. The authors
determined the best augmentation strategy S as the outcome of a reinforcement learning problem: a controller predicts an
augmentation policy from a search space. Then, the authors train a model, and the controller updates its sampling strategy S based
on the train loss. The goal is for the controller to generate better policies over time. The authors derive optimal augmentation

Figure B1. Flowchart of the wavelet scale attribution method (WCAM). Source: Kasmi et al., 2023b.
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strategies for various datasets, including ImageNet (Russakovsky et al., 2015), and show that the optimal policy for ImageNet
generalizes well to other datasets.

RandAugment (Cubuk et al., 2020). This strategy’s primary goal is to remove the need for a computationally expansive policy
search before model training. Instead of searching for transformations, random probabilities are assigned to the transformations.
Then, each resulting policy (a weighted sequence of K transformations) is graded depending on its strength. The number of
transformations and the strength are passed as input when calling the transformation.

D.2. Plots
Figure D1 plots examples of the different data augmentations implemented in this work. Along with these augmentations, we apply
random rotations, symmetries, and normalization to the input during training. At test time, we only normalize the input images.

Figure D1. Visualization of the different data augmentation techniques implemented in this work.
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E. Evaluation of domain adaptation techniques

E.1. Overview of the selected methods
We selected various popular unsupervised domain adaptation (UDA) methods. The common point between these methods is that
they aim to learn a domain invariant representation using labeled samples from the source domain S (in our case, Google images) and
unlabeled samples from the target domain T (in our case, IGN images). The central difference with our approach is that these UDA
approaches require unlabeled samples from the target domain, which is not the case with data augmentation strategies.

DeepCORAL (Sun and Saenko, 2016). DeepCORAL (CORrelation ALignment) expands CORAL to deep neural networks. The
original CORAL framework consists of aligning the source and target domain’s distributions by aligning their second-order
statistics. Denoting S and T the source and target domains respectively and C� ∈ℝd × d denotes the covariance matrix of the features
of dimension d. The CORAL Loss is then defined as

LCORAL ¼ 1

4d2
∥CS�CT∥2F ,

where ∥ �∥F denotes the Frobenius norm. The CORAL loss is added as a penalty term in the target loss of the model. DenotingLCLF

the loss of a classification model (e.g., the classification loss) derived from the source dataset, the loss of the model is modified as

L¼LCLF + λLCORAL:

DeepCORAL (Sun and Saenko, 2016) adapts this framework by aligning the covariance matrices of the feature representation
matrix Z � retrieved from a deep learning encoder: Z¼Φ Xð Þ where X corresponds to the input data and Φ denotes the feature
extractor of the deep learningmodel. The dimensionality d then denotes the dimensionality of themodel’s latent space rather than the
input space’s dimensionality.

Adversarial Discriminative Domain Adaptation (ADDA) (Tzeng et al., 2017). ADDA is based on the generative adversarial
networks Goodfellow et al. (2014). It aims to learn a representation that is aligned between the source and target domains. To do so,
given a feature extractor or encoder ΦS trained on the source domain (source feature extractor), an adversarial game between a
discriminatorD and an encoder trained on the target domain (target feature extractor)ΦT is set up to train the target feature extractor
to generate features from the target domain that are undistinguishable with the features generated by the source feature extractor. The
domainLd is the combination of two components, the loss of the discriminatorLD

d and the loss of the feature extractorLΦT
d , where

LD
d ¼�ES log D ΦS XSð Þð Þð Þ½ ��ET log 1�D ΦT XTð Þð Þð Þ½ �

where S and T, with a slight abuse of notation, denote the distributions of the source and target domains, respectively. The
discriminator D indicates whether the feature representation comes from the source or the target extractor. The loss of the target
feature extractor is

LΦT
d ¼�ET log D ΦT XTð Þð Þð Þ½ �

Combining the losses we get Ld ¼LD
d +LΦT

d and finally,

LADDA ¼Ls + λLd

where Ls denotes the source supervised loss, i.e., the ERM on the source domain to train the source feature extractor. The
adversarial game is formulated as minΦT maxDLd .

Unsupervised domain adaptation by backpropagation (RevGrad) (Ganin et al., 2016). RevGrad, likeADDA, aims at learning a
representation that is aligned across domains through adversarial training. Unlike ADDA, the feature extractor Φ is shared across
domains. In addition, RevGrad uses the Gradient Reversal Layer (GRL) during training. The GRL reverses the gradient during
backpropagation when computing the domain loss. This layer enables the feature extractor to learn domain-invariant features by
making adversarial training more effective.

