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Can a fish-like body swim in a perfect fluid — one that is purely inviscid and does not
release vorticity? This question was raised by Saffman over fifty years ago, and he provided
a positive answer by demonstrating a possible solution for an inhomogeneous body. In
this paper, we seek to determine a suitable deformation for oscillatory fish swimming
that enables slight locomotion in a perfect fluid, relying solely on tail flapping motion.
This swimming style, typical of carangiform and thunniform species, allows for a separate
analysis of the tail’s interaction with the surrounding fluid. As a preliminary approach,
the tail is approximated as a rigid plate with prescribed heave and pitch motions, while
the presence of a virtual body placed in front is considered to evaluate the locomotion.
Analytical solutions provide exact results while avoiding singular behaviour at sharp
edges. A phase shift is shown to be strictly necessary for generating locomotion. A more
refined approximation of a real fish is achieved by modelling the tail as a flexible foil,
connected to the main body via a torsional spring with tuneable stiffness at the peduncle.
While the heave motion remains prescribed, the pitch amplitude and phase are passively
determined by flow interaction. A plausible solution reveals an optimal stride length as a
function of dimensionless stiffness, driven by resonance phenomena. A small structural
damping must be considered to induce a phase shift — essential for self-propulsion in the
absence of vorticity release.

Key words: flow-structure interactions, propulsion, swimming/flying

1. Introduction

In the present paper we focus on fish-like bodies that achieve self-propulsion by flapping
their tails. The rest of the body, containing the larger part of the total mass, essentially
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Figure 1. Sketch of the virtual body with the flat plate attached through a torsional spring. The ground frame
(X—Y) and the body-fixed one (x—y) are shown.

contributes to the stability of locomotion, by keeping control of the recoil motions, while it
gives rise to the major part of the resistance, which in the present study is not considered.
This behaviour, characteristic of carangiform or thunniform fish, is well known in the
literature as oscillatory swimming in contrast to undulatory swimming which involves the
deformation of a larger portion of the body to generate propulsion.

Due to its nature, the oscillatory swimming allows us to analyse separately the fish tail
as the main propulsive tool, whose interaction with the surrounding fluid was frequently
studied by considering its motion under an incoming uniform stream, especially in the field
of experimental investigation. In case a direct analysis of self-propulsion is believed more
appropriate, simplified theoretical models are easily devised to obtain significant results in
a neat form, either by analytical or by numerical methods.

For instance, in the following, we consider the motion of a virtual body (Akoz &
Moored 2018, Moored & Quinn 2019, Paniccia et al. 2021¢) with prescribed integral
properties, at the end of which the flapping tail is attached, with its proper heave and
pitch motion, see figure 1. More details are reported in the Supplementary Materials in
Paniccia et al. (2021¢). Within this kind of approximation, we may study the interaction
with the surrounding fluid of the isolated tail, by recovering the presence of the main body
only in terms of its inertial effects on locomotion, as lateral and angular recoil motions are
supposed to be prevented by the prevailing size of the main body itself. In general, self-
propulsion occurs when the thrust generated by the flapping tail balances the prescribed
drag of the main body (Smits 2019) while in the present study both drag and thrust are
null, as expected in perfect fluid.

In previous studies (Paniccia et al. 2021a, 2021b) we adopted this model to analyse the
axial motion of fish body propelled by a flapping tail in the framework of inviscid flows in
the presence of non-diffusing vorticity. As a plus, potential theory is able to identify clearly
the added mass responsible for the reactive forces, as discussed in Lighthill (1960, 1969)
and Wu (1961). Furthermore, the application of an unsteady Kutta condition mimicking
the effect of viscosity at the trailing edge singularity implies the release of concentrated
vorticity as the main mechanism for the exchange of momentum with the fluid. Particular
attention was given to the different roles played by the added mass and by the vortical terms
of the governing equations, but also to their couplings which have a positive influence not
only on the locomotion, but also on the manoeuvrability of the fish body. See Limacher
(2019) and our previous contribution on the C-start maneuver, i.e., the rapid escape motion
with a C-shape bending of the swimmer (Paniccia et al. 2022).

The effort to extend this procedure to include flexible tails, resembling the thin tails of
real fish (Quinn & Lauder 2022), led to the further modelling proposed by Moore (2014,
2015), which considers the flexibility to be fully concentrated at the leading edge by a local
torsional spring with a proper stiffness, while the rest of the tail is treated as a rigid body.
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The reactive forces, expressed in terms of potential flow and added-mass coefficients,
have a primary role in the transfer of energy from the flexible tail to the surrounding fluid
through a torsional balance equation. In general, this energy, ultimately captured by vortex
shedding, plays a crucial role in generating the backward fluid momentum required for the
body’s locomotion in the opposite direction.

For a better comprehension of the added-mass effects, we like to consider here, as a
starting point, swimming in a pure inviscid fluid able to exchange only reactive forces
without any release of vorticity, that we identify as a perfect fluid following Saffman
(1967). This problem has been studied by several authors, among others Childress (1981),
Kelly (1998), Kelly & Murray (2000) and Kanso et al. (2005). A similar problem was
also studied by Miloh & Galper (1993) and by Chambrion & Munnier (2011) within the
framework of geometric mechanics.

The aim of the present study, about swimming in a perfect fluid, is twofold. First, by
considering only the reactive forces we can precisely evaluate the added-mass terms in the
solution, either for flexible or rigid tails, which should be extended afterwards to include
the release of vorticity. Hence, we intend to consider the perfect fluid solution as a valuable
step to obtain a reliable extension of the model to include circulatory contributions.
Second, the present ideal solutions are of fundamental interest per se, as they address
the question posed by Saffman (1967) regarding whether a fish-like body, initially at
rest in an unbounded fluid, can achieve locomotion solely by undergoing periodic shape
changes. The solution shown in the present paper can be quite significant for the case
of homogeneous bodies. The hypothetical application for swimming in superfluids is just
corroborating the above interest.

