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Abstract

Background. The brain’s default mode network (DMN) plays a role in social cognition, with
altered DMN function being associated with social impairments across various neuropsychiatric
disorders. However, the genetic basis linking sociability with DMN function remains under-
explored. This study aimed to elucidate the shared genetics and causal relationship between
sociability and DMN-related resting-state functional MRI (rs-fMRI) traits.
Methods. We conducted a comprehensive genomic analysis using large-scale genome-wide
association study (GWAS) summary statistics for sociability and 31 activity and 64 connectivity
DMN-related rs-fMRI traits (N = 34,691–342,461). We performed global and local genetic
correlations analyses and bi-directional Mendelian randomization (MR) to assess shared and
causal effects. We prioritized genes influencing both sociability and rs-fMRI traits by combining
expression quantitative trait loci MR analyses, the CELLECT framework – integrating single-
nucleus RNA sequencing (snRNA-seq) data with GWAS – and network propagation within a
protein–protein interaction network.
Results. Significant local genetic correlations were identified between sociability and two
rs-fMRI traits, one representing spontaneous activity within the temporal cortex, the other
representing connectivity between the cingulate and angular/temporal cortices. MR analyses
suggested potential causal effects of sociability on 12 rs-fMRI traits. Seventeen genes were highly
prioritized, with LINGO1, ELAVL2, and CTNND1 emerging as top candidates. Among these,
DRD2 was also identified, serving as a robust internal validation of our approach.
Conclusions. By combining genomic and transcriptomic data, our gene prioritization strategy
may serve as a blueprint for future studies. Our findings can guide further research into the
biological mechanisms underlying sociability and its role in the development, prognosis, and
treatment of neuropsychiatric disorders.

Introduction

Sociability, defined as the inclination to seek or engage in social interactions, is a complex trait
that manifests as a continuum within the general population (Caldwell, 2012; Reeb-Sutherland,
Levitt, & Fox, 2012). Various physical and mental health-related outcomes are influenced by
sociability (Cacioppo et al., 2015). Particularly important for this study are the facts that social
isolation is associated with mortality (Holt-Lunstad et al., 2015) and that social dysfunctions are
relevant for neuropsychiatric conditions, including schizophrenia spectrum disorders, Alzhei-
mer’s disease, autism spectrum disorder (ASD), and major depressive disorder (MDD) (Setien-
Suero et al., 2022). Social dysfunctions constitute both a prodromal symptomatologic manifest-
ation and a transdiagnostic negative prognostic factor (De De Donatis et al., 2022; Oliva et al.,
2022).

Several brain structures have been proposed as neural substrates of social behavior (Porcelli
et al., 2019), such as the precuneus/posterior cingulate cortex and the medial-prefrontal and
temporal regions (Porcelli et al., 2019). These brain areas are central nodes of the default mode
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network (DMN), an integrated network implicated in various
higher-order functions including social cognitive processes (Buckner,
Andrews-Hanna, & Schacter, 2008; Raichle et al., 2001). The DMN’s
components serve discrete yet integrated functions. The rostromedial
prefrontal cortex and posterior cingulate cortex are pivotal for pro-
cessing socio-cognitive information with relevance to the self (Leech
& Sharp, 2014; Smith, Clithero, Boltuck, &Huettel, 2014). Themedial
temporal lobe, including the hippocampal formation, is essential for
autobiographical memory processing, self-reflection, and the recol-
lection of personal experiences (Andrews-Hanna, Smallwood, and
Spreng, 2014; Spreng and Andrews-Hanna, 2015). The dorsomedial
prefrontal cortex is integral to metacognitive functions, particularly
those influenced by social context (Ferrari et al., 2016). Together with
the temporoparietal junction, the dorsomedial prefrontal cortex
enables mentalizing, i.e., the comprehension of mental states of other
people (Andrews-Hanna et al., 2014; Spreng & Andrews-Hanna,
2015). The DMN’s role in self-referential cognition, theory of mind,
the delineation of self from others, and autobiographical memory has
been extensively documented (e.g., Andrews-Hanna et al., 2014;
Spreng & Andrews-Hanna, 2015). Recent studies have particularly
highlighted the DMN’s relevance to social behaviors in the context of
major psychoses, underscoring its function as a central integrative hub
for coordinating cognitive activities related to both self-directed
thought and responses to external stimuli (Fox et al., 2017; Mulligan
& Bicknell, 2023; Saris et al., 2020). Our previous work has elucidated
DMN functional connectivity alterations as potential transdiagnostic
markers for social dysfunction (Saris et al., 2022), thereby suggesting
the utility for an augmented genetic understanding of the link between
the DMN and sociability.

Functional MRI (fMRI) is a robust technique for mapping brain
networks underlying social behaviour. While task-based fMRI
measures the brain’s responses under controlled experimental
conditions, resting-state fMRI (rs-fMRI) captures intrinsic, spon-
taneous fluctuations in neural activity that reflect the brain’s
baseline functional architecture (Biswal, Yetkin, Haughton, &
Hyde, 1995; Smitha et al., 2017). Therefore, rs-fMRI is particularly
advantageous for studying the neural correlates of stable, trait-like
behaviors such as sociability, as it does not depend on task com-
pliance or external stimuli (Fox & Greicius, 2010; Raichle, 2006).
Notably, the DMN is a prominent target of rs-fMRI research, as it
is characterised through intrinsic connectivity patterns observed
during rest (Sanz-Morales & Melero, 2024). Additionally, aspects
of rs-fMRI-derived functional connectivity have been shown to be
heritable, reliable, and comparable to task-evoked connectivity in
detecting individual differences in brain organization (Elliott
et al., 2019; Shah et al., 2016; Zhao et al., 2022).

Phenotypic correlations quantify the observed relationships
between traits by capturing both genetic and environmental influ-
ences that contribute to their covariance. Nevertheless, phenotypic
correlations do not disentangle the specific contributions of genetic
factors. In contrast, genetic correlations estimate the extent to
which two traits share a common genetic basis, although these
estimates can still be influenced by factors such as population
stratification, assortative mating, and misclassification bias (Bulik-
Sullivan et al., 2015; Morris, Davies, Hemani, & Smith, 2020; van
Rheenen, Peyrot, Schork, Lee, & Wray, 2019). This distinction is
important for complex traits: phenotypic correlations are generally
more driven by a combination of shared environmental exposures
and genetic effects, while genetic correlations provide a more direct
measure of shared heritability (Bulik-Sullivan et al., 2015). Empir-
ical studies have shown that phenotypic correlations are reliable
proxies for genetic correlations in traits with high heritability but

are less concordant for behavioral or cognitive traits, such as
sociability, where environmental influences play a larger role
(Sodini, Kemper, Wray, & Trzaskowski, 2018). Thus, by focusing
on genetic correlations, this study provides a robust framework for
disentangling the shared genetic basis of sociability and DMN
connectivity, which phenotypic correlations alone cannot achieve.