Wasserstein Distance Guided Representation Learning (WDGRL) (Shen et al., 2018). This method is based on theWasserstein
GANs (Arjovsky et al., 2017), which use the Wasserstein distance to measure the difference between the generated and real data
distributions. Unlike the standard GAN, which uses the Jensen-Shannon divergence, Wasserstein GANs (WGAN) provide a more
stable training process and avoid issues like mode collapse. It uses a critic instead of a discriminator and enforces a 1-Lipschitz
constraint on the critic using a gradient penalty to ensure proper convergence. This approach leads to more meaningful and smooth
loss gradients to improve the generator. WDGRL builds on WGAN to learn a domain invariant feature representation. A critic C
replaces the discriminator D to discriminate between the source and target domain-based representations.

E.2. Benchmark details
Overview. We implemented the four methods described above in an unsupervised domain adaptation (UDA) setting. During
training, we assume we have access to the samples and the labels of the source dataset (i.e., Google images) and only to the samples
of the target dataset (i.e., IGN). We only had to assume we had access to the source domain data (samples and labels) for the data
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augmentation techniques. We opted for the UDA setting as it is the closest setting to the one used for evaluating the data
augmentation techniques. It is also the easiest to implement in practice as by definition, when deploying a model on new data,
we have by definition access to this data, although without labels.

On the other hand, domain generalization often requires multiple source domains. As in our setting, we only have one source
domain to train our model on, so we discarded these methods. Our implementation of DeepCORAL is based on the repository
accessible at this URL https://github.com/DenisDsh/PyTorch-Deep-CORAL and our implementation of ADDA, RevGrad, and
WDGRL is based on the repository accessible at this URL https://github.com/jvanvugt/pytorch-domain-adaptation. The trained
model weights and the source code to replicate our results are accessible on our Git repository.

Implementational details. Our approach is the following: We trained four UDA methods on labeled Google images and
unlabeled IGN images. We evaluate the performance of the models on IGN images with our usual metrics, namely the F1 score, and
report the associated true positives, false positives, true negatives, and false negatives rates. Table F1 presents the accuracy results on
Google images

During training, we looked for optimal parameters for DeepCORAL and WDGRL. This was done through a grid search. For
DeepCORAL, we searched for the optimal learning rate, momentum, and weight for the CORAL term in the loss λCORAL. For
WDGRL, we looked for the optimal parameters γ, which controls the weight of the gradient penalty term in the critic loss, KCLF ,
which controls for the number of iterations for training the classifier in each training step andWDCLF , which controls the weight of
the Wasserstein distance in the classifier loss.

E.3. Results

E.3.1. Quantitative results
Table E1 presents the evaluation results of the domain adaptation methods on our benchmark. We reproduced the results of the data
augmentation methods for completeness and to ease the comparisons.

Judging solely according to the F1 score, we can see that our data augmentation techniques match or surpass the performance of
the domain adaptation techniques while requiring less information as no information on the target domain is required. In detail,
however, we can see that the UDA methods, especially ADDA, outperform our method, especially as it achieves a higher true
positive rate and a lower false negative rate. On the other hand, our Blurring + WP method’s performance is in line with
DeepCORAL.

Table E1. F1 Score and decomposition in true positives, true negatives, false positives, and false
negatives rate for models trained on Google with different mitigation strategies. Evaluation of IGN
images. The Oracle corresponds to a model trained on IGN images with standard augmentations. Best
results are bolded, second-best results are underlined, values highlighted in red indicate the worst

performance, and values in orange indicate the second-to-last worst performance

Model
F1 score

(↑)

True
positive
rate (↑)

True
negative
rate (↑)

False
positive
rate (↓)

False
negative
rate (↓)

Oracle 0.88 0.96 0.82 0.18 0.04
Augmentations None (ERM) 0.44 0.30 0.96 0.04 0.70

AutoAugment 0.46 0.31 0.96 0.04 0.69
AugMix 0.48 0.33 0.96 0.04 0.67
RandAugment 0.51 0.37 0.94 0.06 0.63

Adaptation DeepCoral 0.54 0.54 0.64 0.36 0.46
ADDA 0.61 0.95 0.09 0.91 0.05
WDGRL 0.66 0.58 0.86 0.14 0.42
RevGrad 0.30 0.18 0.98 0.02 0.82
Blurring (Ours) 0.74 0.98 0.49 0.51 0.02
Blurring + WP (Ours) 0.58 0.47 0.87 0.13 0.53
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E.3.2. Qualitative analysis with the WCAM

E.4. Discussion and limitations
Our results show that the data augmentation methods can achieve performance that matches some popular domain adaptation
techniques while being easier to implement in practice and requiring less information as no information on the target domain is
required. However, UDAmethods, and especially WDGRL, remain more reliable as their false negative rate is lower than the false
negative rate of our approach.

This benchmark, however, is limited by the fact that the methods evaluated here are relatively old. More recent methods, such as
Invariant Risk Minimization (Arjovsky et al., 2019) or methods featured in DomainBed (Gulrajani and Lopez-Paz, 2021) do not
scale very well to architectures as large as ResNets, so we discarded them.