More specifically, in this paper, we apply the model to study the locomotion of a flat
plate undergoing prescribed heaving motion and free to pitch about its leading edge. A
torsional spring at the leading edge mimics the flexibility of the plate, influencing in an
analogous way the overall performance (see Eldredge, Toomey & Medina 2010; Wan,
Dong & Huang 2012; Moore 2015).

The displacement due to a full cycle of shape variation, giving rise to the body
locomotion, is here obtained by the classical theoretical models frequently adopted in
fluid mechanics. The same result may be seen as a geometric phase in the framework
of geometric mechanics. This approach has been used to study body locomotion either
for Stokes flow or for the pure potential flow of interest in the present paper. In fact,
for both very low or very high values of the Reynolds number, although the physical
reasons are completely different, the resulting linear equations allow us to exploit the
methodology in a quite similar way to explain the locomotion in a fluid—body system
with null external forces. Purcell (1977), in his seminal paper, after discussing the scallop
theorem, proposed a three-link body, with two prescribed degrees of freedom, to allow for
self-propulsion in the absence of external forces. Many authors followed the same track,
mostly for application to Stokes flow (e.g. see Childress & Dudley 2004), but also for
application to pure potential flow in a perfect fluid (e.g. Radford 1998, Mason 2003; Melli,
Rowley & Rufat 2006; Ross 2006). Some works considered a comparative treatment of
both cases (e.g. Hatton & Choset 2010).

In the following we will keep on with our methodology, although accounting for several
of the above applications, to have a better insight and useful suggestions for a deeper
physical interpretation of the results. Initially, a fully prescribed heave and pitch motion is
analysed just to confirm that a small body displacement can occur even if the mean force
is zero, provided an appropriate phase shift exists between the two motions. Afterwards,
we focus on the main purpose of the present work, i.e., the passive behaviour of a flexible
tail in pure potential flow, which, in our opinion, has not yet received sufficient attention
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in either classical fluid dynamics or geometric mechanics. In the passive case the pitch
motion, in terms of amplitude and phase, is not prescribed but rather is obtained by solving
a torsional balance equation. This approach is shown to lead naturally to a proper phase
shift once the optimal values of the ruling parameters, driven by resonance phenomena,
are matched.

The paper is organised as follows: in § 2 we report the force balance for an isolated
fluid—body system in an acyclic flow. We state the equations in terms of the fluid dynamic
impulse and consider a two-dimensional plate to obtain the classical representation
in terms of the added mass (see Batchelor 1991; Newman 2017). Once the harmonic
expressions are defined to prescribe both heave and pitch motions of the tail, a first solution
is obtained in § 3 to confirm that locomotion is possible in a perfect fluid even in the
absence of mean forces. Section 4 is devoted to the study of the passive pitching motion:
the expression of the torque balance equation and of the related fluid dynamic moment are
used to derive the analytical solution in terms of pitch angle and phase; afterwards, the
locomotion of the passive flapping plate is discussed together with the fundamental role
of resonance. Finally some concluding remarks are presented.

2. Impulse equation and self-propulsion

Here, we adopt the approach used in our previous works, where more details are reported
(see e.g. Paniccia et al. 2021a, 2021b), following the formulation presented in Kanso
(2009). Considering the fluid-body system with V¢ and Vj, the fluid and body volumes,
respectively, as an isolated system with no external forces acting upon it, and denoting
F, as the force acting on the body and Fy as the force acting on the fluid, the following
relation can be established:

Fy,+ Ff=0, 2.1

which expresses the total momentum conservation in integral form

d
4 /prde+/ pUdV | =0, 2.2)
dr Vi Ve

where Uy, pp are the velocity and density at any point in the homogeneous body while
U, p refer to the same quantities in the surrounding fluid. By introducing the velocity of
the body’s centroid, U ., the first integral in (2.2) gives

d dU

— UpdV=F,=m ,

ar Iy, P Up b by
where my, is the total mass of the body. The second integral in (2.2) represents the time
variation of the fluid’s momentum and can be rewritten in terms of the hydrodynamic
impulse P

(2.3)

d UdV=F;= P 2.4
dr pr DAL '

In a pure potential flow, the impulse P is confined to its irrotational (acyclic) component,
while vorticity-related contributions are not considered. By assuming the normal outward
from the body, it is defined in terms of the velocity potential ¢ as

P=Py=- / onds. 2.5)
S,
1021 A34-4 ’
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Equation (2.4) can be written as

Fr= —pi ¢nds, (2.6)
dr Sp
which aligns with the formulation by Saffman (1992). To analyse the motion of the body,
we directly employ the impulse equation by combining (2.3) and (2.4) and by eliminating
the time derivative (for a null initial condition), as also discussed in Kanso (2009) and
Paniccia et al. (2021a)

mp Uem =—pP. (2.7)

Now we split the impulse P into a part, Proc, due to the body locomotion and a
part, Pgp, due to the body shape deformation. The former can be expressed through the
added-mass matrix M (see also Appendix A) yielding

pProc=MU .y, (2.8)
and (2.7) becomes
(mp+ M) Ucm=—pPsq, (2.9)

which shows that, upon enforcing a periodic shape deformation given by a non-reciprocal
motion of the body (as defined in Purcell 1977), we may have locomotion in the absence
of mean forces or accelerations.

As previously anticipated, to analyse the self-propulsion of a fish, we model the tail as
a heaving and pitching plate attached to a virtual body that contains all the mass of the
system while it does not experience either applied forces or moments. This implies that:
(i) the virtual body does not contribute to the impulse P in (2.7); (ii) the only source of
propulsion is the oscillating tail; and (iii) the centre of mass of the system is assumed
to move solely with velocity Uy in the ground reference frame, as a result of the tail’s
oscillations. To this aim the tail undergoes prescribed heave oscillations in the Y -direction
and pitch oscillations with angular velocity £2(¢)es (positive counterclockwise) around the
centre of rotation located at its leading edge (hereinafter denoted as LE or x,). As a result
we will obtain the locomotion of the whole system.