Sociability and functional brain networks are both influenced by
genetic factors. The heritability of sociability-related behaviors,
such as loneliness and social anxiety-related concerns, has been
estimated at 48% (Boomsma et al., 2005; Stein, Jang, & Livesley,
2002). Specifically, loneliness and the fear of negative evaluation, a
core feature of social anxiety, both showed a heritability of 48% in
two large twin studies (Boomsma et al., 2005; Stein et al., 2002).
Similarly, functional connectivity within the DMN has been found
to bemoderately heritable, with estimates around 42% (Elliott et al.,
2019; Glahn et al., 2010). Genome-wide association studies (GWAS)
have identified single-nucleotide polymorphisms (SNPs) at 18 inde-
pendent genomic loci to be associated with sociability (Bralten et al.,
2021) and 45 genetic regions as associated with brain functional
signatures (Zhao et al., 2022). Zhao and colleagues reported the
SNP-based heritability (h2SNP) for rs-fMRI node amplitude traits
as 10.6–38.6%, and for functional connectivity traits as 3–60%.
While previous research demonstrated a phenotypic association
between sociability and the DMN, the underlying genetic correl-
ations, shared associated genes, and potential causal relationships
have not yet been explored.

In this study, we investigated the genetic relationships between
sociability andDMN-related rs-fMRI traits by analyzing patterns of
global and local genetic correlations and exploring potential causal
relationships. Global genetic correlation measures the overall gen-
etic similarity between two traits across the entire genome, provid-
ing an estimate of the proportion of variance shared due to
common genetic variants; this assessment includes pleiotropic
effects, where a single genetic locus affects multiple traits (van
Rheenen et al., 2019). Local genetic correlation examines restricted
genomic regions to identify where traits show significant genetic
overlaps, deviating from the genome-wide average (van Rheenen
et al., 2019). Additionally, we employed Mendelian randomization
(MR) to assess potential causality between an exposure (e.g., soci-
ability) and an outcome (e.g., DMN rs-fMRI traits). MR leverages
genetic variants as instrumental variables to infer causal relation-
ships, under the assumptions that these variants are associated with
the exposure, not associated with confounders, and influence the
outcome solely through the exposure (Sanderson et al., 2022).

An improved understanding of the genetic underpinnings link-
ing the DMN and sociability may guide future research into the
biological mechanisms underlying social behavior relevant to men-
tal health and inform the development of therapeutic strategies for
neuropsychiatric disorders. Thus, the aims of this study were, first,
to characterize the shared genetic architecture and potential causal
pathways between sociability and DMN-related rs-fMRI traits.
Second, we aimed to prioritize genes associated with both types
of traits via robust genomic and imaging analyses. Our approach
leaves room for further replication and mechanistic validation in
future translational work.

Experimental procedures

Input datasets

This study leveraged summary-level data from the largest available
GWAS on sociability assessed from an aggregate score of UK
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Biobank self-report data (N = 342,461; Bralten et al., 2021), and
GWASs on brain rs-fMRI traits from the UK Biobank (N = 34,691;
Zhao et al., 2022) (Supplementary Table S1). Because the two
GWASs originated from the same large-scale cohort, partial overlap
of participants may occur. Further details on the cohort compos-
ition, recruitment strategies, and phenotypic assessment method-
ologies are available in the respective primary studies (Bralten et al.,
2021; Zhao et al., 2022).

In the referenced GWAS by Bralten et al. (2021), sociability was
operationalized as a composite score encompassing four self-reported
items: (1) frequency of visits with friends or family, (2) number and
type of social venues visited, (3) worrying after social embarrassment,
and (4) feelings of loneliness. As for conceptual coherence, the first
two items capture social interaction frequency and engagement in
social environments, while the latter two address subjective aspects of
sociability related to social anxiety and loneliness. The four itemswere
combined into a single sociability score, where higher values indicate
greater sociability. Items reflecting negative experiences (i.e., social
embarrassment and loneliness) were reverse-coded to align with the
overall construct (Bralten et al., 2021). Further details on the scoring
methodology, and validation of this measure can be found in Bralten
et al. (2021). Participants were excluded if they had confounding
health conditions, such as extreme body mass index, neurological
disorders, sensory impairments, or incomplete responses, to ensure
data quality and reduce potential confounding factors (Bralten et al.,
2021). For rs-fMRI traits, Zhao et al. (2022) leveraged pretrained
spatial independent component analysis (ICA) loadings derived from
previous work (Elliott et al., 2018) to map pre-processed rs-fMRI
images fromUKBiobank (see also https://www.fmrib.ox.ac.uk/ukbio
bank/). A total of 76 ICA-derived node amplitude traits were gener-
ated, each corresponding to specific regions of intrinsic neural activ-
ity. These nodes were spatially localized to anatomical regions using
the Automated Anatomical Labelling Atlas 3 (Rolls et al., 2020) and
then labelled to major functional networks using established network
definitions from Finn et al. (2015) and Yeo et al. (2011). Functional
connectivity traits, referred to as ‘edges’, were calculated as temporal
correlations of BOLD signal fluctuations between pairs of ICA-
defined nodes. The full set of connectivity traits included 1,695
pairwise measures of coactivity between nodes, which were further
summarized into six global network connectivity dimensions, cap-
turing broad patterns of functional interactions across the brain
(Zhao et al., 2022). Rs-fMRI was chosen for its capacity to capture
intrinsic neural activity and functional connectivity independently of
task performance or external cognitive demands. Bymeasuring spon-
taneous low-frequency BOLD fluctuations in neural activity, rs-fMRI
provides stable, trait-like representations of connectivity patterns that
are ideally suited for investigating broad, transdiagnostic behavioral
phenotypes, such as sociability. This approach minimizes variability
associated with task-specific compliance or engagement, making it an
effective tool for large-scale cohort studies, such as the UK Biobank
(Elliott et al., 2019; Fox & Greicius, 2010). To focus on the DMN, we
selected traits from Zhao et al. (2022)‘s GWAS dataset based on the
following criteria: traits mapping to the DMN, demonstrating a
significant h2SNP ≥ 0.1, and with genome-wide significant loci
(available for download at https://zenodo.org/records/5775047).
Connectivity metrics for DMN traits were confirmed to include at
least one node aligning with a DMN template, consistent with stand-
ard ICA-derived parcellations used in rs-fMRI studies (Zhao et al.,
2022). Importantly, our study does not assume exclusivity of DMN
involvement in sociability but rather adopts an a priori hypothesis-
driven approach, while recognizing that genetic influences on soci-
ability likely extend beyond the DMN to other functional networks.

