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Almost Simplicial Polytopes: The Lower
and Upper Bound Theorems

Eran Nevo, Guillermo Pineda-Villavicencio, Julien Ugon,
and David Yost

Abstract. We study n-vertex d-dimensional polytopes with at most one nonsimplex facet with, say,
d+ s vertices, called almost simplicial polytopes. We provide tight lower and upper bound theorems for
these polytopes as functions of d , n, and s, thus generalizing the classical Lower Bound heorem by
Barnette and the Upper Boundheorem by McMullen, which treat the case where s = 0. We charac-
terize theminimizers and provide examples ofmaximizers for any d. Our construction ofmaximizers
is a generalization of cyclic polytopes, based on a suitable variation of the moment curve, and is of
independent interest.

1 Introduction

In 1970,McMullen [19] proved the Upper Boundheorem (UBT) for simplicial poly-
topes, polytopeswith each facet being a simplex,while between 1971 and 1973, Barnette
[4, 5] proved the Lower Bound heorem (LBT) for the same polytopes. Both results
are major achievements in the combinatorial theory of polytopes; see, for example,
the books [13,27] for further details and discussion.

hese results can be phrased as follows: let C(d , n) (resp. S(d , n)) denote a cyclic
(resp. stacked) d-polytope on n vertices, and, for a polytope P, let f i(P) denote the
number of its i-dimensional faces. hen the classical LBT and UBT read as follows.

heorem 1.1 (Classical LBT andUBT) For any simplicial d-polytope P on n vertices,
and any 0 ≤ i ≤ d − 1,

f i(S(d , n)) ≤ f i(P) ≤ f i(C(d , n)) .

henumbers f i(S(d , n)) and f i(C(d , n)) are explicit known functionsof (d , n, i),
to be discussed later.

We generalize the UBT and LBT to the following context: consider a pair (P, F)
where P is a polytope, F is a facet of P, and all facets of P are diòerent from F are
simplices. We call such a polytope P an almost simplicial polytope (ASP) and a pair
(P, F) an ASP-pair. Since every ridge of the facet F is shared with another facet of P,
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the facet F is necessarily simplicial. We will be interested only in the combinatorics
of P.

Let P(d , n, s) denote the family of d-polytopes P on n-vertices such that (P, F)
is an ASP-pair, where F has d + s vertices (s ≥ 0). Note that P(d , n, 0) consists of
the simplicial d-polytopes on n vertices. In this paper, we deûne certain polytopes
C(d , n, s), S(d , n, s) ∈ P(d , n, s), explicitly compute their face numbers, and prove
the following theorem.

heorem 1.2 (LBT and UBT for ASP) For any d , n, s, any polytope P ∈ P(d , n, s),
and any 0 ≤ i ≤ d − 1,

f i(S(d , n, s)) ≤ f i(P) ≤ f i(C(d , n, s)) .

Further, for d ≥ 4, the polytopes P ∈ P(d , n, s) with f i(P) = f i(S(d , n, s)) for some
1 ≤ i ≤ d − 1 are characterized combinatorially and satisfy the above equality for all
0 ≤ i ≤ d − 1.

he characterization of the equality case above generalizes Kalai’s result [14] that
for d ≥ 4 equality in the classical LBT holds for some 1 ≤ i ≤ d − 1 if and only if P is
stacked. he polytopes C(d , n, s) form an ASP analog of cyclic polytopes and satisfy
a combinatorial Gale-evenness type description of their facets.

he combinatorics of P could also be understood by looking at certain triangula-
tions of F. Consider an ASP-pair (P, F). Projectively transform P into a combinato-
rially equivalent polytope such that the orthogonal projection of Rd onto the hyper-
plane spanned by the facet Fmaps P / F into the relative interior of F; see [27, Ex. 2.18].
hink of F as sitting in (Rd−1 , 0). Under this setting, the facet F admits a regular tri-
angulation C that is obtained by a li�ing of the vertices of C that leaves the vertices of
F ûxed; see [12, Sec. 17.3]. hen the polytope P becomes the convex hull of the li�ed
vertices of C. Consequently, specifying the ASP-pair (P, F) amounts to specifying the
aforementioned triangulation of F.

We pay special attention to simplicial balls of the form P′ ∶= ∂P / {F}, which are a
subfamily of certain balls considered by Billera and Lee [7] in their study of polytope
pairs. In particular, their results give tight upper and lower bound theorems for the
face numbers of simplicial (d − 1)-dimensional balls of the polytope-antistar form,
that is, balls of the form ∂Q / {v}, or ∂Q / v for simplicity, where Q is a simplicial d-
polytope and v is a vertex of Q that is deleted. hese bounds are given as functions of
d , f0(∂Q / v), f0(Q/v), where Q/v denotes the vertex ûgure of v in Q. For an ASP-
pair (P, F), let Q be obtained from P by stacking a pyramid over F with a new vertex
v; the stacking operation is deûned in detail in Section 3. hen F ≅ Q/v and P′ =
∂P / {F} = ∂Q / v. hus, our balls P′ form a subfamily of the balls ∂Q / v considered
in [7]. he bounds we obtain in heorem 1.2 are strictly stronger than those of [7],
which apply to all polytope-antistar balls.

Let f (P) = (1, f0(P), f1(P), . . . , fd−1(P))denote the f -vectorof P, a vector record-
ing the face numbers of P. he following problem naturally arises.

Problem 1.3 For ASP-pairs (P, F), characterize the pairs of f -vectors ( f (P), f (F)).
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A solution to the problem abovewould generalize thewell-known g-theorem char-
acterizing the face numbers of simplicial polytopes, conjectured by McMullen [20]
andproved byBillera–Lee [6] (suõciency) and Stanley [24] (necessity); the g-theorem
solves the case s = 0 and provides some restrictions when s > 0. We leave this gen-
eral problem to a future study. We remark that for the corresponding problem for the
larger family of polytope pairs [7], there is currently no conjectured characterization,
a�er Kolins’ [18] counterexamples to the characterization conjectured by Billera and
Lee [7].

he proof of the LBT for ASP and the characterization of the equality cases are
based on framework-rigidity arguments (cf. Kalai [14]) and on an adaptation of the
well-known McMullen–Perles–Walkup reduction (MPW reduction) [14, Sec. 5] to
ASP; see Section 3.

he numerical bounds obtained in the UBT for ASP are a special case of a recent
result of Adiprasito and Sanyal [1, hm. 3.9], who proved the bounds for homology
balls whose boundary is an induced subcomplex. While their proof relies on ma-
chinery from commutative algebra, our proof is elementary and is based on a suitable
shelling of P. Further, our construction of maximizers C(d , n, s) is a generalization
of cyclic polytopes, based on a suitable variation of themoment curve, and is of inde-
pendent interest; see Section 4.

Our proof techniques are likely to extend beyond ASP to polytopes P where all
non-simplex proper faces F1 , . . . , Fn are facets, but probably not beyond that, as a key
fact that we use in this paper, and probably will need in the extended setting, is that
the f -vector of P can be recovered from the f -vector of P′ ∶= ∂P / {F1 , . . . , Fn} and n.

2 Preliminaries

For undeûned terminology and notation, see [27] for polytopes and complexes or
[14, Sec. 2] for framework rigidity.