The impulses P = {Px, Py} appearing in (2.7) are evaluated in the ground frame. In the
following, we will see that it is more convenient to use the components in the body-fixed
frame { Py, Py}, expressed by using the rotation matrix which maps the ground to the body
frame, following the approach presented in Eldredge (2019) and Limacher (2021)
cosf  sin 0:|

—sinf cos6 (2.10)

R©®) = [

the angle 6 being assumed positive anti-clockwise. It follows that

Pl _ Px| | Px cos®+ Py sin6
[Pyi| =R® [PY1| N |:—PX sinf + Py cos 91| : (2.11)
By using the rotation matrix, (2.7) becomes, in the body frame,

mpuy =—p Py,
{ myuy =—p P, (2.12)

where the body mass m,, is estimated as reported in Appendix B.
Let us consider a flat plate whose half-length is b = ¢/2 undergoing imposed harmonic
heave and pitch motions (hey; 6 e3 = §2e3), while its rotation centre moves with
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locomotion velocity (uy, uy) expressed in the body frame. The outgoing normal to the
upper face is n = {— sin 6; cos 8} ~ {—6; 1}. The velocity normal to the plate is

Uy=uy+h cos®>=uy,+h. (2.13)

The relevant details to obtain the expression of the impulses in (2.12) are reported in
Appendix A. By using (2.13), the impulse Py expressed according to (A1l) becomes

Py=m b [uy+h+b0]. (2.14)
By combining both the first (2.12) and (A11), we obtain u, = 0. Finally, from the second
equation in (2.12) and (2.14), the solution u, may be obtained

_ 2
UL S 2.15)

"y = mp 41 p b2
The self-propulsion speed of the whole body is evaluated in the ground frame through
the velocity U, = {Ux, Uy} which is expressed as

Ux| 7| ux| | cosOuy—sinfu
[Uy]_R(Q) [ :|_|: y]. (2.16)

Uy sin@ uy +cos 6 u,y

The locomotion velocity in the body frame is given by u, =0 and u, by (2.15), so (2.16)
gives

pb?
(mp + wpb?)

while the Uy component is neglected since we have assumed previously that the presence
of the virtual body prevents its motion in the Y direction. It is worth highlighting that
the normal component of the velocity in the body frame gives the essential contribution
to obtain locomotion in the inertial frame. With respect to energy considerations, we may
notice that the kinetic energy injected into the fluid by the body’s deformation is essentially
transferred to the locomotion kinetic energy (see Wu 1971, Kanso 2009). Since no vorticity
release is included in the model, the total kinetic energy shows a periodically oscillating
behaviour with a constant mean value, hence no power is transferred to the fluid and wasted
into the wake. Consistently, the Froude efficiency, given in the present case by the ratio
of two equal and null quantities, looses most of its interest and is not considered in the
following. For a detailed description of the energy transfer process see Appendix C.

The motion of the body’s centre of mass is obtained by solving dX/dt = Uy and
integrating in time to obtain the axial displacement for each time.

From Appendix A we may notice that, even if Py = 0, this results in F, # 0, so the force
is not purely normal to the body but a tangential component arises due to the rotation of
the normal vector. This aspect has been mentioned in Limacher (2021) discussing the
chord-wise component of the added-mass force.

By recalling (A9) and using 6 for £2, we obtain

Fy =7mpb? 6 [uy +h + bo],
Fy=—mpb?® [ity +h+bd],

Ux = [6 b+ h]sin6 | (2.17)

(2.18)

where the expression of F, may be compared with the lift reported in Theodorsen (1935).
Let us underline that, by the theory of Theodorsen, we are able to compute separately
the finite integral contributions given by the purely potential flow in terms of added-mass
coefficients. By using the transpose of the rotation matrix (2.10) the forces in the ground
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Figure 2. Time behaviour of (a) Fx and Fy in the ground frame; (b) Fy and F) in the body-fixed frame (the
dashed line shows the mean value of F)) for h, =0.1 and 6, = 10°.

and body reference frames are related by
Fx _ c_:osG Fy —sin6 F, ~ F,—0F, ' 2.19)
Fy sin® Fy +cos6 F) 0 Fx+ F),

The development of the forces during one period, both in the ground and in the body-
fixed frame, is displayed in figure 2 for 4, = 0.1 and 00 = 10°. By evaluating the average
values over one period we obtain Fx =0, Fy =0, F y =0 while Fy # 0 (represented by
the dashed line in the same figure).

It should be noted that the forces described above arise solely from the flapping tail,
with the added-mass contribution of the virtual body excluded from the balance.

3. Locomotion for prescribed heave and pitch

As a starting point, we evaluate the motion of the body which results from prescribed
heave and pitch motions. The relevant parameters appearing in what follows are: the
plate thickness s*, its length ¢* =2 b* and the densities of the fluid po* and body p;.
While dimensional quantities were used up to this point, we will now distinguish between
dimensional values, denoted with an asterisk (*), and their corresponding non-dimensional
counterparts, which will be written without the asterisk. We define the amplitudes of the
pitch and heave motions as 6, and /7, respectively, while the phase angle between them is
denoted as ¢ and the oscillation frequency is w* = 27 f*. The motion of the plate is then
given by

0 =0, sin (v* t* + ¢),

) 3.D
h* =h}; sin (0* t¥).

To determine the mean locomotion speed, U%, we evaluate the average velocity over
one period using (2.17). Noting that all cross-terms between heave and pitch contributions

have a zero mean value, the only remaining term is Oh* = (1/2)w*6,h}sin(¢), leading to

2
Tp*b*
Uy =

1
—————————0,w*h} sin(¢). 32
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Figure 3. Time evolution of the X-component of impulse, velocity and displacement for heave and pitch
(ho =0.1; 6 = 10°; ¢ = —m/2). The horizontal dashed line represents the mean value of Uy.