All utilized GWAS summary statistics included only individuals
of European ancestry and used the reference genome build
GRCh37/hg19. For the sociability GWAS, regression coefficients
representing the effect sizes were adjusted for covariates such as sex,
age, and principal components during linear regression analyses
(Bralten et al., 2021). For the rs-fMRI traits, regression models were
adjusted for a comprehensive set of covariates, including age
(at imaging), age-squared, sex, age–sex interaction, age-squared–
sex interaction, imaging site, head location, headmotion, head size,
long-term drifts, and the top 40 genetic principal components
(Zhao et al., 2022). Our analyses used these effect sizes as reported
in the original publications.

Ethical approval and participant informed consent for the UK
Biobank studies were obtained as per the original GWAS publica-
tions (Bralten et al., 2021; Zhao et al., 2022).

Genetic overlap and causal relationships between sociability
and rs-fMRI traits

We explored the genetic overlap and potential causal relationships
between sociability and rs-fMRI traits related to the DMN using
global and local genetic correlation analyses, as well as bi-directional
MR analyses (see Analysis workflow, Figure 1). All rs-fMRI traits
showing significant associations with sociability after correction for
multiple testing in either correlation analyses or bi-directional MR
analyses were selected for gene prioritization.

Global and local genetic correlation analyses
Bivariate Linkage Disequilibrium Score Regression (LDSC) ana-
lyses (Bulik-Sullivan et al., 2015; https://github.com/bulik/ldsc) were
conducted to estimate the global genetic correlation (rg) between
sociability and rs-fMRI traits using default LDSC parameters. LDSC
is computationally robust evenwhen sample overlap betweenGWASs
occurs (Bulik-Sullivan et al., 2015). Only the sociability and rs-fMRI
trait pairs showing at least nominally significant (p < 0.05) global,
bivariate genetic correlations were further explored at the local gen-
omic level.

Pairwise local genetic correlation analyses were conducted using
LAVA (Local Analysis of [co]Variant Association), using standard
parameters (Werme, van der Sluis, Posthuma, & de Leeuw, 2022;
https://github.com/josefin-werme/LAVA). In contrast to global
correlation analyses, LAVA enables the identification of genomic
regions that may be implicated in shared genetic etiology and thus
provides a fine-grained perspective on the genetic sharing between
complex traits. Its analytical framework allows the investigation of
genetic associations between traits under varying genetic causality
scenarios without assuming a specific distribution of SNP effects
(Werme et al., 2022). In summary, we generated 2,495 semi-
independent genomic regions of approximately 1 mega base-pair
length, and only genomic regions with significant local h2SNP
(univariate p < 1 × 10�04) for both phenotypes were analyzed
(Werme et al., 2022). To account for overlapping samples among
input GWASs, we supplied LAVA with intercepts derived from
bivariate cross-trait LDSC analyses (Bulik-Sullivan et al., 2015);
these intercepts served as estimates of the sampling correlation
between the datasets.

Because the rs-fMRI traits were not fully independent of each
other, we applied the Benjamini-Hochberg false discovery rate
(FDR) correction for multiple testing, considering a maximum
acceptable FDR of q = 0.05 (Benjamini & Hochberg, 1995). Apply-
ing Bonferroni correction in this context would be overly conser-
vative, increasing the likelihood of false negatives (Type II error).
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FDR correction accounts for dependencies among traits (e.g., con-
nectivity edges inherently correlate with the activity of their cor-
responding nodes) and is widely adopted for genetic correlation
analyses (e.g., Hindley et al., 2022; Hu et al., 2024; Qi et al., 2024).

Bi-directional Mendelian randomization
We assessed potential causal relationships between sociability and
DMN-related rs-fMRI traits using bi-directional MR. This method
utilized genetic variants as instrumental variables under three core
assumptions: relevance, independence, and exclusion restriction
(Sanderson et al., 2022). Here, we parameterized two SNP instru-
ment selection criteria following a paradigm employed previously to
investigate a link between imaging-derived phenotypes and Alzhei-
mer’s disease (Knutson, Deng, & Pan, 2020): (1) a stringent analysis

using only robust and independent instruments (p < 5 × 10�08,
clumping threshold r2 < 0.001), and (2) a lenient analysis using
weakly-correlated instruments (p < 5 × 10�05, clumping threshold
r2 < 0.1). The rationale for this second approach was to increase the
proportion of phenotype variance explained by the genetic variants
and thus to increase statistical power (Knutson et al., 2020). Because
these analyses were considered a complementary approach to genetic
correlation analyses, sociability and all 95 DMN-related rs-fMRI
traits were included in the MR assessments. Multiple testing correc-
tion was applied using Bonferroni’s method based on the number of
tested traits (significance threshold α = 0.05/96 = 5.21 × 10�04). MR
relies on independent genetic instruments, and Bonferroni correc-
tion aligns with the stringent standards required tominimize the risk
for false-positive causal claims in MR studies (Sun, Wang, & Kan,
2024; Wu, Huang, Hu, & Shao, 2020; Zhang et al., 2024).

Mendelian randomization statistical methods
We used theWald ratio for exposures with a single SNP instrument
(overwhelmingly used in the eQTL MR, see below) or the inverse
variance-weighted (IVW) method for exposures with multiple
instruments (overwhelmingly used in the bi-directional MR, see
above). However, we modified these methods to increase their
utility for our use cases. First, we used the two-term Taylor series
expansion of the Wald ratio to account for the error in both the
instrument-exposure and instrument-outcome relationships. Sec-
ond, we used an extended IVWmethod which allows for correlated
instruments in the lenient bidirectional MR analyses (Burgess,
Dudbridge, & Thompson, 2016). If a genetic exposure variant did
not match the rsID of an outcome SNP, we searched for a proxy
variant with a threshold of r2 > 0.8 (applies to all analyses).