2.1 Polytopes and Simplicial Complexes

he k-dimensional faces of a polyhedral complex ∆ are called k-faces, where the
empty face has dimension −1. For a simplicial complex ∆ of dimension d − 1, the
numbers fk(∆) are then related to the h-numbers hk(∆) ∶= ∑k

i=0(−1)
k−i(

d−i
k−i) f i−1(∆)

by

(2.1) fk−1(∆) =
k

∑
i=0

(
d − i
k − i

)h i(∆).

he h-vector of ∆, (. . . , hk , hk+1 , . . .), can be considered as an inûnite sequence if
we let hk(∆) = 0 for k > d and k < 0. he g-numbers are deûned by gk(∆) =

hk(∆) − hk−1(∆).
For an ASP pair (P, F), where P is d-dimensional, the following version of the

Dehn–Somerville equations applies to the complex P′ = ∂P / {F}.
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Proposition 2.1 ([12,hm. 18.3.6], Dehn–Somerville Equations for P′) he h-vector
of the simplicial (d − 1)-ball P′ with boundary ∂F satisûes for k = 0, . . . , d,

(2.2) hk(P′) = hd−k(P′) + gk(∂F).

Note that hk(P′) = 0 and hk(∂F) = 0 for k ≥ d and hd−1(∂F) = 1.
We proceed with a number of deûnitions related to simplicial complexes. Let 2A

denote the simplicial complex generated by the set A; it is a simplex. Sometimes we
abbreviate this complex by A when the context is clear. Say ∆ is pure if all its maxi-
mal faces, called facets, have the same dimension, and a pure simplicial complex ∆ is
shellable if its facets can beordered F1 , F2 , . . . , such that for each j > 1, 2F j intersects the
complex⋃i< j 2Fi in a pure codimension 1 subcomplex of 2F j . Such an order is called a
shelling order or shelling process of ∆. For a shelling order, the set of faces 2F j / ⋃i< j 2Fi

has a unique minimal element, called the restriction face of F j , denoted R j . For any
shelling of ∆, h i(∆) equals the number of facets in the shellingwhose restriction face
has size i; cf. [27, hm. 8.19]. Note that P′ is shellable, by a Bruggesser–Mani line
shelling [11, Prop. 2].

he link of a face F in the simplicial complex ∆ is

link∆(F) ∶= {T ∈ ∆ ∶ T ∩ F = ∅, F ∪ T ∈ ∆},

and its star, star∆(F) is the complex ⋃F⊆T 2T . hus, using the join operator on sim-
plicial complexes, we obtain 2F ∗ link∆(F) = star∆(F). For a general polyhedral
complex, the star of a face F is the polyhedral subcomplex formed by all faces con-
taining F, and their faces. For a vertex v in a polytope Q, its vertex ûgure Q/v is a
codimension 1 polytope obtained by intersecting Q with a hyperplaneH below v; that
is, v is on one side of H and the other vertices of Q are on the other side. If starQ(v)
is simplicial, then the boundary complex of Q/v coincides with linkQ(v).
A subcomplex K of ∆ is induced if it contains all the faces in ∆ that only involve

vertices in K. Note that, for an ASP-pair (P, F), ∂F is an induced subcomplex of P′,
by convexity.

he underlying set ∣C∣ of a polyhedral complex C is the point set⋃Q∈C Q of its geo-
metric realization. A reûnement (or subdivision) of C is another polyhedral complex
D such that ∣D∣ = ∣C∣, and for any face F ∈ D, there exists a face T ∈ C such that
∣F∣ ⊆ ∣T ∣.
A simplicial complex ∆ is a homology sphere (over a ûxed ûeld k) if for any face

F ∈ ∆, the reduced homology groups

H̃ i(link∆(F);k) ≅ H̃ i(Sdim ∆−dim F−1;k)

for all i,where S j is the j-dimensional sphere. Say∆ is a homology ball if H̃ i(link∆(F);
k) vanishes for i < dim∆ − dim F − 1 and is isomorphic to either 0 or k for i =

dim∆−dim F−1. Furthermore, the boundary complex ∂∆ of ∆, consisting of all faces
F for which H̃dim ∆−dim F−1(link∆(F);k) = 0, is a homology sphere (of codimension
1). In particular, simplicial spheres (resp. balls) are homology spheres (resp. balls). For
the ASP-pair (P, F), the complex P′ ∶= ∂P / {F} is a shellable simplicial (d − 1)-ball
and its boundary complex ∂P′, which coincides with ∂F, is a homology sphere.
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2.2 Rigidity

We mostly follow the presentation in Kalai’s paper [14]. Let G = (V , E) be a graph,
and dist(a, b) denote Euclidean distance between points a and b in a Euclidean space.
A d-embedding α ∶ V → Rd is called rigid if there exists an ε > 0 such that if
β ∶ V → Rd satisûes dist(α(v), β(v)) < ε for every v ∈ V and dist(β(u), β(w)) =

dist(α(u), α(w)) for every {u,w} ∈ E, then dist(β(u), β(w)) = dist(α(u), α(w))

for every u,w ∈ V . he graph G is said to be generically d-rigid if the set of its rigid
d-embeddings is open and dense in themetric vector space of all of its d-embeddings.
Given a d-embedding α ∶ V → Rd , a stress on α is a function w ∶ E → R such that for
every vertex v ∈ V ,

∑
u∶{v ,u}∈E

w({v , u})(α(v) − α(u)) = 0.

he stresses on α form a vector space, called the stress space. Its dimension is the same
for all generic d-embeddings (namely, for an open and dense set in the space of all
d-embeddings of G). A graph G is called generically d-stress free if this dimension is
zero.

If a generic α ∶ V → Rd is rigid, then f1(G) ≥ d f0(G) − (
d+1
2 ) [2, Sec. 3]. hus, if

∆ is a simplicial complex of dimension d − 1 whose 1-skeleton is generically d-rigid,
then f1(∆) ≥ d f0(∆) − (

d+1
2 ), and g2(∆) is the dimension of the stress space of any

generic embedding. Based on these observations for ∆ the boundary of a simplicial
d-polytopewith d ≥ 3, andmore general complexes, Kalai [14] extended the LBT and
characterized theminimizers.
For a d-polytope P with a simplicial 2-skeleton, the so-called toric g2(P) coincides

with g2(∂P) = f1(P) − d f0(P) + (
d+1
2 ). By a result of Alexandrov (cf. Whiteley [26]),

the toric g2(P) equals the dimension of the stress space of the 1-skeleton of P.
For our LBT for ASP, we will need the following very special case of Kalai’s mono-

tonicity,1 which Kalai proved using rigidity arguments.

heorem 2.2 (Kalai’s Monotonicity [15,hm. 4.1], weak form) Let d ≥ 4, let P be a
d-polytope with a simplicial 2-skeleton, and let F be a facet of P. hen

g2(P) ≥ g2(F).

Equivalently, f1(P) − f1(F) ≥ (d f0(P) − (
d+1
2 )) − ((d − 1) f0(F) − (

d
2)).

3 A Lower Bound Theorem for Almost Simplicial Polytopes

Before proving the lower bound theorem, we give several deûnitions that we use in
this section.