From (3.2) we observe two key results: (i) the sign and magnitude of the mean
locomotion velocity are directly controlled by sin ¢, the maximum locomotion (i.e.
negative velocity) occurring for ¢ = —m /2, which means that the pitch motion lags the
heave motion by a quarter period, in agreement with previous findings (Quinn, Lauder &
Smits 2015; Van Buren, Floryan & Smits 2018); (ii) no motion occurs when heave and
pitch are in phase. Additionally, both heave and pitch must be present for locomotion. If
either is absent, the body remains stationary.

By using w* =2m f* and h} =b* h,, the average locomotion speed (3.2) can be
expressed in terms of the reduced speed or the ‘stride length’, i.e. the non-dimensional
locomotion velocity (based on the reference velocity V;; = b* f*) or the travelling distance
measured in body lengths per second

F 2 k%2
=X _TP D fuhy sin(). (3.3)
f* (m} +mwp*b*?)

Figure 3 illustrates the time evolution of impulse, velocity and displacement in the
X-direction for h, =0.1 and 6y = 10° with a phase shift ¢ = —m /2. The dashed line in
the figure represents the mean velocity calculated from (3.2). According to the analytical
expression of the mean locomotion velocity (3.2), leftward motion occurs for negative
phase angles. Figure 4 shows the solution in terms of X-displacement in the ground frame
as the phase shift between heave and pitch is varied from 0 to —m. In particular, we
notice that the maximum displacement at the end of the cycle increases monotonically
as ¢ approaches —r /2, with smaller and equal values for symmetric variations of ¢ about
—1/2.

In previous studies (Paniccia et al. 2021¢, 2023), it was shown that an appropriate phase
shift can generate a travelling wave with an approximate phase velocity, ¢ = w*h};/0,,
which reproduces a behaviour similar to undulatory swimming by creating a certain
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Figure 4. Temporal evolution of X displacement for heave (i, = 0.1) and pitch (6 = 10°) with
several values of the phase shift.

dissymmetry in the resulting motion. However, in the present case of a purely reactive
solution, the resulting locomotion is significantly lower than the above defined ¢, showing
a poor performance in the absence of vortex shedding.

4. Locomotion of a passive flapping plate

In this section, we analyse the fluid dynamic moment acting on a flapping plate and derive
the torque balance equation, which governs the evolution of passive pitch. To represent in
an efficient way a flexible plate, we will assume that the pitching motion of the plate is
not prescribed but results from a torque balance involving a torsional spring at the LE (see
also Toomey & Eldredge 2008; Vanella et al. 2009; Eldredge et al. 2010; Spagnolie et al.
2010; Zhang, Liu & Lu 2010; Moore 2014; Hang et al. 2022). To solve the torque balance,
we must evaluate the hydrodynamic moment exerted by the surrounding fluid on the rigid
body, which moves in an arbitrary manner in an unbounded fluid. For purely potential
flow, only the reactive contribution is considered in the expression of the moment, while
the circulatory contribution is omitted.

4.1. Fluid dynamic moment, torque balance and pitch solution

We start from the classical added-mass formulation as reported in Newman (2017), with
an opposite sign convention due to the outward normal vector from the body into the fluid.
We consider a two-dimensional flow field and use the position vector r’ from the rotation
centre at the LE of the plate. All the relevant details are reported in Appendix A.

The motion of the flat plate can be described in the body system as the superposition of
the locomotion velocity components (uy, uy) and the prescribed heaving motion A

Uy=ux+hsind>~u,+h0 Us=uy+hcost ~uy+h. .1
1021 A34-9
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By combining with (A17), removing quadratic terms and considering that u, = 0 for a
flat plate, we obtain

. 9 .
M3 = —npb’ [uy +h+ gbé)} , 4.2)

where the angular acceleration causes a moment which may be thought of as due to a
virtual moment of inertia (9/8)pmb*. By time differentiating (2.15) and combining with
(4.2) we obtain

mpy . mpg 1 o
M3 = —mpb’ h — b6} . 4.3
3= {mb—i-n,ob2 + |:mb—|—n,0b2 + 8:| } 4-3)

Now we consider a thin foil undergoing prescribed heaving motion with a torsional spring
atits LE. This set-up has been widely used in the literature as an effective model for plate
flexibility due to fluid—body interaction, (see e.g. Moore 2014). Since pitching motion is
not prescribed, it must be determined by solving a torsional balance equation that accounts
for the fluid dynamic moment, spring restoring torque and body inertia effects.

The goal is to analyse the combined effect of forced heaving and passive pitching
motion in a perfect fluid to determine to what extent self-propulsion occurs. Although
approximate, this model provides some insight into the body’s locomotion mechanism. A
more generalised approach including the wake dynamics is addressed in an ongoing work.

A time-harmonic heaving motion, with non-dimensional amplitude h, = h}/b*, is
imposed at the LE of the plate. In response to this driving motion, a torsional spring
with rotational stiffness k* at the LE allows the plate to pitch passively with an assumed
harmonic motion 6 = 6,e’ @*1"+#)_ The pitching motion of the plate (amplitude and
phase) is not prescribed but rather is evaluated by balancing the angular moments due
to the fluid (see 4.3), to the spring and to the body’s inertia.

The torque balance equation governing the passive flapping motion is derived in detail
in Appendix B. Below, we only report its dimensionless form and the solution in terms of
pitch amplitude and phase shift between heave and pitch

16 .. .
?R9+C0+K9=Mf+Mi, (4.4)

where R is the body—fluid mass ratio, C and K are the dimensionless spring damping
and stiffness coefficients, respectively, M s is the dimensionless form of the fluid dynamic
moment given by M3 in (4.3) while M; is the inertial torque due to the forced heaving.