MR relies on three core assumptions: (1) the genetic instruments
are strongly associated with the exposure (relevance), (2) the instru-
ments are not associated with any confounders of the exposure-
outcome relationship (independence), and (3) the instruments
affect the outcome solely through the exposure and not via any
alternative pathways (exclusion restriction) (Sanderson et al.,
2022). To account for weak instrument bias, we specified that all
instruments require an F-statistic of at least 10 (Bowden et al.,
2016). As a sensitivity analysis for exposures with multiple instru-
ments, we used an MR-Egger regression framework to assess the
likelihood of the presence of horizontal pleiotropy. In the weakly
correlated instruments analysis, we used the extended method
described by Burgess, Dudbridge, and Thompson (2016). When
analyzing single genetic instruments, we examined evidence for
reverse causation using Steiger filtering to assess whether the gen-
etic variant explained more of the variance in the outcome than in
the exposure (Hemani, Tilling, & Davey Smith, 2017). Analyses
were conducted using a custom implementation based on the
TwoSampleMR R package (Hemani et al., 2018) in R version 4.1.0
(Team, 2021). This study was not formally pre-registered; however,
our analytical plan, including the choice of instruments, thresholds,
and sensitivity tests, was established prior to data analysis and is
explicitly detailed here for transparency. We adhered to the
Strengthening the Reporting of Observational Studies in Epidemi-
ology (STROBE) guidelines for MR (MR-STROBE) to ensure com-
prehensive and transparent reporting of MR methodology and
interpretation of findings (Skrivankova et al., 2021).

Identification of genes from GWAS loci

To identify genes associated with both sociability and the selected
rs-fMRI traits,weconducted several complementary analysesproviding

Figure 1. Analysis workflow.
A schematic of the workflow of our analyses. We utilized genetic correlations and
bi-directional MR to assess the genetic overlap between rs-fMRI traits and sociability to
prioritize selected rs-fMRI traits for the downstream gene prioritization strategy. First,
the GWAS of the prioritized rs-fMRI traits and sociability were analyzed using FUMA to
map associated genetic regions to genes. We then leveraged eQTLs of gene expression
in five brain tissues in an MR framework to provide further putative causal evidence for
themapped genes. Genes from thesemapping steps were included in a TieDIE network
propagation analysis using the underlying STRING protein–protein interaction
network. Separately, we also integrated a human brain transcriptomics atlas
(snRNA-seq data) in a CELLECT framework with the rs-fMRI and sociability GWAS.
This step allowed us to identify genes whose increased expression are specific to cell
types, in specific brain regions, for our traits of interest. Our final list of prioritized genes
consisted of those genes which were identified by FUMA and showed at least nominal
evidence in both the eQTL MR and CELLECT analyses, for both sociability and at least
one rs-fMRI trait. Finally, we used the TieDIE network propagation scores to rank the list
of prioritized genes.
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causal, expression, and biological evidence (Figure 1). As a first step,
we generated a list of potentially associated genes from the summary
statistics of each GWAS using FUMA (Functional Mapping and
Annotation of GWASs; Watanabe, Taskesen, van Bochoven, &
Posthuma, 2017), followed by providing causal evidence for the
association of these genes using expression quantitative trait loci
(eQTL)-based MR.

FUMA-based gene mapping
We ran FUMAusing default parameters for both sociability and the
rs-fMRI traits prioritized in the genetic correlation and MR ana-
lyses to identify genes linked to the respective genome-wide sig-
nificant loci. Only brain-derived tissue types were used for eQTL
gene mapping. For prioritization, genes had to meet any of the
following criteria from the FUMA analyses: (a) FDR-corrected
MAGMA p < 0.05; (b) FDR-corrected eQTL mapping p < 0.05;
(c) implicated in 3D chromatin mapping.

Mendelian randomization of gene expression
Using eQTL-based MR, the FUMA-prioritized genes were tested
for evidence of a causal relationship with either sociability or the
prioritized rs-fMRI traits. To this end, we estimated the putative
causal effect of genetically proxied gene expression on genetic
proxies of sociability and rs-fMRI traits. We utilized eQTLs from
the MetaBrain resource, a meta-analysis of brain-derived eQTLs
across five different tissues (basal ganglia, cerebellum, cortex,
hippocampus, and spinal cord) (de Klein et al., 2023).

We constructed cis-acting genetic instruments (as trans-acting
eQTLs are more liable to pleiotropy) with a recursive p-value
selection paradigm. We first searched for an eQTL for a gene at
p < 5 × 10�08 and, if no eQTL was found, we reduced this threshold
to p < 5 × 10�07 and, finally, to p < 5 × 10�06. If a gene was part of an
eQTL with p < 5 × 10�08, we did not include genetic variants with
eQTL p-values in the range 5 × 10�08 < p < 5 × 10�06. Next, we
ensured independence of SNPs by clumping at a threshold of
r2 < 0.01. Our rationale for using a recursive p-value threshold
was to include as many eQTLs, and thus genes, as possible in our
gene prioritization strategy.

MR analyses were conducted for all identified eQTL-associated
genes. Multiple testing correction was applied using Bonferroni’s
method based on the number of tested genes (significance threshold
α = 0.05/Ngenes). For further statistical details, refer to theMendel-
ian randomization statistical methods section of the Methods.

Gene prioritization strategy

To prioritize the identified genes further, we selected all genes that
had at least nominal eQTL MR evidence for both sociability and at
least one rs-fMRI trait, as well as at least nominal CELLECT
evidence for both sociability and at least one rs-fMRI trait (see
below). We ranked these genes using the TieDIE network propa-
gation post-propagation score percentile (see below). We excluded
genes mapping to the major histocompatibility complex region on
chromosome 6 from our prioritized list due to the complex linkage
disequilibrium structure in this region and the likelihood that the
genetics-based analyses will not perform well there.

Network propagation of genes
We used network propagation to identify additional genes affecting
both sociability and the prioritized rs-fMRI traits in the context of
protein–protein interaction (PPI) networks. We performed a two-
seed node propagation in a tied diffusion through interacting events

(TieDIE) framework to obtain genes which are close to seed genes
from both sources (Paull et al., 2013). For this analysis, we selected
all genes identified using FUMA that showed at least nominal eQTL
MR evidence either for sociability or the rs-fMRI traits. These genes
were used as seed nodes with binarized heats (i.e., if the gene was
prioritized for the respective trait, the seed heat was ‘1’, otherwise it
was ‘0’). As the underlying PPI network, we selected the full
STRING database (Paull et al., 2013) and removed interactions in
the lowest quartile of all interaction scores (confidence
score < 0.309). We used the propagation algorithm implemented
in the DiffuStats R package (Picart-Armada, Thompson, Buil, &
Perera-Lluna, 2018) and a jack-knife (i.e., leave-one-out) procedure
for each network propagation analysis to ensure robustness of
results against perturbations in the seed gene list. To aid the
interpretation of results from this analysis, we grouped genes into
percentiles based on the mean of their post-propagation scores
across each of the jack-knife permutations.