Let G be a proper face of a polytope Q. A point w is beyond G (with respect to Q)
if (i) w is not on any hyperplane supporting a facet of Q, (ii) w and the interior of Q
lie on diòerent sides of any hyperplane supporting a facet containingG, but (iii) lie on

1Kalai’s monotonicity conjecture on the toric g-polynomials, asserting that g(P) ≥ g(F)g(P/F) co-
eõcientwise for any face F of P, was ûrst proved for rational polytopes by Braden and MacPherson [9].
Later, using the theory of combinatorial intersection homology, Braden [8] proved Kalai’s conjecture in
its full generality.
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the same side of every other facet-deûning hyperplane that does not contain G. For
anASP-pair (P, F),wewill consider the simplicial polytopeQ obtained as the convex
hull of P and a vertex y beyond F.
A polytope is k-simplicial if each k-face is a simplex; a (d−1)-simplicial d-polytope

is simply a simplicial d-polytope. A simplicial d-polytope is called stacked if it can be
obtained from a d-simplex by repeated stacking, namely, adding a vertex beyond a
facet and taking the convex hull. While stacked d-polytopes on n vertices, denoted
S(d , n),may have diòerent combinatorial structures, they all have the same f -vector,
given by

fk(S(d , n)) = ϕk(d , n) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

(
d
k)n − (

d+1
k+1)k for k = 1, . . . , d − 2,

(d − 1)n − (d + 1)(d − 2) for k = d − 1.

A homology sphere is stacked if it is combinatorially isomorphic to the boundary
complex of a stacked polytope.
For any integers d ≥ 3, s ≥ 0, and n ≥ d + s + 1, let F be a stacked (d − 1)-polytope

with d + s vertices. Construct a pyramid over F and then stack n − d − s − 1 times
over facets of the resulting polytope that are diòerent from F to obtain a polytope
S(d , n, s) in P(d , n, s). One easily computes the f -vector of S(d , n, s), since reûning
F by its (unique) stacked triangulation reûnes the boundary complex of S(d , n, s) to
a stacked simplicial sphere with f -vector f (S(d , n)). We obtain

f (S(d , n, s)) = f (S(d , n)) − (0, 0, . . . , 0, s, s).

We are ready to state the LBT for ASP (heorem 3.1); its minimizers will be char-
acterized later (seeheorems 3.3 and 3.5). In the proof ofheorem 3.1 we rely on the
MPW reduction, which states that if the result is true for the edges of a simplial poly-
tope, then it is true for all faces of all dimensions of the polytope. his reduction is
clearly explained in the proof of [5,hm. 1]. For almost simplicial polytopes, the same
reasoning shows that if the result is true for edges, it is true for all faces of dimensions
at most d − 3; see also [14, Sec. 5].

heorem 3.1 (LBT forASP) Let d ≥ 3, s ≥ 0, n ≥ d+s+1. hen for any P ∈ P(d , n, s)
and 1 ≤ i ≤ d − 1, we have

f i(S(d , n, s)) ≤ f i(P).

Proof We proceed by induction on d, with the case d = 3 as the basis. For d = 3 and
n ≥ s + 4, any P ∈ P(3, n, s) has f -vector

f (P) = (1, n, 3n − 6 − s, 2n − 4 − s) = f (S(3, n, s)).

Let d ≥ 4.
As P is 2-simplicial, by a result ofWhiteley [26, hm. 8.6], the 1-skeleton of P is

generically d-rigid, hence f1(P) ≥ ϕ1(d , n), and by the MPW reduction (as usual,
counting pairs (v ,A) such that v is a vertex in an i-face A), f i(P) ≥ ϕ i(d , n) for all
2 ≤ i ≤ d − 3 as well; see [14,hm. 12.2].2 he rest of the proof will deal with the cases
i = d − 2, d − 1.

2Kalai’s theorem contains a typo. It includes the case i = k, while it holds only for i < k, where P is
k-simplicial. Our ASP P is (d − 2)-simplicial.
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Denote by (P, F) the ASP-pair, and by degP(v) the degree of a vertex v in the 1-
skeleton of P. We now prove the inequality for the facets, by a variation of theMPW
reduction. Note that the vertex ûgure P/v in P of any vertex v ∈ vert F is anASP (with
degP(v) vertices),while for any vertex v ∈ vert P / vert F, P/v is a simplicial polytope;
cf. [10,hm. 11.5]. Furthermore, for a vertex v ∈ vert F, letting sv ∶= degF(v)−(d−1) ≥
0 gives P/v ∈ P(d − 1, degP(v), sv).
Double counting the number of pairs (v ,A) for a vertex v in a facet A of P, we

obtain the following inequalities:

d( fd−1(P) − 1) + (d + s)

= ∑
v∈vert P

fd−2( linkP(v))

≥ ∑
v∈vert P / vert F

((d − 2)degP(v) − d(d − 3))

+ ∑
v∈vert F

((d − 2)degP(v) − d(d − 3) − sv)

= 2(d − 2) f1(P) − d(d − 3) f0(P) − 2 f1(F) + (d − 1)(d + s)

≥ 2(d − 2)[d f0(P) − (
d + 1
2

)] − d(d − 3) f0(P)

− 2[(d − 1) f0(F) − (
d
2
)] + (d − 1)(d + s)

= d(d − 1) f0(P) − d(d + 1)(d − 2) − s(d − 1),

where the ûrst inequality is by the induction hypothesis, and the second inequality is
by Kalai’s monotonicity heorem 2.2 and the LBT inequality for f1(P). Comparing
the LHS with the RHS gives

fd−1(P) ≥ ϕd−1(d , n) − s.

he inequality for fd−2(P) follows from the inequality for fd−1(P) bydouble counting.
Since any ridge in P is contained in exactly two facets, counting the number of pairs
(R,A) for a ridge R in a facet A of P, we obtain that

2 fd−2(P) = d( fd−1(P) − 1) + fd−2(F).

Applying the classical LBT to the simplicial (d − 1)-polytope F with f0(F) = d + s, we
get

2 fd−2(P) ≥ d( fd−1(P) − 1) + (d − 2)(d + s) − d(d − 3),

and applying the lower bound for fd−1(P) yields, a�er dividing both sides by 2, the
desired lower bound fd−2(P) ≥ ϕd−2(d , n) − s. ∎

We now turn our attention to characterizing the minimizers of heorem 3.1. We
start with some terminology and background.
A proper subset A of the vertices of a d-polytope P is called a missing k-face of P

if the cardinality of A is k + 1, the simplex on A is not a face of P, but for any proper
subset B of A the simplex on B is a face of P. If A is a missing (d − 1)-face of P
(a.k.a. missing facet), then adding the simplex A cuts P into two d-polytopes P1 , P2,
glued along the simplex A. We denote this operation by P = P1#P2. Repeating this
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procedure on each Pi until no piece Pi contains a missing (d − 1)-face results in a
decomposition P = P1#P2# ⋅ ⋅ ⋅ #Pt , where intersections along missing (d − 1)-faces of
P deûne the edges of a tree whose vertices are the Pi ’s. Call such a decomposition the
prime decomposition of P, and call each Pi a prime factor of P. See [15, Sec. 3.8]. For
d ≥ 3, a prime decomposition of P as above is uniquely deûned; this statement follows
from the following simple observation.

Lemma 3.2 Let P be a d-polytope, d ≥ 3. hen the intersection of any two missing
facets of P contains no interior point of P.

Proof Let A and B be twomissing facets of a P and assume by contradiction that v is
an interior point in the intersection of A and B. Denote by HA (resp. HB) the unique
hyperplane containing A (resp. B). As d ≥ 3, the intersection of HA and HB contains
a line ℓ through v. Consider the intersection ℓ ∩ A ∩ B and denote this segment by
[u,w]. hen v is interior to [u,w]. If u is not on the boundary ∂A of A, it must be on
∂B, but the ûrst condition says that u is interior to P, while the second condition says
that u is in ∂P, a contradiction. hus, both u and w are in ∂A∩ ∂B.