In the torsional balance (4.4), the terms related to 6 may introduce a non-zero phase
shift between heave and pitch which is required to obtain 6 # 0 and hence locomotion.
The 6 term clearly appears in the spring damping while, concerning the fluid dynamic
moment M ¢, its presence would be associated with the circulatory component and vortex
shedding.

Consistently, in the present purely reactive solution, this term is missing in the fluid
dynamic moment, so the spring damping remains the only contributor to phase shift (see
the second expression in (4.5) below).

Once the harmonic expressions for heave and pitch are considered and by using
standard harmonic analysis, the solution for the passive pitch motion is obtained in terms
of 6, and ¢

BBh,
90 = - ’
VAA? + 472C? (4.5)
tan(g) —2nC
an = .
AA
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Figure 5. Behaviour of the mean self-propulsion speed Uy as a function of K (h, =0.1) for different values
of the spring damping coefficient C: C =0.1, 0.2, 0.5 (a); C =1, 2, 10. (b).

This solution is expressed in terms of the coefficients provided in Appendix B: BB,
which depends on the mass ratio R, and A A, which is function of the mass ratio as well as
of the spring stiffness K. For the reader’s convenience, we report below their expressions

4R+2 * X
BB=1672R| 22T rR="1b (4.6)
4R+ c* p*
16 7w (36 R+7
AA=—4n? | —R+— [ ———— K =—47%A, + K. 4.7
. [3 +4(8R+2n)}+ 72A + “.7)

As clearly appears from (4.5), no pitch may occur without heave, i.e. if we have 4, =0
it follows also that 6, = 0. Moreover, the solution gives ¢ = +m/2 for AA =0, i.e., for a
given relation between the mass ratio and the spring stiffness, which, as shown below, is
related to the resonance frequency. In this condition the larger energy transfer is obtained,
maximising locomotion, which still remains quite small.

4.2. Swimming speed and natural frequency

Once the pitch angle and phase have been evaluated through (4.5), then the mean
locomotion speed Us = Uyx may be evaluated. By using the above introduced non-
dimensional quantities, the first in (3.2) gives

Uy . n? .
Us= }‘* =7(1 — CC)b,h, sin(¢) = TR Oph, sin(e), (4.8)
where the coefficient CC, depending on the mass ratio only, is reported in (B7) in

Appendix B.

The above reported solution shows that: (i) no self-propulsion occurs unless pitch and
heave are simultaneously present; (ii) a non-zero phase shift is required for the generation
of net locomotion; and (iii) to achieve maximum velocity, ¢ >~ +m/2 is required. In the
figures we present results for Uy, 6, and ¢ as functions of the spring stiffness K for several
values of the spring damping C from 0.1 to 10. All the plots are drawn for a given value
of C, as a function of k*/ f *2 or K in dimensionless form, to ensure that all solutions
collapse onto a single curve (see also Zhong et al. 2021). From figure 5 we may notice
several results: first, the locomotion speed peaks at a specific value of K and, second, the
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Figure 6. Pitch amplitude 6, as a function of K (h, =0.1) for C =0.1, 0.2, 0.5 (a); C =1, 2, 10. (b).

(@) (b)
0 0
-20 -20
—40 —40
-60 -60
-80 -80
¢ ¢
-100 -100
-120 -120
-140 ~140 C=T—
-160 -160 C=2—
~180 -180 210
0 10 20 30 40 50 0 10 20 30 40 50 60 70 80
K K

Figure 7. Phase angle variation as a function of K (h, =0.1): (a) C =0.1,0.2,0.5; () C =1, 2, 10.

maximum value of the locomotion velocity increases as the spring damping decreases.
This peak is likely a result of resonance effects, as discussed below.

The values of the pitch amplitude 6, are reported in figure 6 as a function of K for
several values of C. We notice both a peak at the same value of K as for the locomotion
speed and a reduction in the amplitude for increasing C. Moreover, for C larger than one,
the pitch amplitude quickly falls to very small values. On the contrary, for the smallest C
it follows that 6, exceeds the small-angle approximation, although a similar trend persists.

A comparison between active and passive motion reveals key differences. In the former
case, the solution is given by (3.3) and shows a linear dependence of the velocity on
both the amplitudes of heave &, and pitch 6,. On the other hand, in the passive case
the pitch amplitude is not prescribed but is evaluated from the torsional balance. Equation
(4.5) shows that 0, is linearly dependent on #,, leading to U, hg. Both the physical
coefficients of the spring balance, C and K, can also significantly affect the resulting
pitch amplitude. Thus, we may argue that, to achieve optimal locomotion, these physical
parameters should be tuned consistently to achieve the proper pitch amplitude.

The variation of the phase angle ¢ between pitch and heave is plotted in figure 7 as
a function of K for the previously considered values of C. Notably, a steep change in
¢ occurs near the peak values of both Uy and 6,. Specifically, by observing the peak
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Figure 8. (a) Variation of 6, and ¢ as a function of frequency; (b) self-propulsion velocity
(ho =0.1, k =4000, C =1).

values in figures 5 and 6 and by comparing with figure 7, we notice that, when Uy and 6,
reach their maximum values, it follows always that ¢ = —m /2. In fact, from the second of
(4.5), we notice that ¢ =+m/2 for AA=0 or, due to (4.7), K =472 A By using the
non-dimensional spring stiffness defined in (B4), the peak frequency occurs for

*

f*
where A depends on the mass ratio only, and its expression is reported in Appendix B.
At the peak condition, i.e. for AA =0, the torque balance equation shrinks to (see
(B12))

— K p*b* = p*b** 472 Ay, (4.9)

CO=BBh, (4.10)
while the first expression in (4.5) yields
0, = BB h (4.11)
T )

Since the coefficient BB, defined in (4.6), is only function of the ratio between the body
and the fluid mass, the pitch amplitude value increases without limits for vanishing spring
damping C. Then, from (4.8), the self-propulsion speed is expressed as

3 RQRAT
CAR+m)?2

which also shows both the increase of the peak locomotion velocity for decreasing C and
the relevance of #,,.