CELLECT cell type and gene identification
We used the CELL-type Expression-specific integration for Com-
plex Traits (CELLECT) framework (Timshel, Thompson, & Pers,
2020) to integrate human single-nucleus RNA sequencing
(snRNA-seq) datasets (Human Brain Cell Atlas v1.0, Siletti et al.,
2023) with the sociability and the prioritized rs-fMRI traits
GWASs. For our analysis, we selected 22 dissections from this atlas
covering representative brain regions related to the DMN, based on
previous evidence (Ezama et al., 2021; Smallwood et al., 2021) (see
Supplementary Table S2). By leveraging partitioned LDSC and
MAGMA, CELLECT identifies etiologically important GWAS-
associated cell types and genes which drive the cell type-phenotype
association. Our correction for multiple testing thresholds were set
as follows: for CELLECT identifying cell types, we used an FDR-
corrected p < 0.05; for CELLECT identifying genes, we used a
Bonferroni threshold of p < 1.01 × 10�06 (0.05/49,689 unique genes
present in the MAGMA reference data).

Results

Genetic overlap and causal relationship

We analyzed the genetic overlap of sociability with 31 activity
(nodes) and 64 connectivity (edges) DMN-related rs-fMRI traits
derived from the UK Biobank cohort (Supplementary Table S1).

Genetic correlations of sociability with DMN-related activity and
connectivity resting-state fMRI traits
After correcting for multiple testing, none of the global genetic
correlations between sociability and the 95 DMN-related rs-fMRI
traits were statistically significant (Supplementary Table S3).

Even in the absence of significant genome-wide genetic correl-
ations, local genetic correlations can be present. Therefore, we next
examined the rs-fMRI traits showing nominally significant evidence
for the presence of global genetic correlations (i.e., uncorrected
p < 0.05) in more detail for local genetic correlations. Thus, we
analyzed local genetic correlations between sociability and 16 DMN-
related activity/connectivity rs-fMRI using LAVA. In these analyses, a
strong and significant local genetic correlation was observed between
sociability and spontaneous activity in the temporal cortex (node 17) at
chr18:34,153,298–36,056,932 (rg = 0.66, p = 2.1 × 10�4, pFDR = 0.04)
(Table 1 and Supplementary Table S4). Among the rs-fMRI connect-
ivity traits, a strong and significant local genetic correlation was iden-
tified at chr10:114,255,955–115,588,903 (rg = �0.70, p = 1.7 × 10�4,
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pFDR = 0.04), linking sociability with connectivity between the frontal/
cingulate and angular/temporal cortex (edge 7–11) (Table 1 and
Supplementary Table S4). These areas are part of the DMN but
extend to the limbic and central executive networks.

Assessment of putatively causal effects using bidirectional MR
In the stringent bi-directional MR analysis, no results remained
significant after Bonferroni correction. The putatively causal gen-
etically proxied relationship showing the lowest nominal p-value
(p = 1.42 × 10�03) was observed for sociability on the rs-fMRI edge
31–48 (connectivity between frontal and temporal cortex)
(Supplementary Table S5, MR method ‘Inverse variance weighted’).

In the lenient bi-directional MR analysis, we found evidence for a
genetically proxied causal effect of sociability on 14 rs-fMRI traits,
13 of which were connectivity measures (Table 1 and Supplementary
Table S5, MR method “Inverse variance weighted correlated”). The
rs-fMRI trait showing themost robustMR evidence for being causally
affected by sociability was edge 7–11 (p = 9.75 × 10�12, which also
showed evidence for local genetic correlation (p = 1.7 × 10�4, Sup-
plementary Table S4). Node 17, which also exhibited significant local
genetic correlation with sociability, was the only activity rs-fMRI trait
significant after correction for multiple testing (p = 1.01 × 10�04).
However, we found evidence for horizontal pleiotropy (intercept
p = 6.94 × 10�04) in the MR-Egger analysis for this node. Because
this node was independently prioritized using local genetic correl-
ation, it was retained in the gene prioritization analyses. Two add-
itional edges (44–49 and 10–36) that showed evidence for pleiotropy
as indicated by MR-Egger (Supplementary Table S5), were excluded
from further analyses, leaving 12 prioritized rs-fMRI traits.

Gene prioritization

Mapping GWAS loci to genes using FUMA and MR
After establishing that sociability and 12 DMN-related rs-fMRI
traits were either locally correlated (LAVA) or putatively causally

related (bi-directional MR), we prioritized genes potentially affect-
ing both phenotypes (Figure 1). Using FUMA locus-to-gene ana-
lyses for each GWAS, we mapped 83 genes for sociability and
172 unique genes across the 12 rs-fMRI traits (Supplementary
Table S6). The median number of genes identified per rs-fMRI trait
was 4.5, ranging from zero (edge 11–36) to 92 (edge ICA 3). Among
these genes, eQTL-basedMRanalyses prioritized nine unique genes
as significantly associatedwith sociability (p< 0.05/83) and32unique
genes significantly associated with rs-fMRI traits (p < 0.05/172)
(Supplementary Table S7).

Prioritized of cell types and genes associatedwith DMNand sociability
CELLECT-based cell type analyses reached the lowest p-values for
deep-layer intra-telencephalic neurons across the different cortex
dissections (Supplementary Tables S8 and S9). In addition to
54 seed genes (selected using FUMA and eQTL-MR), 139 novel
genes were in the top percentile of network propagation results
(Supplementary Table S10).

When combining gene prioritization methods, 43 genes showed
nominal eQTL-based MR and CELLECT evidence for both soci-
ability and at least one rs-fMRI trait (Supplementary Table S11).
Most of these genes (31 of 43) had eQTLs derived in the cortex,
which is likely due to the larger sample size for this tissue compared
to the other brain regions. Furthermore, ten of the 43 genes were in
the top decile of network propagation results, indicating they acted
closely in PPI networks to the seed genes of both sociability and
rs-fMRI traits (Supplementary Table S11). Only six of these 43 pri-
oritized genes were also identified using FUMA (Table 2). Of these,
only DRD2 and LINGO2 fulfilled all prioritization criteria, showed
eQTL MR evidence significant after correction for multiple testing
in any of the five tested brain regions, and were in the top percentile
of network propagation.