Let Fu be theminimal face of ∂P containing u, and deûne Fw similarly. Both Fu and
Fw are proper faces of both A and B. As v is interior to A, vert Fu ∪ vert Fw = vertA.
But then vertA ⊆ vertB, implying that A = B, a ûnal contradiction. ∎

By virtue of Lemma 3.2, for d ≥ 3,we denote by∆P the polyhedral complex deûned
by the prime decomposition of a d-polytope P. hen a simplicial d-polytope P is
stacked if and only if all its prime factors are d-simplices. his deûnition immediately
extends to polyhedral spheres where the operation # corresponds to the topological
connected sum.

We start with the characterization of theminimizers for the easier case d > 4.

heorem 3.3 (Characterization ofminimizers for d > 4) Let d > 4 and P ∈ P(d , n, s).
Let ∆F be the polyhedral complex corresponding to the prime decomposition of F, and let
∆ be the reûnement of the boundary complex ∂P of P obtained by reûning F by ∆F . As-
sume there is some 1 ≤ i ≤ d − 1 for which f i(P) = f i(S(d , n, s)). hen all prime factors
in the prime decomposition of ∆ are d-simplices. In particular, f (P) = f (S(d , n, s)).

Remark 3.4 Let Q be a polytope, G a facet of Q, and H the hyperplane containing
G. An H-stacking on Q is the operation of (i) adding a new vertex w in H, beyond
a facet of G (with respect to G) such that perturbing w from H to the side of the
interior of Q makes w beyond a facet of Q, and (ii) taking the convex hull of w and
Q. heminimizers considered in heorem 3.3 are precisely the polytopes that can be
obtained by the following recursive procedure: startwith a d-simplex having a facet in
a hyperplane H, and repeatedly either H-stack or (usual) stack over a facet not in H.
Clearly this procedure produces a prime decomposition of ∆ ofheorem 3.3. Con-

versely, consider the rooted tree corresponding to the prime decomposition of ∆.
Starting with the root, add vertices one by one so that the resulting induced forest
is always a tree. Such ordering induces a recursive procedure as above.
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Proof of Theorem 3.3 By the classical MPW reduction for 1 ≤ i ≤ d − 3 and the
variation of it we used in the proof of heorem 3.1 for d − 2 ≤ i ≤ d − 1, equality for
some 1 ≤ i ≤ d − 1 implies equality for i = 1, so it is enough to consider the case i = 1.
From Kalai’s monotonicity (heorem 2.2) and our assumption g2(P) = 0, it follows
that g2(F) = 0. As F is simplicial of dimension ≥ 4, Kalai’s [14,hm. 1.1(ii)] says that
F is stacked, thus ∆ is a simplicial (d−1)-sphere. Since g2(∆) = 0, by [14,hm. 1.1(ii)]
again, ∆ is stacked, as desired.

In particular, as f (P) = f (∆) − (0, . . . , 0, s, s) = f (S(d , n)) − (0, . . . , 0, s, s), we
conclude that f (P) = f (S(d , n, s)). ∎

For d = 4, F need not be stacked. For example, the pyramid over any simplicial
3-polytope is aminimizer. We obtain the following characterization ofminimizers.

heorem 3.5 (Characterization of minimizers for d = 4) Let P ∈ P(4, n, s), and
keep the notation ofheorem 3.3. Assume there is some 1 ≤ i ≤ d − 1 for which f i(P) =
f i(S(d , n, s)). hen the prime factors in the prime decomposition of ∆ are either d-
simplices with no facet contained in ∣F∣ or pyramids over prime factors of F.

In order to prove this theorem, we ûrst need to show generic d-rigidity for the
1-skeleton of amuch larger class of complexes.

Let Ck be the family of homology k-balls ∆ such that:
● the induced subcomplex ∆[I] on the set I of internal vertices has a connected 1-

skeleton, and
● for any edge e in the boundary complex ∂∆, there exists a 2-simplex T , e ⊂ T , such

that T has a vertex in I.
Note that any homology k-ball ∆ whose boundary ∂∆ is an induced subcomplex is
in Ck .3 Indeed, as ∂∆ is induced, any facet of ∆ intersects I nontrivially. Assume by
contradiction that the graph ∆[I]≤1 is disconnected, and say equals the disjoint union
of nontrivial graphs G1 and G2. As ∆ is facet-connected, it has facets F1 and F2 whose
intersection S has codimension 1 and Fi has a vertex in G i for i = 1, 2. hen S is
disjoint from I, so S ∈ ∂∆. his is a contradiction, as S is contained in two facets of ∆,
not in one.

In particular, for P ∈ P(d , n, s), the simplicial complex P′ = ∂P / {F} is in Cd−1.

Lemma 3.6 Let d ≥ 4. he 1-skeleton of any ∆ ∈ Cd−1 is generically d-rigid. hus,
f1(∆) ≥ d f0(∆) − (

d+1
2 ).

Proof he proof follows fromKalai’s proof of the classical LBT.Apply [14, Prop. 6.4]
where the tree T is a spanning tree of the 1-skeleton of ∆[I]. ∎

Proof of Theorem 3.5 Consider a prime factor L of ∆. hen L is a 4-polytope that is
2-simplicial, so it has a generically 4-rigid 1-skeleton by [26,hm. 8.6]. As g2(P) = 0,
the 1-skeleton of L, denoted by G,must be generically 4-stress free. hus, g2(L) = 0.

If L does not contain a facet in ∆F , then L is simplicial, with g2(L) = 0, and hence
is stacked by [14,hm. 1.1]. Also, being prime, L is a 4-simplex.

3his follows from Alexander duality; however, we preferred to give an easier argument.
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Assume then that L contains a facet F′′ contained in ∣F∣, so (L, F′′) is anASP-pair.
If L has a unique vertex outside F′′, then L is a pyramid over a prime factor of F, and
we are done. Assume the contrary, so there is an edge vu ∈ G with v , u ∉ F′′ (for
concreteness, taking v , u to be the highest two vertices of L above the hyperplane of
F works).
First,we show that vu satisûes the link condition linkL(v)∩ linkL(u) = linkL(vu),

which guarantees that contracting the edge vu in the simplicial complex ∂L / {F′′}
results in ∆̃ ∈ C3; see e.g., [23, Prop.2.4].4 Indeed, if vu fails the link condition, it
means that vu is contained in amissing face M, with 3 or 4 vertices. Now, M cannot
have 4 vertices, as L is prime. If M = vuz, then uz is an edge of L not in linkL(v).
Since linkL(v) is a homology 2-sphere (thus, a simplicial 2-sphere), its 1-skeleton is
generically 3-rigid. Consequently, the 1-skeleton of starL(v) is generically 4-rigid, and
adding uz to it yields a 4-stress in G, a contradiction.

Let m be the number of vertices in the cycle linkL(vu); then f1(∆̃) = f1(L)−m− 1
and f0(∆̃) = f0(L) − 1, which implies that g2(L) = g2(∆̃) + (m − 3).

If m > 3, then applying Lemma 3.6 to ∆̃ yields g2(L) > 0, a contradiction. So
assume m = 3.
Denote by x , y, z the vertices of linkL(vu). If the triangle xyz ∈ L, then, as L is

prime, both tetrahedra xyzv and xyzu are faces of L, so L is the 4-simplex xyzuv, a
contradiction (as it has a facet F′′ in F).