The pitch amplitude and phase and the opposite of the mean self-propulsion speed,
-U=-U ;, for C =1 and k = 4000, are shown, as functions of the oscillation frequency,
in figures 8(a) and 8(b), respectively. The values of 6, and ¢ for some selected frequencies
are used in figure 9 to represent the corresponding stroke loop in the shape space (i.e.
where the variables 4 and 0, which describe the shape of the body, are the independent
variables). We notice that the area of each curve increases with the mean self-propulsion
speed, while its orientation is only related to the phase angle. For vanishing ¢, a reciprocal
motion is obtained, which gives null locomotion. On the contrary, the curve with the
largest area in the shape space corresponds to the maximum locomotion speed and to a
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Figure 9. Stroke loops in the shape space for the frequencies selected in figure 8 (h, = 0.1, k =4000, C = 1).

phase shift —z /2. These results confirm the observations of other authors (see e.g. Ross
2006, Hatton & Choset 2010).

Several solutions reported above for the passive swimming plate display a peaky
behaviour which resembles that of the amplification factor of a forced harmonic oscillator
with damping.

The peak frequency given by (4.9) is related to the natural oscillation frequency defined
by (B19). From this expression we obtain k*/flt2 =472p*b** A}, as given by (4.9),
confirming that the peak locomotion speed occurs at the natural frequency with a clear
connection to resonance phenomena (see Beal er al. 2006, Michelin & Smith 2009, Alben
et al. 2012, Moore 2014, Paraz, Schouveiler & Eloy 2016, Lopez-Tello, Fernandez-Feria &
Sanmiguel-Rojas 2023). The damping term was not accounted for in the above evaluation
of the natural frequency, since it has a negligible effect.

5. Concluding remarks

The results presented in this paper provide a further contribution to clarify the question
raised by Saffman more than 50 years ago regarding swimming in a perfect fluid. Namely,
if we consider a deformable body in a quiescent perfect fluid, we find that a self-propulsion
may occur through the exchange of reactive forces with the surrounding fluid, without any
generation or release of vorticity, provided that a proper deformation is prescribed. Our
study focuses on fish locomotion driven by a tail flapping, while the main body contributes
only inertial effects, as no resistive forces are considered. This oscillatory swimming
model is representative of tuna or other species within the broader class of carangiform
fish. Similar configurations can be effectively analysed using a simplified model consisting
of a virtual body with an oscillating tail attached to its end to generate the propulsion for
the entire fish. This approximation provides a direct answer to the fundamental question
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of whether a fish can achieve locomotion solely through appropriate body deformation,
without the release of vorticity.

To investigate this phenomenon, we adopted an impulse-based mathematical model that
considers only added-mass forces in a purely potential flow. As a preliminary case, we
analysed active oscillations in which heave and pitch motions are fully prescribed. A
flat plate was used as the geometric model for the tail, allowing analytical solutions to
provide global results without caring about singular behaviour at the plate’s sharp edges
in the absence of viscosity The results confirm that self-propulsion is generated by the
flapping tail, provided a phase shift between heave and pitch is established, and, if one of
these motions is prevented, no self-propulsion takes place. Even in this relatively simple
case, despite several results already available in the literature, the topic of locomotion in a
perfect fluid still raises some perplexities. We hope that our findings for a simple fish-like
configuration may help to further clarify this issue.

The aim of the paper is to consider more realistic configurations accounting for the
flexibility of the tail. In this case, the pitch amplitude and phase lag are no longer
prescribed, but instead emerge from fluid—structure interaction. Within this framework,
the tail motion is passive and requires an additional torque balance equation to capture
its flexibility, which we model as being concentrated at the LE via a torsional spring.
Notice that a localised torsional spring with tuneable stiffness is considered one of the
most effective approaches for assessing the role of flexibility in the passive tail dynamics.
A more detailed analysis was required to balance all torques acting about the rotation
centre, located at the peduncle that connects the tail to the main body. Structural damping
must also be taken into account, in addition to fluid—structure interaction. In this context,
the phase shift, previously shown to be essential for locomotion, emerges as a result of
structural damping, which may become negligible in a complete solution where damping
due to vortex shedding dominates.

The solution for the flexible tail reveals the key result: a unique relationship between
stride length and non-dimensional stiffness. This relationship displays a characteristic
growth pattern at a specific value of non-dimensional stiffness, corresponding to the
natural frequency of the tail foil in an otherwise quiescent fluid.

To maintain an optimal stride length, a fish swimming at a given frequency must adjust
its stiffness through muscular action in the peduncle region. Alternatively, for a fixed
stiffness, the fish must tune its swimming frequency to maximise performance. This result
closely mirrors self-propulsion mechanisms observed in nature. In essence, the fish must
fine tune its physical parameters to achieve a stride length that aligns with the resonance
region.

Finally, extending this study to more realistic conditions — including circulatory forces
and vorticity shedding, for instance, by means of a Kutta condition — will be greatly
facilitated by our current approach. The proposed methodology ensures precise control
over the critical components of the solution associated with pure inertial terms. In contrast,
the inclusion of vortical impulse and vorticity release tends to dominate the resulting
dynamics, potentially obscuring the more subtle aspects addressed in this paper. A further
deepening on this matter is firmly envisaged by the authors to strengthen the above
conceptual points.
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Appendix A. Forces and moment

According to Newman (2017), we may express the forces acting on the body within
an acyclic potential flow. Let us denote the translation velocity of LE as U,(t) =
{Uie1; Uses; } or, by defining r the radius vector with originin LE, Vp =U, + 2 e3 x r.
The potential ¢ satisfies Laplace’s equation with the boundary condition on the body

contour

d¢

£=V3-n=U0-n+.Q(rxn)-e3. (A1)
We split the potential into the basis potentials ¢ =¢; U; with i =1, 2, 3. Here, ¢;
represents the velocity potential due to a body motion with unit velocity U; in the ith
mode (linear U; = U (¢) for i = 1,2 or angular for U3 = §2(¢)e3). These basis motions and
their time derivatives (U; and U;) are considered in the body frame

p=Urpr+Uap+Usp3=Ui ¢ i=1,23. (A2)
By substituting (A2) into (A1) it follows that

ad 0 ]
U1ﬂ+U2ﬂ+U3ﬁ=U1n1+U2n2+U3(rxn)3. (A3)
on on on

Each one of the potentials ¢; satisfies Laplace’s equation, the vanishing condition at
infinity and the condition on the body contour