Of the 43 prioritized genes, 11 were associated with anxiety and
ten with depressive symptoms (Thorp et al., 2021), ten with various
neuroticism items (Nagel et al., 2018), and seven with risk-taking

Table 1. Prioritized rs-fMRI traits

Rs-fMRI ID Description Location Method Effect size P-value

Edge_pheno262 Pair 7–11 (Frontal|Cingulate) & (Angular|Temporal) LAVA (local) 0.49 1.67E�04

Node_pheno17 Node 17 Temporal LAVA (local) 0.44 2.11E�04

Edge_pheno262 Pair 7–11 (Frontal|Cingulate) & (Angular|Temporal) MR (IVW lenient) �0.34 9.75E�12

Edge_pheno1142 Pair 29–44 Parietal & Frontal_Inf MR (IVW lenient) 0.24 1.14E�06

Edge_pheno816 Pair 11–36 (Angular|Temporal) & Precuneus MR (IVW lenient) �0.17 3.15E�06

Edge_pheno491 Pair 5–25 (Precuneus|Angular|Cingulate) & (Frontal|Precentral) MR (IVW lenient) �0.17 4.91E�06

Edge_pheno1698 ICA 3 Global measure MR (IVW lenient) �0.22 1.80E�05

Edge_pheno1205 Pair 5–46 (Precuneus|Angular|Cingulate) & Temporal MR (IVW lenient) 0.18 2.18E�05

Edge_pheno253 Pair 7–10 (Frontal|Cingulate) & (OccipitalPrecuneus) MR (IVW lenient) 0.16 2.92E�05

Node_pheno17 Node 17 Temporal MR (IVW lenient) 0.18 1.01E�04*

Edge_pheno249 Pair 3–10 (Lingual|Fusiform) & (OccipitalPrecuneus) MR (IVW lenient) �0.16 1.35E�04

Edge_pheno593 Pair 5–29 (Precuneus|Angular|Cingulate) & Parietal MR (IVW lenient) �0.15 2.61E�04

Edge_pheno1359 Pair 21–49 Frontal_Sup & (Temporal_Mid|Angular) MR (IVW lenient) 0.14 3.70E�04

Edge_pheno286 Pair 10–13 (OccipitalPrecuneus) & Frontal_Sup MR (IVW lenient) 0.14 4.63E�04

Note: The rs-fMRI traits significantly locally genetically correlated with sociability (LAVA, see Supplementary Table S4 for further details) or with significant MR evidence for sociability
(Supplementary Table S5), both after correction for multiple testing. Two traits with significant MR IVW p-values but evidence for pleiotropy are not shown. Effect size for LAVA: correlation r2;
effect size for MR: IVW beta. The table shows uncorrected p-values.
*Significant MR-Egger intercept p-value (indicating pleiotropy). The trait is shown nevertheless, because it also has significant local genetic correlation evidence through LAVA.
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behaviour (Thorp et al., 2021). According to the Open Targets
Platform (https://www.opentargets.org), 11 of the 44 genes show
an indication of being druggable, i.e., fulfill any criteria for small
molecule tractability.

Discussion

In this study, we investigated the genetic and causal relationship
between sociability and default mode network (DMN)-related
resting-state functional magnetic resonance imaging (rs-fMRI)
traits, unveiling novel insights on the neural and genetic underpin-
nings of social behaviour. We leveraged robust analytical frame-
works including genome-wide global and local genetic correlation
analyses, bi-directional Mendelian randomization (MR), and a
comprehensive gene prioritization strategy. Despite the absence
of significant global genetic correlations, significant local genetic
correlations were found between sociability and specific DMN-
related rs-fMRI activity and connectivity traits, suggesting shared
pathophysiology. Subsequent analyses revealed putatively causal
relationships between sociability and 12 rs-fMRI traits. Our gene
prioritization approach, integrating eQTL-based MR, sn-RNAseq,
and network propagation analyses, highlighted 43 putative genes
with evidence supporting their influence on both sociability and
DMN-related rs-fMRI traits, among which DRD2 and LINGO2
were most consistently implicated and emerged as key targets of
interest.

Interestingly, ourMR findings suggest that sociability may drive
changes in DMN connectivity, which could initially appear coun-
terintuitive. However, accumulating evidence indicates that behav-
ioral and environmental factors can induce enduring modifications

in brain structure and function (Andrews-Hanna et al., 2014;
Menon, 2011). For example, early social engagement has been
shown to predict long-term neural connectivity patterns. Maternal
interactions during infancy are linked to functional connectivity
between the DMN and salience network nearly a decade later
(Degeilh et al., 2018). Similarly, increased social engagement during
infancy is associated with enhanced cortical responses in regions
involved in social cognition, highlighting a developmental window
during which sociability shapes brain function (Jones et al., 2015).
Parental internalizing and externalizing behaviors have also been
shown to influence the development of children’s limbic circuits
(Albar & Sattar, 2022), reinforcing the role of social environments
in neural plasticity. Collectively, these findings suggest that soci-
ability, particularly during sensitive developmental periods, can
actively shape the functional organization of neural networks,
including the DMN.

Our study is the first to find significant local genetic correlations
between sociability and specific resting-state neural activity/con-
nectivity traits mapping to the DMN. These traits reflect spontan-
eous neural activity within the superior areas of the temporal cortex
(node 17) – including the superior temporal gyrus and superior
temporal sulcus – and functional connectivity between the poster-
ior/anterior cingulate cortices and the right anterior temporal lobe/
right anterior angular gyrus (edge 7–11). The temporal cortex,
particularly the superior temporal sulcus, is involved in the percep-
tion of social interactions. The posterior part of the superior tem-
poral sulcus is considered one of the areas responsible formodelling
the mental states, intentions, and perspectives of others (Frith &
Frith, 2006). The temporal lobe’s involvement extends across vari-
ous cognitive domains essential for social behaviour, including

Table 2. Top prioritized genes

Gene FUMA prioritized eQTL MR CELLECT TieDIE

Gene symbol Prioritized sociability Prioritized rs-fMRI Min P for sociability Min P for rs-fMRI Min P sociability Min P rs-fMRI Score percentile