We are le� to consider the case xyz ∉ L. he argument here is inspired by Barnette
[4, hm. 2]. In this case, the 3-ball formed by the join vu ∗ ∂(xyz) is an induced
subcomplex of ∂L / {F′′}. Now replace it by ∂(vu) ∗ xyz (this is a bistellar move) to
obtain from ∂L / {F′′} the complex∆′′. Clearly, ∆′′ is a homology 3-ball, and any edge
on its boundary is part of a 2-simplex with an internal vertex (just take the same one
as in ∂L / {F′′}). To show ∆′′ ∈ C3, we are le� to show that the graph on the internal
vertices I of ∆′′ is connected. Assume not, namely removing the edge uv disconnects
the induced graph on I in ∂L / {F′′}. In particular, x , y, z ∈ F′′. But xyz ∉ L, so xyz
is amissing face of F′′, contradicting that F′′ is a prime factor of F.

We conclude that ∆′′ ∈ C3; thus, by Lemma 3.6, ∆′′ ∪ {vu} has a nonzero 4-stress.
However, the 1-skeletons of ∆′′ ∪ {vu} and of L are equal graphs, so g2(L) > 0, a
contradiction. he proof is complete. ∎

4 An Upper Bound Theorem for Almost Simplicial Polytopes

hroughout this section, we let P ∈ P(d , n, s) denote an almost simplicial polytope,
(P, F) the ASP-pair, and P′ = ∂P / {F} the corresponding shellable simplicial (d− 1)-
ball. Recall that ∂P′ = ∂F is an induced subcomplex of P′.

4.1 ASP Generalization of Cyclic Polytopes

he moment curve in Rd is deûned by t ↦ (t, t2 , . . . , td) for t ∈ Rd , and the convex
hull of any n points on it gives, combinatorially, the cyclic polytope C(d , n); see, for
instance, [27, Example 0.6]. We extend this construction by considering curves x(t)

4To apply [23, Prop. 2.4], phrased for homology spheres, simply cone the boundary of the homology
ball ∆ to obtain a homology sphere.
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of the form (t, t2 , . . . , td−r , p1(t), . . . , pr(t)),where p i(t) is a continuous function in
t for i = 1, . . . , r. Later, a special choice of the curve x(t) and points on it will give, by
taking the convex hull, our maximizer polytope C(d , n, s).

We let V(t1 , . . . , t l) denote the Vandermonde determinant on variables t1 , . . . , t l :

V(t1 , . . . , t l) ∶=

RRRRRRRRRRRRRRRRRRRRRRR

1 1 ⋅ ⋅ ⋅ 1
t1 t2 ⋅ ⋅ ⋅ t l
t21 t22 ⋅ ⋅ ⋅ t ld
⋮ ⋮ ⋅ ⋅ ⋅ ⋮

t l−1
1 t l−1

2 ⋅ ⋅ ⋅ t l−1
l

RRRRRRRRRRRRRRRRRRRRRRR

= ∏
1≤i< j≤l

(t j − t i).

Recall that a polytope is k-neighborly if each subset of at most k vertices forms the
vertex set of a face. A ⌊d/2⌋-neighborly d-polytope is simply called neighborly.

Lemma 4.1 Consider the curve x(t). hen the following hold:
(i) Any d − r + 1 points on the curve x(t) are aõnely independent.
(ii) For any n distinct numbers t1 , . . . , tn , the polytope

Q = conv ({x(t1), . . . , x(tn)})

is (d − r − 1)-simplicial.
(iii) he polytope Q is ⌊(d − r)/2⌋-neighborly.

Proof Consider n real numbers t1 < ⋅ ⋅ ⋅ < tn and the corresponding points x(t i).
From any d − r+ 1 points x(t i1), . . . , x(t id−r+1),we form amatrix by considering them
as its columns, in this same order, and adding a row of ones as the ûrst row. he top
(d−r+1)×(d−r+1) square submatrixof thismatrixhasdeterminantV(t i1 , . . . , t id−r+1),
which is nonzero, which in turn implies the ûrst assertion. he second assertions fol-
lows immediately from the ûrst.

To prove the third assertion proceed as in [13, Sec. 4.7]. Consider a set Sk =

{x(t i j) ∶ j = 1, . . . , k}, 1 ≤ i j ≤ n, with k ≤ ⌊(d − r)/2⌋, and the polynomial

β(t) =
k

∏
i=1

(t − t i j)
2
= β0 + β1 t + ⋅ ⋅ ⋅ + β2k t2k .

Let b = (β1 , . . . , β2k , 0, . . . , 0) be a vector inRd and let H = {x ∈ Rd ∶ x ⋅ b = −β0} be
a hyperplane in Rd . Here ⋅ denotes the dot product of vectors.
All thepoints in Sk are clearly contained inH, and for any other x(t l) ∈ {x(t1), . . . ,

x(tn)} / Sk , we have x(t l) ⋅ b = −β0 + β(t l) > −β0. hus, Sk is the vertex set of a
simplex face of Q. ∎

Let n and s be ûxed integers with n > d + s and s ≥ 0 and consider the curve
y(t) = (t, t2 , . . . , td−1 , p(t)), where

p(t) ∶= (n − 1)(t−1)(d−1)t(t + 1) ⋅ ⋅ ⋅ (t + d + s − 1).

Let t i = −s−d+ i for i = 1, . . . , n. he polynomial p(t) has been chosen so that p(t i) =
0 for i ∈ {1, . . . , d + s} and p(t i) > 0 otherwise. Let C(d , n, s) ∶= conv({y(t1), . . . ,
y(tn)}). Also, let

T = {t i ∶ i = 1, . . . , n}, I = {t i ∶ i = 1, . . . , d + s}, y(S) ∶= {y(t i) ∶ t i ∈ S}

for S ⊂ T .
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he following proposition collects a number of properties of the d-polytope
C(d , n, s).

Proposition 4.2 he d-polytope C(d , n, s) (n > d + s) satisûes the following proper-
ties.

(i) C(d , n, s) ∈ P(d , n, s).
(ii) Gale’s evenness condition: A d-subset Sd of vertC(d , n, s) such that Sd /⊂ I forms a

simplex facet if and only if, for any two elements u, v ∈ T / Sd , the number of elements
of Sd between u and v on the curve y(t) is even.

Proof (i)We ûrst show that the ûrst d+s vertices span a facet F. Let z = (z1 , . . . , zd) ∈
Rd and let

D((t1 , t2 , . . . , td); z) ∶=

RRRRRRRRRRRRRRRRRRRRRRRRRRR

1 1 ⋅ ⋅ ⋅ 1 1
t1 t2 ⋅ ⋅ ⋅ td z1
t21 t22 ⋅ ⋅ ⋅ t2d z2
⋮ ⋮ ⋅ ⋅ ⋅ ⋮ ⋮

td−1
1 td−1

2 ⋅ ⋅ ⋅ td−1
d zd−1

p(t1) p(t2) ⋅ ⋅ ⋅ p(td) zd

RRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Let D(z) ∶= D((t1 , t2 , . . . , td); z) and consider the hyperplane

HD ∶= {z ∈ Rd ∶ D(z) = 0}.

he points y(t i) (i = 1, . . . , d + s) are all contained in HD , since the last row of D(z)
vanishes at all these points y(t i); recall that p(t i) = 0 for i = 1, . . . , d + s. Also, by
Lemma 4.1, any d of these points y(t i) (i = 1, . . . , d + s) are aõnely independent. So,
in fact, HD equals the aõne span of the points y(t i) (i = 1, . . . , d + s). Let y(t∗) ∈

vertC(d , n, s) / y(I); then D(y(t∗)) = p(t∗)V(t1 , . . . , td) > 0, since p(t∗) > 0 and
V(t1 , . . . , td) > 0. hus, F is a facet of C(d , n, s).