GLod 092 093
on on on

In the body-fixed reference frame, the potentials ¢; depend only on the geometry of the
body (through the normal n) and not on time or the velocities U;. In the ground frame, the
force acting on the body, by substituting (A2) into (2.6), is expressed as

=(r x n)3. (A4)

Fy = ,Oi (Ui ) | ¢in dS) : (A5)
dr S

where the integral depends on time due to the variation of n caused by the rotation of the
body: dn/dt = £2 x n. From (AS), the force components in the body frame, expressed in
index form, are

FjZ,OUi(I)/ ¢injd5+p€j3lUi~Q/ $pimdS 1,1=1,2,3 j=1,2, (A6)
Sp Sb

where €;j; is the permutation tensor. By considering the boundary conditions (A4), the
above appearing integrals may be evaluated as

09,
P S ¢pin;dS=p S ¢i¥ds:—mji, (A7)
b b

where m;; are the components of the added-mass tensor whose values depend solely on
the geometry of the body. When considering a flat plate with length 2 b (zero thickness)
pitching about its LE, the only non-zero added-mass coefficients (including also m33
appearing in the following) are

9
myy = ,oy'tb2 mp3 = ,OJ'L'b3 mi33 = gn,ob“. (A8)
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According to (A6), by using F, and Fy instead of F and F3, the force components in
the body-fixed frame may be written as

{ Fy = 2(m Uy +maoUs +mp32) = prb® 2(U, + b £2),
) ) ) ) ) (A9)
Fy=—(m2 U1 +m22Uz +my382) = —prb*(Up + b £2).

Similarly, by using the basis potentials, the impulse components can be expressed as

pPy=—p [5, ¢n:dS=—p [g Ui ¢iny dS=m11Uy +mi2Us +m1382,
(A10)
pPy=—p [5, ¢nydS=—p [g Ui pinydS=ma Uy +mz2Us +my382.
It follows for the flat plate
P, =0,
(Al1)
Py =nb*(Ur + b ).
Finally, the forces can be expressed in terms of the impulses as
d
F, =r3 be on, dS — p$2 fSh ¢ny dS=pS$2 Py,
(A12)

d dpP
Fy =pg be ¢ny dS + p$2 be ¢n, dS=—p—5~.

By following the same approach as above, the fluid dynamic moment is given by
M;=pU; / ¢i (r' x n); dS + peji U; Ux / i dS  i=1,2,3. (A13)

The boundary condition on the body contour is expressed as in (A1) with r’ instead
of r, while each one of the basis potentials ¢; satisfies the condition (A4). In the present
two-dimensional solution, the only non-vanishing component of the moment is M3, which
follows from (A13)

M3:p<Ui/¢i (r' xn)3dS 4+ U; U1/¢in2dS—Ui Uz/(l)inldS) i=1,2,3.

(A14)
By using (A7) and introducing further components of the added-mass matrix
’ 03 .
o | ¢i(rxmn)3dS=p ¢,~8—dS=—m3,~ i=1,2,3. (A15)
Sp n

Equation (A14) gives, writing §2 for Us,
M3 =—Uymyz — Uamps — 2m3z — U12m12 —UyUymy — 2Uims3;
+ Uy Uamyy + Udmyy + 2 Uamy, (A16)
which, for the flate plate, can be simplified into

M3 = —Uymys — 2m33 — UpUyman — 2U1m3;
.9 ..
= —npb? [b U, + gbzfz +UU + b .QUl} , (A17)

where m»3 and m33 relate fluid inertia to heave and pitch, while m, and m3, introduce
nonlinear effects due to added-mass coupling. Let us recall that U; and U; are the LE
translation velocities in the body frame of reference.

1021 A34-17


https://doi.org/10.1017/jfm.2025.10731

https://doi.org/10.1017/jfm.2025.10731 Published online by Cambridge University Press

G. Graziani, D. Paniccia and R. Piva

Appendix B. Non-dimensional torque balance equation and pitch solution

We consider a thin flat plate with thickness s*, length ¢* and density p;. The semi-
chord b* = ¢*/2 is chosen as the reference length. The total mass of the plate is given by
my, = py s* c*. As previously defined, dimensional quantities are denoted with an asterisk
(*), while dimensionless variables appear without one. We introduce the following non-
dimensional quantities x, %, ¢, among others. Specifically we define x = x*/b*, h = h* /b*
andt =t*/T*.

In order to estimate the mass of the body, we assume, as previously defined in Paniccia
et al. (2021c¢), that the length of the total body (virtual + tail) is L*; that the length of the
tail is ¢* = L*/7; and that the virtual body may be represented by an elliptical shape with
chord ¢}, = (6/7) L* =6 c*, 4 % thickness with s;; = 0.04 ¢ = 0.24 ¢*. So the area of the
virtual body is V' = (c}; 55 /4) = 0.367c*? and my = pp V.

The equation governing passive flapping motion, in its dimensional form, is

I* 6%+ C* 6 + k" 6" = M} + M, (B1)

where 6 has been defined in (3.1). The moment of inertia about the LE is [* =
(8/3)pjs* b*3 while C* and k* represent the structural damping coefficient and the
torsional stiffness of the spring, respectively. Here, M ; is the fluid dynamic moment acting
on the foil’s LE and M is the inertial torque caused by the vertical acceleration of the LE.
(i.e. the pitching pivot point) during flapping.