DRD2 Yes No 1.36E�04 4.80E�03 5.09E�10 4.67E�06 100

LINGO1 Yes No 6.00E�04 4.37E�02 9.74E�08 2.15E�02 100

ELAVL2 Yes No 9.15E�04 3.15E�02 3.15E�10 5.98E�05 100

CTNND1 Yes No 7.08E�03 1.77E�02 7.71E�08 2.92E�02 100

YJEFN3 No No 6.49E�05 2.04E�03 4.18E�04 9.65E�03 98

AMZ1 No No 3.89E�03 2.71E�03 2.68E�03 9.56E�04 98

LST1 No No 4.00E�02 4.32E�03 2.91E�04 1.83E�02 97

ANKK1 No No 1.62E�02 2.54E�02 3.98E�08 7.60E�05 95

MIXL1 No No 3.69E�03 2.25E�02 1.11E�04 2.73E�02 93

NOTCH4 No No 3.99E�02 2.62E�02 2.84E�03 2.12E�02 90

ZIC1 No Yes 2.42E�02 3.43E�02 9.63E�03 3.36E�06 18

KPNA2 No Yes 1.78E�04 1.02E�05 6.69E�05 1.37E�08 76

MDGA1 No No 2.23E�04 1.93E�02 9.75E�03 1.57E�03 47

FRAT1 No No 2.64E�04 1.76E�02 2.93E�03 1.21E�02 42

SYBU No No 2.68E�05 2.29E�04 2.75E�06 1.87E�04 35

EMB No No 7.66E�05 8.28E�05 1.25E�03 3.11E�03 30

SYCE1L No No 5.29E�04 2.37E�02 7.60E�04 2.88E�02 12

Note: From the list of 43 prioritized genes (Supplementary Table S11), the 17 genes prioritized by FUMA, showing a significant eQTL MR p-value after correction for multiple testing with either
sociability or any of the rs-fMRI traits, exhibiting a significant CELLECT MAGMA p-value after correction for multiple testing, or being in the top decile of network propagation. Significant p-values
after correction for multiple testing are shown in bold font.
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facial recognition, communication, and emotion processing (Deen,
Koldewyn, Kanwisher, & Saxe, 2015). The cingulate cortex, inter-
secting with the DMN (through the posterior cingulate cortex) but
also with the salience network (SN), is essential for detecting and
orienting attention toward salient stimuli and for cognitive control
modulation on a trial-by-trial basis (Bartoli et al., 2018). In par-
ticular, the anterior cingulate cortex processes social information
and detects subjectively rewarding opportunities in social evalu-
ation by assessing others’ behaviors and motivation (Apps, Rush-
worth, & Chang, 2016; Rigney, Koski, & Beer, 2018).

The two rs-fMRI traits showing local genetic correlations with
sociability and mapping to the DMN are also functionally impli-
cated in the auditory and language networks (node 17), central
executive network, and limbic network (edge 7–11), highlighting
the importance of inter-network functionality for social behaviour.
Node 17 covers the entire superior temporal gyrus, which overlaps
with a number of areas from both the auditory and language
networks. The overlap of language and social processing is exem-
plified by evidence revealing a social–emotional component in
semantic processing in frontal areas of the superior temporal gyrus
(Mellem, Jasmin, Peng, &Martin, 2016), while the posterior super-
ior temporal gyrus has been linked to antisocial behaviour (Raine,
2019). The central executive network is associated with high-level
cognitive functions, including working memory, cognitive control,
and decision-making (Steardo, D’Angelo, Monaco, Di Stefano, &
Steardo, 2025). The limbic network, which is central to emotion
regulation, memory, and social interactions, dynamically interacts
with higher-order associative and sensory networks to support
social tasks (Alcala-Lopez et al., 2018). Specific limbic regions, such
as the amygdala and medial temporal structures, are structurally
larger in individuals with extensive social networks, linking limbic
anatomy to social engagement (Noonan, Mars, Sallet, Dunbar, &
Fellows, 2018).

Only two of the 95 DMN-related rs-fMRI traits analyzed were
significantly correlated with sociability in the LAVA analysis and
showed significant MR evidence. However, none of the global
correlation and stringent MR analyses were significant after cor-
rection for multiple testing. Given the relatively high h2SNP of
neuroimaging traits, estimated to be between 20 and 40% for fMRI
traits (Adhikari et al., 2018; Elliott et al., 2018), this low number of
significant results might appear surprising. However, high h2SNP
does not necessarily directly confer high statistical power for
detecting causal loci (see Fan et al., 2018). In general, the complex
and unique genetic architecture of imaging traits makes correl-
ational analyses difficult (Toro et al., 2015). In fact, several seem-
ingly well-powered studies have failed to detect significant genetic
correlations between MRI-derived phenotypes and psychiatric
traits (see Andlauer et al., 2021 and the discussion therein). Fur-
thermore, measured rs-fMRI traits are somewhat distant from their
molecular effectors because they integrate various genetic and
environmental influences plus technical batches and other sources
of heterogeneity (Andlauer et al., 2021. In our opinion, it is justified
under these conditions to increase the search space for the causal
MR analysis. It has been demonstrated that including multiple
correlated instruments in an MR framework increases statistical
discovery power, particularly for imaging-derived traits where few
loci reach genome-wide significance (Knutson & Pan, 2021). Thus,
we also adopted this approach for this study and thereby found
strong evidence that genetic proxies of sociability putatively influ-
ence various DMN-related rs-fMRI measures.

Our gene prioritization strategy used triangulation – a key
practice in etiological epidemiology –wherebymore reliable results

can be obtained when integrating analyses from different datasets
and methods with orthogonal sources of bias (Lawlor, Tilling, &
Davey Smith, 2016). Such an approach can be especially useful
when, as is the case in this study, evidence from onemethod alone is
not considered as robust enough. We employed triangulation to
integrate diverse evidence for genes potentially affecting both soci-
ability and DMN-related rs-fMRI measures. The validity of this
approach is underscored by many highly interesting examples of
genes prioritized in this study. Nevertheless, the associations of
these genes should only be considered as first indications. All results
presented here require replication in independent studies and using
independent data.