We now show that every other facet is a simplex. Consider any (d + 1)-set
{t i1 < ⋅ ⋅ ⋅ < t id < t id+1 = t∗} ⊂ T not contained in I. hus, t∗ ∈ T / I. Consider the de-
terminant E(z) ∶= D((t i1 , t i2 , . . . , t id ); z). he hyperplane HE ∶= {z ∈ Rd ∶ E(z) = 0}
contains all the points y(t i j) ( j = 1, . . . , d). We need to show that E(y(t∗)) ≠ 0.

Note that p(t) = 0 for t ∈ I and p(t) > 0 for t ∈ T / I. Also, note that ∣ta− tb ∣ ≤ n−1
for ta , tb ∈ [−s − d + 1,−s − d + n]. For the sake of clarity, assume that d is odd; the
case of even d is analogous. Computing E(y(t∗)) by expanding with respect to the
last row gives

(p(t∗)V(t i1 , . . . , t id ) − p(t id )V(t i1 , . . . , t id−1 , t
∗
)) + ⋅ ⋅ ⋅

+ (p(t i2)V(t i1 , t i3 . . . , t
∗
) − p(t i1)V(t i2 , . . . , t

∗
)) .

he deûnition of p(t) implies that each pair-summand is nonnegative and the ûrst
pair-summand is positive, and so the determinant is positive. Indeed, for j > 1, if
p(t i j) = 0, then also p(t i j−1) = 0, and the corresponding pair-summand vanishes.
Otherwise, let V( j) ∶= V(t i1 , . . . t i j−1 , t i j+1 , . . . , t id+1) for short. From the deûnition
of the values of t i for i = 1, . . . , n, it follows that t ia ≥ t ib + 1 whenever a > b, and
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consequently, that

p(t i j) = (n − 1)(d−1)(t i j−1) d+s−1

∏
ℓ=0

(t i j + ℓ)(4.1)

> (n − 1)(d−1)(t i j−1−1)
(n − 1)d−1

d+s−1

∏
ℓ=0

(t i j−1 + ℓ)

= (n − 1)d−1p(t i j−1).

And from the deûnition of V( j) it follows that

V( j)
V( j − 1)

=
t i j+1 − t i j−1
t i j+1 − t i j

⋅ ⋅ ⋅
t id+1 − t i j−1
t id+1 − t i j

t i j−1 − t i j−2
t i j − t i j−2

⋅ ⋅ ⋅
t i j−1 − t i1
t i j − t i1

.(4.2)

Since 1 ≤ t ia − t ib ≤ n − 1 whenever a > b, we get
t iℓ − t i j−1
t iℓ − t i j

≥
1

n − 1
for ℓ = j + 1, . . . , d + 1,(4.3)

t i j−1 − t iℓ
t i j − t iℓ

≥
1

n − 1
for ℓ = 1, . . . , j − 2,(4.4)

for each of the d − 1 quotients in Eq. (4.2). In consequence, combining Eqs. (4.1) to
(4.3), we ûnally get that

V( j)
V( j − 1)

p(t i j) >
1

(n − 1)d−1 (n − 1)d−1p(t i j−1),

or equivalently that

V( j)p(t i j) > V( j − 1)p(t i j−1),

as desired. his completes the proof of the ûrst assertion.
(ii) Consider a set Sd = {t i1 < ⋅ ⋅ ⋅ < t id} /⊂ I. Let t∗ ∈ T , t i j−1 < t∗ < t i j (include

also the cases t∗ < t i1 with j = 1 and t id < t∗ where we put j = d + 1). From the above
reasoning, we see that if the column y(t∗) in the determinant E(y(t∗)) is placed
between the columns y(t i j−1) and y(t i j), then the resulting determinant is positive.
To achieve this, we swap d − j+ 1 times the column y(t∗), which gives that the sign of
E(y(t∗)) is (−1)d− j+1. Consequently, on the curve y(t), between [−s−d+1,−s−d+n],
the determinant E(y(t∗)) changes sign whenever the variable passes through one of
the values t i j (i = 1, . . . , d), and we are done. ∎

A polytope C(d , n, s)will be called almost cyclic. Having established in Lemma 4.1
that C(d , n, s) is ⌊(d − 1)/2⌋-neighborly, we can compute its h-vector, in steps. Recall
that P′ = ∂P / {F}.

Proposition 4.3 Let P ∈ P(d , n, s) be ⌊(d − 1)/2⌋-neighborly, and let (P, F) be the
ASP-pair. hen

hk(P′) = (
n − d − 1 + k

k
) if 0 ≤ k ≤ ⌊(d − 1)/2⌋,

hd−k(P′) = (
n − d − 1 + k

k
) − (

s + k − 1
k

) if 1 ≤ k ≤ ⌊(d − 1)/2⌋.
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Proof First note that fk−1(P′) = (
n
k) for k ≤ ⌊(d − 1)/2⌋. hus, it follows that

hk(P′) =
k

∑
i=0

(−1)k−i
(
d − i
k − i

)(
n
i
) = (

n − d − 1 + k
k

).

We now consider the remaining values of k. Using that F is a neighborly simplicial
(d − 1)-polytope, we obtain that gk(F) = (

d+s−(d−1)+k−2
k ), for 0 ≤ k ≤ ⌊(d − 1)/2⌋.

hus, from Eq. (2.2) of Proposition 2.1 it follows, for 1 ≤ k ≤ ⌊(d − 1)/2⌋, that

hd−k(P′) = (
n − d − 1 + k

k
)−(

s + k − 1
k

). ∎

Observe that, for even d, being ⌊(d − 1)/2⌋-neighborly does not determine the
value of hd/2(P′). With the help of Gale’s evenness condition we can compute the
number of facets of C(d , n, s), and together with Proposition 4.3 and Eq. (2.1), we
can compute hd/2(C(d , n, s)) for any even d as well.

Proposition 4.4 For the ASP-pair (C(d , n, s), F)with d even, consider the simplicial
ball C′ ∶= C(d , n, s) / {F}. hen

fd−1(C′) = ((
n − d/2 − 1

d/2
) +

d/2−1

∑
i=0

2(
n − d − 1 + i

i
)) − (

s + d/2
d/2

).

Proof he counting argument for the facets of C′, based on Gale evenness, goes as
in the proof of the number of facets of cyclic polytopes (cf. [27, Cor. 8.28]), with the
diòerence that we discard the Gale d-tuples formed solely by the ûrst d + s vertices;
thus, we discard exactly (

s+d/2
d/2 ) of them. ∎

Corollary 4.5 he h-numbers of C′ are given by

hk(C′) = (
n − d − 1 + k

k
) if 0 ≤ k ≤ ⌊(d − 1)/2⌋,

hd−k(C′) = (
n − d − 1 + k

k
) − (

s + k − 1
k

) if 1 ≤ k ≤ ⌊d/2⌋.