To obtain the non-dimensional form of (B1) we divide all terms by pb*ZV;;z, where
Vg = b* f* is the reference velocity.

The non-dimensionalised inertia term becomes

6% 8pis*b0* 16 pf s 16

=_ - = —R0, B2
,Ob*4f*2 3 ,Ob*4f*2 3 ,O*C* 3 ( )

where R =s* p;/c* p* is the ratio of body to fluid inertia. Similarly, the non-dimensional
damping term is

C* 9* C* f* 9 . C*
T a2 = ) =C6H where C= Tard e (B3)
p*b** f p*b** f p*b** f
The coefficient of the spring restoring torque is expressed as
k*
—p*b*4f*2 =K (B4)

In this form, according to (B4), the spring effect, through K, appears to be related to
the ratio k*/ f*2. The inertial moment due to the forced heaving motion of the body,

M} = —m;b*h'*, may be expressed in non-dimensional form as
M s
My=——i— =822 =162 R . (B5)
,O*b* f* ,0* b*

The corresponding expression of the fluid dynamic moment is obtained by introducing
in (4.3) the above defined non-dimensional quantities
M ;’Z .. 17 ..
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where the non-dimensional coefficient CC is defined as

my, 1 4R
CC=m*+]T *b*2=1 JTP*C*=4R+7T' B7)
P p +7 o s*
The final non-dimensional form of the torque balance (B1) is
16 _ .. .
?R9+C9+K9=Mf+Mi, (BS)
which can be recast, by using the above reported expressions for M; and Mz, as
16 1 .. . . )
?R+n CC—I—g 0+CO+KO=—aCCh+167°R h, (B9)
or restated in a more concise form as
A1 +CO+KO=—-mCCh+16m°Rh, (B10)
where
16 1
A= ?R + CC+§ . (B11)

Equation (B10) can be rearranged, by using the harmonic expressions for § and / and
by defining two further non-dimensional coefficients AA and BB, as

AA0+CO=BBh, (B12)
where
M= —4m2A, +K=—202R K — g3 (0RFT (B13)
- PR 8R+27)’
4R+2
BB=47°CC +167*R=167% R [J} (B14)
4R+m

Finally, by using standard manipulations, the solution for the passive pitch motion is
obtained in terms of 6, and ¢

BBh,
90 =,
VAA? + 472C? (B15)
—2nC
tan(¢) = —-

Equation (B15) allows for several observations: (i) the phase angle increases with C and
reaches its maximum when AA =0 ; (ii) the pitch amplitude vanishes for BB =0, i.e. for
a massless body, and is otherwise inversely related to C.

The passive flapping motion is described by (B1), which corresponds to a damped
system with harmonic forcing. Therefore, a natural frequency may be evaluated which
is related to a resonant behaviour. We have expressed the fluid dynamic torque in (4.3)
which is here restated in a more concise form as

M} = M;h* + M;6*, (B16)
where
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1
M = —gp*b*>CC M} =—mp*b** [CC+ g} , (B17)

and CC is defined in (B7).
Let us assume no heave forcing (i.e. M; =0) and M} =0. Now (B1), by developing
time derivatives, becomes

— (I = M) +i 0" C* +k*=0. (B18)

The undamped natural frequency of torsional vibration in vacuum depends on the spring
stiffness k* as well as on the moment of inertia about the LE I*: w} = \/k*/I* The
presence of the fluid modifies this frequency and from (B18) we obtain

k* k*
wh = = . (B19)
I*— M} p*b** A

Appendix C. Kinetic energy

The kinetic energy (T') of the isolated fluid—body system may be expressed through the
sum of the kinetic energy of the body and of the fluid

1 ey 1 9
Toody = Zmp(uy + 1) + 210" (ChH

The kinetic energy of the fluid may be expressed in terms of the added mass and of the
base velocities (see e.g. Childress 1981; Newman 2017)

1 1 . . ..
Ttiyia = S U;Uj= 5 [mZZ(My + 1) +m336%+2 m3(uy + h)Q] , (C2)

which may be added to give

1 . . .
T = 5 |:(mb + mzz)(uy + h)2 + (Izz + m33)92:| + ma3 (uy + h)9 (C3)

As discussed in Kanso (2009), the total kinetic energy could be split into three
contributions: one related to the shape deformation (4 and 6), one related to the body
locomotion (uy) and the remaining one acting as a coupling effect between both of them.
In her case of a massless body it can be shown that most of the energy input into the fluid
by the deformation is transformed in locomotion energy.

Here, we consider how the overall energy of the fluid is distributed between that of the
fluid, T'fuiq given by (C2), and that of the body’s motion, Tjsqy given by (C1). When the
surface of the body is periodically deformed due to the effect of some internal mechanism,
the momentum of the body+fluid system changes and both these contributions are
periodically oscillating in time. In the absence of shed vorticity, no energy is transferred
to the wake, hence the total energy displays periodic oscillations with a constant non-
zero mean value. On the contrary, in the presence of wake release, the mean value of the
total energy increases with time. Each one of the above reported expressions is shown in
figure 10 during one cycle.

In figure 11 we show the behaviour during one cycle of each one of the three parts of
the total kinetic energy appearing in (C3). We notice that the first two terms are always
positive, while the third one, representing the coupling between heave and pitch, has a
negative mean value.
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Figure 10. Time behaviour of total kinetic energy T = Tpoqy + T f1uia and partial contributions Tpoay, Tfiuia
for mp #0, hy, =0.1, 6, = 10°, ¢ = —90°.

T| —
Ty e
T3 ——
Total =
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t

Figure 11. Time behaviour of the separate contributions to the total kinetic energy appearing in (C3) for m;, #
0, ho=0.1, 6, =10°, ¢ = —90°. Here, Ti = (1/2)(mp +m2)(uy + )%, To = (1/2)(I.; + (9/8)mxnb*)6?,
T3 = bOmp(uy + h).
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