The fact that the gene coding for the dopamine receptor D2
(DRD2) was highly prioritized using our approach can be con-
sidered as a positive control for our overall approach. DRD2 is the
target of anti-psychotic medications and consistently appears as a
significant locus across GWAS for psychiatric disorders and symp-
toms, including major depression (Meng et al., 2024), depressive
symptoms (Nagel et al., 2018), anhedonia (Ward et al., 2019),
suicide (Kimbrel et al., 2022), and addiction (Kimbrel et al.,
2022). The neighboring gene, coding for the protein kinase
ANKK1, was also in the top network propagation decile and is
associated with, among others, major depression (Meng et al.,
2024), bipolar disorder (Bipolar Disorder Working Group of the
Psychiatric Genomics Consortium et al., 2023), and addiction
(Hatoum et al., 2023). Notably, ANKK1 was, unlike DRD2, not a
network prioritization seed gene and hence identified by network
propagation. Several other interesting genes already studied in the
context of brain development and function, and with previous
human genetics evidence, were identified in this study. One of these
genes is LINGO1, which was, next to DRD2, the second gene
identified across all prioritization methods. It is a regulator of large
conductance Ca2+-activated potassium channels (Dudem et al.,
2020) and is associated with depressive symptoms (Dudem et al.,
2020) and addiction (Liu et al., 2019; Saunders et al., 2022). It was
also reported to be associated with cognitive function in schizo-
phrenia (Andrews et al., 2023; Fernandez-Enright et al., 2014). This
gene has been suggested as a drug target (Andrews & Fernandez-
Enright, 2015) but has low potential for small-molecule tractability
(https://platform.opentargets.org/). Another example of an inter-
esting prioritized gene is the regulator of protein translation
ELAVL2, with a potential role in neurodevelopment (Mulligan &
Bicknell, 2023). The ELAVL2 gene is also associated with, among
other psychiatric traits, major depression (Wainberg et al., 2022)
and cognitive function (Davies et al., 2018).

To the best of our knowledge, this study was the first to find a
genetic link between sociability and the DMN, expanding previous
evidence of phenotypic associations (Li, Mai, & Liu, 2014; Saris et al.,
2022). To this end, we leveraged the largest GWAS summary statis-
tics available for both sociability and the rs-fMRI traits. Another
strength of our studywas the integration of various analysismethods,
with the aim of complementing and triangulating evidence. To
overcome issues inherent to imaging genetics, we used previously
validated instruments to increase the statistical power of our causal
inference methods. We cautiously interpret the observedMR results
as supportive of a potential causal relationship while acknowledging
that they are conditional on the validity of the instrumental variable
assumptions (Sanderson et al., 2022). Further replication and valid-
ation in diverse samples will be necessary to strengthen confidence in
these findings. From a mechanistic perspective, our findings may
reflect the involvement ofDMNnodes in social cognition, potentially
mediated by molecular pathways implicated in dopamine signaling
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and synaptic plasticity. These processes could be relevant to clinical
outcomes in conditions featuring social dysfunction (e.g., schizo-
phrenia or mood disorders). However, whether targeted interven-
tions modulating sociability would affect clinically meaningful
changes in DMN connectivity remains speculative. Still, these data
may guide early-stage research into potential prophylactic or thera-
peutic interventions.

There are also limitations to our study. The statistical power of
our genetic correlation analyses was likely reduced by the complex
genetic structure of both sociability and the rs-fMRI traits, as
e.g. evidenced by the low h2SNP of the sociability GWAS (~6%).
Second, the CELLECT framework has the inherent limitation to
only identify genes whose increased expression affects a given trait,
but not genes whose decreased expression affects either sociability
or the rs-fMRI traits. The sample sizes available for eQTL analyses
differed strongly between brain regions and were lower for subcor-
tical regions compared to the cortex. Therefore, the statistical power
to detect eQTLs specific to subcortical regions was lower in our
analysis. While using the largest available eQTL dataset for sub-
cortical eQTLs, we should acknowledge this as a limitation of our
study. Third, our study did not aim to establish specificity of the
DMN, but rather to examine its genetic associations with sociability
based on an a priori hypothesis. The DMN was selected due to its
well-documented role in social cognition and self-referential pro-
cesses (Andrews-Hanna et al., 2014; Buckner et al., 2008; Ronde,
van der Zee, & Kas, 2024). This hypothesis-driven approach also
limited the multiple testing burden while ensuring a focused inves-
tigation of DMN-related rs-fMRI traits. Importantly, our findings
do not imply that genetic influences on sociability are exclusive to
the DMN. In fact, several of the identified DMN-related rs-fMRI
traits, which showed genetic associations with sociability, partly
overlap with other large-scale brain networks, such as the limbic,
auditory, language, and central executive networks, aligning with
evidence demonstrating that functional brain networks do not
operate in isolation but interact dynamically (Shaw et al., 2023).
However, our study was explicitly designed to test the genetic links
between sociability and the DMN, and a broader examination of
non-DMN networks lies beyond our predefined scope. Future
studies could extend this work by investigating the broader involve-
ment of non-DMN networks, including those partially represented
by our selected traits. In terms of generalizability, our findings are
derived primarily from individuals of European ancestry in the UK
Biobank; therefore, their applicability to other populations or
across different developmental stages remains to be determined,
and replication studies in diverse populations and age groups will
be essential. In the MR analyses, we could not rule out the presence
of horizontal pleiotropy, i.e., the observed effect being mediated
through an unrelated pathway. However, we used methods like
MR-Egger regression to assess the likelihood of pleiotropy taking
place and filtered the results accordingly. To this end, we employed
an expansion of the standard MR-Egger method to account for
weakly correlated instruments (Burgess, Dudbridge, & Thompson,
2016). Finally, the GWAS of sociability and rs-fMRI traits used in
the bidirectionalMR analysis were derived using participants inUK
Biobank, and sample overlap is a potential concern in two-sample
MR (so-called ‘winner’s curse bias’). However, previous papers on
this subject have indicated that, in such a case, weak-instrument
bias is amplified, and the inflation of the false discovery rate is
moderate to low (Sadreev et al., 2021). To partially address and
mitigate the effects of weak-instrument bias, we corrected for
multiple testing using a more stringent threshold (Bonferroni’s
threshold instead of FDR), and we also ensured that all instruments

were subject to an F-statistic threshold. Nevertheless, we caution
that this measure is likely not sufficient to alleviate any potential
bias in the causal effect estimates (Burgess, Davies, & Thompson,
2016).

Conclusions

In conclusion, our study identified genetic factors common to
sociability and functional measures of DMN activity and connect-
ivity. The significant rs-fMRI nodes and edges primarily cover the
temporal, cingulate, and frontal cortex, which are brain regions
integral to the DMN. However, several of these traits also overlap
with other large-scale brain networks, including the limbic, audi-
tory, language, and central executive networks, indicating that the
genetic influences of sociability extend beyond the DMN. Because
of the limitations of this study and the partly only nominally
significant findings, all results require replication in independent
studies. Nevertheless, this work conceptionally paves the way for
further exploration into the clinical translation of the link between
sociability and the DMN, holding the potential to inform future
studies and research on novel therapeutic strategies for neuro-
psychiatric disorders featuring social impairment.
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