Proof he case of odd d was already established by Proposition 4.3, since C(d , n, s)
is ⌊(d−1)/2⌋-neighborly. For the case of even d it remains to compute hd/2(P). Equat-
ing the corresponding expression in Proposition 4.4 with the expression of fd−1 in
Eq. (2.1), a�er substituting the known values of hk for k ≠ d/2, gives

hd/2(C′) = (
n − d/2 − 1

d/2
) +

d/2−1

∑
i=0

(
s + i − 1

i
) − (

s + d/2
d/2

)

= (
n − d/2 − 1

d/2
) − (

s + d/2 − 1
d/2

),

as desired. ∎
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4.2 An Upper Bound Theorem for Almost Simplicial Polytopes

We are now in a position to state an upper bound theorem for almost simplicial poly-
topes P ∈ P(d , n, s).

heorem 4.6 (UBT for ASP) Any almost simplicial polytope P ∈ P(d , n, s) satisûes

hk(P′) ≤ (
n − d − 1 + k

k
) if 0 ≤ k ≤ ⌊(d − 1)/2⌋,(4.5)

hd−k(P′) ≤ (
n − d − 1 + k

k
) − (

s + k − 1
k

) if 1 ≤ k ≤ ⌊d/2⌋.(4.6)

hus,
f i−1(P) ≤ f i−1(C(d , n, s) for i = 1, 2, . . . , d ,

for the almost cyclic d-polytope C(d , n, s). Equality for some f i−1 with
⌊(d − 1)/2⌋ ≤ i ≤ d implies that P is ⌊(d − 1)/2⌋-neighborly.

Proof of Theorem 4.6 via [1, Thm. 3.9] By [1,hm. 3.9] the inequalities on hk(P′)
hold for 0 ≤ k ≤ d − 1, as P′ is a special case of a homology ball whose boundary is
an induced subcomplex. From Corollary 4.5 and Eq. (2.1) the inequality f i−1(P) ≤

f i−1(C(d , n, s) follows. Equality for some f i−1 with d ≥ i ≥ ⌊(d − 1)/2⌋ implies, by
Eq. (2.1), the equality hk(P′) = (

n−d−1+k
k ) for all 0 ≤ k ≤ ⌊(d − 1)/2⌋, and thus, again

by Eq. (2.1), that P is ⌊(d − 1)/2⌋-neighborly. ∎

Remark 4.7 (More maximizers) As is the case with neighborly polytopes, we ex-
pect that there aremany combinatorially distinctASPs achieving the upper bounds in
the UBT for ASP. Here we sketch another such construction, based on a certain per-
turbation of the Cayley polytope constructed by Karavelas and Tzanaki [16, Sec. 5]:
there, two neighborly (d − 1)-polytopes P1 and P2 are placed in parallel hyperplanes
in Rd so that the Cayley polytope P = conv(P1 ∪ P2) is ⌊ d−1

2 ⌋-neighborly and all
⌊d/2⌋-subsets with a vertex in P1 and a vertex in P2 form faces of P. Let n = f0(P)
and d + s = f0(P2). hus, for d odd, any small enough perturbation of the ver-
tices of P1 into general position will, by considering the new convex hull, change P
into Q ∈ P(d , n, s) ((Q , P2) is the ASP-pair) with f (Q) = f (C(d , n, s)); so Q is a
maximizer. For d even, in order for Q to be a maximizer, we need the small per-
turbation be such that all d/2-subsets of vert(P1) become faces of Q. To achieve
this, we recall more from the construction of [16], and make a variation: consider
the images of the functions γ1(t, z1 , z2) = (t, z1 td−1 , t2 , t3 , . . . , td−2 , z2 td) ⊂ Rd and
γ2(t, z1) = (z1 td−1 , t, t2 , . . . , td−2 ,−1) ⊂ Rd−1 × {−1} ⊂ Rd . he vertices of P1 (resp.
P2) are on appropriate locations on the curve γ1(t, z∗1 , 0) ⊂ Rd−1×{0} (resp. γ2(t, z∗1 ),
for small enough ûxed z∗1 > 0. It is possible to show, by appropriate determinant com-
putation, that for a small enough ûxed z∗2 > 0, perturbing the vertices γ1(t i , z∗1 , 0) of
P1 to γ1(t i , z∗1 , z∗2 ) makes all d/2-subsets of P1 faces of Q; so Q is amaximizer.

We proceed by producing an alternative and elementary proof of theUBT forASP,
via shelling. his will take the rest of this section. Our proof follows ideas from the
proof of the classical UBT byMcMullen (cf. [27, Sec. 8.4]) and from a recent work of
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Karavelas and Tzanaki [16]. he key new ingredient is Lemma 4.9, for which we need
some preparation.

Let P ∈ P(d , n, s) and (P, F) anASP-pair. Let Q be a polytope obtained from P by
stacking a new vertex y beyond F. he d-polytope Q is simplicial. he set of proper
faces ofQ is the disjoint union of the faces of the complex P′ ∶= ∂P / {F} and the faces
of Q that contain y. Consequently, for all k ≥ 0,

(4.7) hk(Q) = hk(P′) + hk−1(F).

Recall the star starC(F) of a face F in a polytopal complex C is the polytopal sub-
complex generated by all the faces of C containing F.

We will use a line shelling of Q with some special properties.

Lemma 4.8 Let (P, F) be an ASP-pair and v ∈ F a vertex. hen we can choose the
aforementioned vertex y beyond F such that, for (P, F , y,Q) as above, there is a line
shelling of Q that shells the star of y ûrst and then proceeds to shell the rest of the star
of v.

Proof For an oriented line ℓ that shells P, with F being ûrst followed by the rest of
the facets in the star of v (cf. [27, hm. 8.12, Cor. 8.13]5), place y on ℓ beyond F to
make Q. Now perturb ℓ, intersecting Q near y, to obtain the desired line shelling. ∎

Consider any vertex v ∈ vertQ and let S(Q) be a shelling of the facets of Q. hen,
clearly, the following hold:
● he restriction of S(Q) to starQ(v) yields a shelling of starQ(v) (cf. [27, Lem. 8.7]);
denote it by Sv(Q).

● A shelling of starQ(v) induces a shelling of linkQ(v) by deleting v from the facets.
● Since ∂F = linkQ(y), it follows that S(Q) induces a shelling S(F) of F.
● Recursively, S(F) induces a shelling of linkF(v) if v ∈ vert F.

Now consider any vertex v ∈ F, a shelling S(Q) as guaranteed in Lemma 4.8, and
the induced shellings S(Q/v) of Q/v, S(F) of F and S(F/v) of F/v. Recall that if
starK(v) is simplicial, then the boundary complex of K/v coincides with linkK(v).
Following [16, Sec. 4], call the facet F j ofQ active if it is the new facet to be added to

the shelling process S(Q). Let F j ∣F be the active facet of S(F),which is the restriction
of F j to F (if y ∈ F j). Let F j/v be the active facet of S(Q/v) induced by F j (if v ∈ F j),
F j ∣F/v be the active facet of S(F/v) induced by F j ∣F (if vy ⊂ F j), and F j ∣v be the active
facet of Sv(Q) induced by F j (if v ∈ F j); so F j ∣v = {v}∪ F j/v in this case. Let R j ⊆ F j ,
R j/v ⊆ F j/v, R j ∣F ⊆ F j ∣F, R j ∣F/v ⊆ F j ∣F/v, and R j ∣v be the corresponding new
minimal faces in the shellings S(Q), S(Q/v), S(F), S(F/v), and Sv(Q), respectively.
Finally, let h j

k(Q) denote the value of hk up to step j, namely hk(⋃i≤ j Fi), and
similarly for the other complexes.

he following key lemma allows us to relate the diòerence in h-numbers along a
shelling of Q and F to that of Q/v and F/v.