Figure E1. Evaluation of the different domain adaptation methods with the WCAM. Each column
represents a column. The first and third rows depict the images from Google and IGN, respectively, and
the second and fourth rows are the associated WCAMs.
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F. Complementary results

F.1. Accuracy results of the mitigation methods on Google images
Table F1 displays the accuracy results of the models trained with various data augmentation and domain adaptation strategies on the
source domain (i.e., Google images).

F.2. Accuracy results for variants of the Scattering transform
Table F2 presents the accuracy of the Scattering transform for two depth variants (labeled m¼ 1 and m¼ 2). We can see that the
performance of the Scattering transform remains relatively poor regardless of the depth of the scattering coefficients. Contrary to the
claims of Bruna andMallat, 2013, including second-order coefficients does not seem enough to discriminate between images, as the
number of false positives remains high. This could be caused by the fact that our task, namely the detection of small objects on
orthoimagery, is more challenging than digit classifications.

Table F1. F1 Score and decomposition in true positives, true negatives, false positives, and false
negatives rate for models trained on Google with different mitigation strategies. Evaluation of Google

images

Model
F1 score

(↑)

True
positive
rate (↑)

True
negative
rate (↑)

False
positive
rate (↓)

False
negative
rate (↓)

Augmentations None (ERM) 0.98 0.98 0.98 0.02 0.02
AutoAugment 0.98 0.99 0.98 0.02 0.01
AugMix 0.98 0.98 0.98 0.02 0.02
RandAugment 0.98 0.99 0.98 0.02 0.01

Adaptation DeepCoral 0.67 1.00 0.19 0.81 0.00
ADDA 0.62 0.99 0.03 0.97 0.01
WDGRL 0.97 0.99 0.95 0.05 0.01
RevGrad 0.97 0.96 0.98 0.02 0.04
Blurring (Ours) 0.82 0.85 0.82 0.18 0.15
Blurring + WP (Ours) 0.90 0.93 0.89 0.11 0.07

Table F2. F1 Score and decomposition in true positives, true negatives, false positives, and false
negative rate of the classification accuracy of the Scattering Transform model trained on Google

images and deployed on IGN images

Depth Dataset
F1 score

(↑)

True
positive
rate (↑)

True
negative
rate (↑)

False
positive
rate (↓)

False
negative
rate (↓)

m¼ 1 Google baseline 0.57 0.84 0.09 0.57 0.57
IGN 0.57 0.71 0.40 0.52 0.36

m¼ 2 Google baseline 0.57 0.89 0.10 0.56 0.48
IGN 0.59 0.54 0.31 0.62 0.54

ERM Google baseline 0.98 0.99 0.98 0.02 0.01
IGN 0.46 0.32 0.95 0.03 0.68

Random classifier Google baseline 0.47 0.5 0.50 0.55 0.45
IGN 0.47 0.50 0.50 0.56 0.44
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G. Additional figures

G.1. Assessment of the effects of distribution shifts on the model’s predictions
Figures G1 to G3 present additional examples of qualitative assessment of the effects of distribution shifts on themodel’s prediction.
In Figure G1, we can see that the model initially primarily relied on the gridded pattern, which is discernible at the 4–8 pixel scale.
The acquisition conditions discarded this factor, thus explaining why the model could no longer recognize the PV panel. A similar
phenomenon occurs in Figure G2. Figure G3 presents an example of a prediction not affected by the acquisition conditions. We can
see that the important scales (especially at the 4–8 pixel scale) remain the same.

G.1.1. Comparison of the behavior of the data augmentation methods on IGN images
Figure G4 compares some data augmentation techniques’ behavior on an image from the IGN dataset.

Figure G1. Analysis with the WCAM of the CNNs prediction on an image no longer recognized as a PV
panel.
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Figure G2. Analysis with the WCAM of the CNNs prediction on an image no longer recognized as a PV
panel.

Environmental Data Science e22-31

https://doi.org/10.1017/eds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.13


Figure G3. Analysis with the WCAM of the CNNs prediction on an image that remains insensitive to
varying acquisition conditions.

Figure G4. WCAMs on IGN of models trained on Google with different augmentation techniques.
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G.2. Effect of the distribution shifts on the domain adaptation methods
Figure G5 and G6 plot additional examples of the effect of the varying acquisition conditions on the domain adaptation methods
evaluated in this work.

Figure G5. Evaluation of the different domain adaptation methods with the WCAM. Each column
represents a column. The first and third rows depict the images from Google and IGN, respectively, and
the second and fourth rows are the associated WCAMs.
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Figure G6. Evaluation of the different domain adaptation methods with the WCAM. Each column
represents a column. The first and third rows depict the images from Google and IGN, respectively, and
the second and fourth rows are the associated WCAMs.
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