5Here we use the extension of the notion of shellability to polyhedral complexes.
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Lemma 4.9 For any vertex v ∈ vert F and at any step j of the shelling S(Q) that is
guaranteed by Lemma 4.8, for all k ≥ 0 we have

h j
k(Q) − h j

k(Q/v) ≥ h j
k(F) − h j

k(F/v).

Proof While shelling starQ(y), theminimal face R j of F j in S(Q) and theminimal
face R j ∣F of F j ∣F in S(F) coincide at every step, since F = Q/y and S(Q) shells the
star of y ûrst. herefore, while shelling starQ(y), it follows that for all k ≥ 0,

h j
k(Q) = h j

k(F).

For the same reason, if F j ∈ starQ(v)∩starQ(y), then, regardless ofwhether v ∈ R j
or v /∈ R j , we have, for all k ≥ 0, that

h j
k(Q/v) = h j

k(F/v).

hus, while shelling starQ(y), it follows for all k ≥ 0 that

h j
k(Q) − h j

k(Q/v) = h j
k(F) − h j

k(F/v).

A�er the shelling has le� starQ(y), we get no new contributions to hk(F) or
hk(F/v) for all k ≥ 0, so the RHS does not change.
A�er shelling starQ(y) and while still shelling starQ(v), we have that theminimal

faces R j and R j/v of S(Q) and S(Q/v), respectively, coincide, so the LHS does not
change either. To see that R j = R j/v, ûrst note that R j/v ⊆ R j (as the complex at
the j-th step of S(Q) contains the complex at the j-th step of Sv(Q)). We show the
reverse containment. Assume by contradiction that there is a facet F′′ of F j which is
in the subcomplex ⋃i< j Fi of Q but not in the subcomplex ⋃i< j , v∈Fi Fi of starQ(v).
As we have already le� starQ(y), y ∉ F j so F′′ is a facet of F. However, also v ∈ F, so
wemust have v ∈ F′′, as otherwise, by convexity, ∣F j ∣ ⊂ ∣F∣, a contradiction. But then
the (unique) facet Fi in starQ(y) containing F′′ is also in starQ(v), a contradiction.

hus, for all k ≥ 0,

h j
k(Q) − h j

k(Q/v) = h j
k(F) − h j

k(F/v).

A�er the shelling has le� star(v ,Q), we may get new contributions to hk(Q) but
no more to hk(Q/v). his concludes the proof of the lemma. ∎

Proposition 4.10 Let P ∈ P(d , n, s) and let (P, F) be anASP-pair. hen, for all k ≥ 0,
we have

hd−(k+1)(P′) ≤
n − d + k

k + 1
hd−k(P′) +

n − (d + s)
k + 1

gk(F).

Equivalently, for all k ≥ 0, we have

hk+1(P′) ≤
n − d + k

k + 1
hk(P′) −

s + k
k + 1

gk(F) + gk+1(F).

Proof he second inequality follows from the ûrst inequality by the
Dehn–Sommerville relations ((2.2)). For the ûrst inequality, we have the following
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sequence of equalities.

∑
v∈vert Q

hk(Q/v)(4.8)

= (k + 1)hk+1(Q) + (d − k)hk(Q)

= (k + 1)hd−(k+1)(Q) + (d − k)hd−k(Q)

= (k + 1) (hd−(k+1)(P′) + hd−(k+1)−1(F)) + (d − k)hd−k(P′)
+ (d − k)hd−k−1(F)

= ((k + 1)hd−(k+1)(P′) + (d − k)hd−k(P′)) + (k + 1)hk+1(F)
+ (d − 1 − k)hk(F) + hk(F)

= (k + 1)hd−(k+1)(P′) + (d − k)hd−k(P′) + hk(F) + ∑
v∈vert F

hk(F/v).

For the ûrst equality, see, e.g., [27, Eq. 8.27a], while for the second, use
Dehn-Sommerville Eq. (2.2) for Q. he third equality follows from Eq. (4.7), the
fourth from Eq. (2.2) again, this time for F, and the last equality follows from [27,
Eq. 8.27a] again.
As F ≅ Q/y, Eq. (4.8) then becomes

(4.9) ∑
v∈vert P′ / vert F

hk(Q/v) + ∑
v∈vert F

(hk(Q/v) − hk(F/v)) =

(k + 1)hd−(k+1)(P′) + (d − k)hd−k(P′).

From Lemma 4.9 and the fact that any vertex v ∈ vert P′ / vert F has the same link in
both Q and P′, it then follows that

(4.10) ∑
v∈vert P′ / vert F

hk(Q/v) + ∑
v∈vert F

(hk(Q/v) − hk(F/v)) ≤

∑
v∈vert P′ / vert F

hk(P′/v) + ∑
v∈vert F

(hk(Q) − hk(F)) .

Let v ∈ vert P′ / vert F. here is a shelling of P′ that shells starP′(v) ûrst: just perturb a
line through an interior point of F and v, so it still intersects P near those two points,
to obtain such line shelling. Such shelling shows that hk(P′/v) ≤ hk(P′) for all k ≥ 0.
Consequently, from Eqs. (4.9) and (4.10) it follows that

(k + 1)hd−(k+1)(P′) + (d − k)hd−k(P′)

≤ ∑
v∈vert P′ / vert F

hk(P′) + ∑
v∈vert F

(hk(Q) − hk(F))

= (n − (d + s))hk(P′) + (d + s)(hk(Q) − hk(F))

= nhk(P′) + (d + s)(hk−1(F) − hk(F))

= n(hd−k(P′) + gk(F)) − (d + s)gk(F).

he last two equations ensue from Eq. (4.7) and Eq. (2.2), respectively. Hence, the
desired inequality follows. ∎
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We are now in a position to prove the inequalities ofheorem4.6 using the shelling
approach.

Proof of Theorem 4.6 via Shellings he inequalities Eq. (4.5) for P′ inheorem4.6
hold for any Cohen–Macaulay complex, and can also be proved exactly as in [27,
Lem. 8.26]. We prove Eq. (4.6) by induction on k. he case k = 1 holds with equality
by Eq. (2.2): hd−1(P′) = n− d − s. Suppose now that the inequality Eq. (4.6) holds for
k − 1 ≤ ⌊d/2⌋ − 1. By Proposition 4.10,

hd−k(P′) ≤
n − d + k − 1

k
((

n − d − 1 + k − 1
k − 1

) − (
s + k − 2
k − 1

))

+
n − (d + s)

k
gk−1(F).

From the application of the g-theorem6 (cf. [27, Cor. 8.38]) to F, it follows that gk−1(F)
≤ (

d+s−(d−1)+k−3
k−1 ) for 0 ≤ k − 1 ≤ ⌊d/2⌋ − 1. hus, the previous inequality becomes

hd−k(P′) ≤
n − d + k − 1

k
((

n − d − 1 + k − 1
k − 1

) − (
s + k − 2
k − 1

))

+
n − (d + s)

k
(
s + k − 2
k − 1

)

= (
n − d − 1 + k

k
) − (

s + k − 1
k

),

as desired. ∎
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